Tits endomorphisms and buildings of type F 4
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2349-2421.

The fixed point building of a polarity of a Moufang quadrangle of type F 4 is a Moufang set, as is the fixed point building of a semi-linear automorphism of order 2 of a Moufang octagon that stabilizes at least two panels of one type but none of the other. We show that these two classes of Moufang sets are, in fact, the same, that each member of this class can be constructed as the fixed point building of a group of order 4 acting on a building of type F 4 and that the group generated by all the root groups of any one of these Moufang sets is simple.

L’immeuble de points fixes d’une polarité d’un quadrangle de Moufang de type F 4 est un ensemble de Moufang. Il en va de même pour l’immeuble de points fixes d’un automorphisme semi-linéaire d’ordre 2 d’un octogone de Moufang qui stabilise au moins deux cloisons d’un type mais aucun de l’autre. Nous montrons que ces deux classes d’ensembles de Moufang sont en fait identiques, que chaque membre de cette classe peut être construit comme l’immeuble de points fixes d’un groupe d’ordre 4 agissant sur un immeuble de type F 4 , et que pour chacun de ces ensembles de Moufang, le groupe engendré par tous les sous-groupes radiciels est un groupe simple.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3138
Classification: 20E42, 51E12, 51E24
Keywords: building, descent, polarity, Moufang set, Moufang quadrangle, Moufang octagon
Mot clés : immeubles, descent, polarité, ensemble de Moufang, quadrangle de Moufang, octogone de Moufang
De Medts, Tom 1; Segev, Yoav 2; Weiss, Richard M. 3

1 Department of Mathematics Ghent University 9000 Gent (Belgium)
2 Department of Mathematics Ben Gurion University Beer Sheva 84105 (Israel)
3 Department of Mathematics Tufts University Medford, MA 02155 (USA)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_6_2349_0,
     author = {De Medts, Tom and Segev, Yoav and Weiss, Richard M.},
     title = {Tits endomorphisms and buildings of type~$F_4$},
     journal = {Annales de l'Institut Fourier},
     pages = {2349--2421},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3138},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3138/}
}
TY  - JOUR
AU  - De Medts, Tom
AU  - Segev, Yoav
AU  - Weiss, Richard M.
TI  - Tits endomorphisms and buildings of type $F_4$
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2349
EP  - 2421
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3138/
DO  - 10.5802/aif.3138
LA  - en
ID  - AIF_2017__67_6_2349_0
ER  - 
%0 Journal Article
%A De Medts, Tom
%A Segev, Yoav
%A Weiss, Richard M.
%T Tits endomorphisms and buildings of type $F_4$
%J Annales de l'Institut Fourier
%D 2017
%P 2349-2421
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3138/
%R 10.5802/aif.3138
%G en
%F AIF_2017__67_6_2349_0
De Medts, Tom; Segev, Yoav; Weiss, Richard M. Tits endomorphisms and buildings of type $F_4$. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2349-2421. doi : 10.5802/aif.3138. https://aif.centre-mersenne.org/articles/10.5802/aif.3138/

[1] Carter, Roger W. Simple groups of Lie type, 28, John Wiley & Sons, 1972, viii+331 pages (Pure and Applied Mathematics) | MR | Zbl

[2] De Medts, Tom Automorphisms of F 4 quadrangles, Math. Ann., Volume 328 (2004) no. 3, pp. 399-413 | DOI | MR | Zbl

[3] De Medts, Tom An algebraic structure for Moufang quadrangles, Mem. Am. Math. Soc., Volume 173 (2005) no. 818, vi+99 pages | DOI | MR | Zbl

[4] De Medts, Tom; Segev, Yoav A course on Moufang sets, Innov. Incidence Geom., Volume 9 (2009), pp. 79-122 | MR | Zbl

[5] De Medts, Tom; Van Maldeghem, Hendrik Moufang sets of type F 4 , Math. Z., Volume 265 (2010) no. 3, pp. 511-527 | DOI | MR | Zbl

