We consider a semiclassical pseudodifferential operator on a compact surface, such that the Hamiltonian flow generated by its principal symbol admits a hyperbolic periodic orbit at some energy. For an arbitrary small , we construct semiclassical families of quasimodes of this operator, with energy widths of order , and which feature a strong scar along that hyperbolic orbit. Our construction proceeds by controlling the evolution of Gaussian wavepackets up to the Ehrenfest time.
Nous considérons un opérateur pseudodifférentiel semiclassique sur une surface compacte, tel que le flot Hamiltonien engendré par son symbole principal possède, à une certaine énergie, une orbite périodique hyperbolique. Pour un paramètre arbitrairement petit, nous construisons une famille de quasimodes de cet opérateur, dont la largeur en énergie est d’ordre , mais qui possèdent un poids positif (une « grosse balafre ») autour de cette orbite périodique. Notre construction procède par un contrôle de l’évolution de paquets d’onde gaussiens jusqu’au temps d’Ehrenfest.
Accepted:
Published online:
Keywords: semiclassical analysis, quasimode, QUE, strong scarring
Mot clés : analyse semiclassique, quasimode, unique ergodicité quantique, balafre d’orbite périodique
@article{AIF_2017__67_6_2307_0, author = {Eswarathasan, Suresh and Nonnenmacher, St\'ephane}, title = {Strong scarring of logarithmic quasimodes}, journal = {Annales de l'Institut Fourier}, pages = {2307--2347}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3137}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3137/} }
TY - JOUR AU - Eswarathasan, Suresh AU - Nonnenmacher, Stéphane TI - Strong scarring of logarithmic quasimodes JO - Annales de l'Institut Fourier PY - 2017 SP - 2307 EP - 2347 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3137/ DO - 10.5802/aif.3137 LA - en ID - AIF_2017__67_6_2307_0 ER -
%0 Journal Article %A Eswarathasan, Suresh %A Nonnenmacher, Stéphane %T Strong scarring of logarithmic quasimodes %J Annales de l'Institut Fourier %D 2017 %P 2307-2347 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3137/ %R 10.5802/aif.3137 %G en %F AIF_2017__67_6_2307_0
Eswarathasan, Suresh; Nonnenmacher, Stéphane. Strong scarring of logarithmic quasimodes. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2307-2347. doi : 10.5802/aif.3137. https://aif.centre-mersenne.org/articles/10.5802/aif.3137/
[1] Entropy and the localization of eigenfunctions, Ann. Math., Volume 168 (2008) no. 2, pp. 435-475 | DOI | MR | Zbl
[2] Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier, Volume 57 (2007) no. 7, pp. 2465-2523 http://aif.cedram.org/item?id=AIF_2007__57_7_2465_0 (Festival Yves Colin de Verdière) | DOI | MR | Zbl
[3] The eigenfunctions which are concentrated near a closed geodesic, Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (Russian), Izdat. Leningrad. Univ., Leningrad, 1967, pp. 15-25 | MR
[4] Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards, Commun. Pure Appl. Math., Volume 59 (2006) no. 10, pp. 1457-1488 | DOI | MR | Zbl
[5] Scars in groups of eigenfunctions, Hamiltonian mechanics (Toruń, 1993) (NATO Adv. Sci. Inst. Ser. B Phys.), Volume 331, Plenum, New York, 1994, pp. 287-294 | DOI | MR
[6] Logarithmic-scale quasimodes that do not equidistribute, Int. Math. Res. Not. (2015) no. 22, pp. 11934-11960 | MR | Zbl
[7] Eisenstein quasimodes and QUE, Ann. Henri Poincaré, Volume 17 (2016) no. 3, pp. 615-643 | DOI | MR | Zbl
[8] Joint quasimodes, positive entropy, and quantum unique ergodicity, Invent. Math., Volume 198 (2014) no. 1, pp. 219-259 | DOI | MR | Zbl
[9] Geometric control in the presence of a black box, J. Am. Math. Soc., Volume 17 (2004) no. 2, pp. 443-471 | DOI | MR | Zbl
[10] Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal., Volume 246 (2007) no. 2, pp. 145-195 corrigendum in ibid. 253 (2010), no. 3, p. 1060-1065 | DOI | MR | Zbl
[11] Quantum monodromy and nonconcentration near a closed semi-hyperbolic orbit, Trans. Am. Math. Soc., Volume 363 (2011) no. 7, pp. 3373-3438 | DOI | MR | Zbl
[12] Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal., Volume 14 (1997) no. 4, pp. 377-404 | MR | Zbl
[13] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999, xii+227 pages | DOI | MR | Zbl
[14] Oscillatory integrals, Lagrange immersions and unfolding of singularities, Commun. Pure Appl. Math., Volume 27 (1974), pp. 207-281 | DOI | MR | Zbl
[15] Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 2, pp. 371-448 | DOI | MR | Zbl
[16] Semiclassical measures on hyperbolic surfaces have full support (2017) (https://arxiv.org/abs/1705.05019) | arXiv
[17] Scarring of quasimodes on hyperbolic manifolds (2016) (http://https://arxiv.org/abs/1609.04912) | arXiv
[18] On the maximal scarring for quantum cat map eigenstates, Commun. Math. Phys., Volume 245 (2004) no. 1, pp. 201-214 | DOI | MR | Zbl
[19] Scarred eigenstates for quantum cat maps of minimal periods, Commun. Math. Phys., Volume 239 (2003) no. 3, pp. 449-492 | DOI | MR | Zbl
[20] Semiclassical resonances generated by a closed trajectory of hyperbolic type, Commun. Math. Phys., Volume 108 (1987) no. 3, pp. 391-421 | DOI | MR | Zbl
[21] Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | DOI | MR | Zbl
[22] Wave-trace invariants, Duke Math. J., Volume 83 (1996) no. 2, pp. 287-352 | DOI | MR | Zbl
[23] Some remarks about semiclassical trace invariants and quantum normal forms, Commun. Math. Phys., Volume 294 (2010) no. 1, pp. 1-19 | DOI | MR | Zbl
[24] Eigenvalues associated with a closed geodesic, Bull. Am. Math. Soc., Volume 82 (1976) no. 1, pp. 92-94 corrigendum in ibid. 82 (1976), p. 966 | DOI | MR | Zbl
[25] Semiclassical quantum mechanics. I. The limit for coherent states, Commun. Math. Phys., Volume 71 (1980) no. 1, pp. 77-93 http://projecteuclid.org/euclid.cmp/1103907396 | DOI | MR
[26] Semiclassical dynamics with exponentially small error estimates, Commun. Math. Phys., Volume 207 (1999) no. 2, pp. 439-465 | DOI | MR | Zbl
[27] Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits, Phys. Rev. Lett., Volume 53 (1984) no. 16, pp. 1515-1518 | DOI | MR
[28] The analysis of linear partial differential operators. III Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | DOI | MR | Zbl
[29] Scars in quantum chaotic wave functions, Nonlinearity, Volume 12 (1999) no. 2, p. R1-R40 | DOI | MR | Zbl
[30] Measuring scars of periodic orbits, Phys. Rev. E, Volume 59 (1999) no. 6, pp. 6609-6628 | DOI | MR
[31] Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems, Ann. Phys., Volume 4 (1958), pp. 180-188 | DOI | MR | Zbl
[32] Invariant measures and arithmetic quantum unique ergodicity, Ann. Math., Volume 163 (2006) no. 1, pp. 165-219 | DOI | MR | Zbl
[33] Theory of perturbations and asymptotic methods, Études Mathématiques, Gauthier-Villars, 1972, 384 pages http://www.maths.ed.ac.uk/~aar/papers/maslovbook.pdf (French translation of Russian text, available at http://www.maths.ed.ac.uk/~aar/papers/maslovbook.pdf)
[34] Eigenstate structures around a hyperbolic point, J. Phys. A, Math. Gen., Volume 30 (1997) no. 1, pp. 295-315 | DOI | MR | Zbl
[35] On the construction of quasimodes associated with stable periodic orbits, Commun. Math. Phys., Volume 51 (1976) no. 3, pp. 219-242 http://projecteuclid.org/euclid.cmp/1103900389 | DOI | MR | Zbl
[36] The behaviour of eigenstates of arithmetic hyperbolic manifolds, Commun. Math. Phys., Volume 161 (1994) no. 1, pp. 195-213 http://projecteuclid.org