[6] De Medts, Tom; Weiss, Richard M. Moufang sets and Jordan division algebras, Math. Ann., Volume 335 (2006) no. 2, pp. 415-433 | DOI | MR | Zbl

[7] Elduque, Alberto; Pérez, José María Infinite-dimensional quadratic forms admitting composition, Proc. Am. Math. Soc., Volume 125 (1997) no. 8, pp. 2207-2216 | DOI | MR | Zbl

[8] Engler, Antonio J.; Prestel, Alexander Valued fields, Springer Monographs in Mathematics, Springer, 2005, x+205 pages | MR | Zbl

[9] Humphreys, James E. Introduction to Lie algebras and representation theory, 9, Springer, 1972, xii+169 pages (Graduate Texts in Mathematics) | MR | Zbl

[10] Iwasawa, Kenkiti Über die Einfachheit der speziellen projektiven Gruppen, Proc. Imp. Acad. Tokyo, Volume 17 (1941), pp. 57-59 | DOI | MR | Zbl

[11] Mühlherr, Bernhard; Petersson, Holger P.; Weiss, Richard M. Descent in buildings, Annals of Mathematics Studies, 190, Princeton University Press, 2015, xvi+336 pages | DOI | MR | Zbl

[12] Mühlherr, Bernhard; Van Maldeghem, Hendrik Exceptional Moufang quadrangles of type F 4 , Can. J. Math., Volume 51 (1999) no. 2, pp. 347-371 | DOI | MR | Zbl

[13] Mühlherr, Bernhard; Van Maldeghem, Hendrik Moufang sets from groups of mixed type, J. Algebra, Volume 300 (2006) no. 2, pp. 820-833 | DOI | MR | Zbl

[14] Mühlherr, Bernhard; Weiss, Richard M. Galois involutions and exceptional buildings, Enseign. Math., Volume 62 (2016) no. 1-2, pp. 207-260 | DOI | MR | Zbl

[15] Mühlherr, Bernhard; Weiss, Richard M. Rhizospheres in spherical buildings, Math. Ann., Volume 369 (2017) no. 1-2, pp. 839-868 | DOI

[16] Steinberg, Robert Lectures on Chevalley groups, Yale University, 1968, iii+277 pages (Notes prepared by John Faulkner and Robert Wilson) | MR | Zbl

[17] Struyve, Koen Moufang sets related to polarities in exceptional Moufang quadrangles of type F 4 , Innov. Incidence Geom., Volume 10 (2009), pp. 121-132 | MR | Zbl

[18] Tits, Jacques Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), American Mathematical Society, 1966, pp. 33-62 | MR | Zbl

[19] Tits, Jacques Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, 386, Springer, 1974, x+299 pages | MR | Zbl

[20] Tits, Jacques Moufang octagons and the Ree groups of type 2 F 4 , Am. J. Math., Volume 105 (1983) no. 2, pp. 539-594 | DOI | MR | Zbl

[21] Tits, Jacques Twin buildings and groups of Kac-Moody type, Groups, combinatorics & geometry (Durham, 1990) (Lond. Math. Soc. Lect. Note Ser.), Volume 165, Cambridge University Press, 1992, pp. 249-286 | DOI | MR | Zbl

[22] Tits, Jacques Les groupes simples de Suzuki et de Ree, Séminaire Bourbaki, Vol. 6, Société Mathématique de France, 1995, pp. Exp. No. 210, 65-82 | MR | Zbl

[23] Tits, Jacques; Weiss, Richard M. Moufang polygons, Springer Monographs in Mathematics, Springer, 2002, x+535 pages | DOI | MR | Zbl

[24] Weiss, Richard M. The structure of spherical buildings, Princeton University Press, 2003, xiv+135 pages | MR | Zbl

[25] Weiss, Richard M. Quadrangular algebras, Mathematical Notes, 46, Princeton University Press, 2006, x+131 pages | MR | Zbl

[26] Weiss, Richard M. The structure of affine buildings, Annals of Mathematics Studies, 168, Princeton University Press, 2009, xii+368 pages | MR | Zbl

Cited by Sources: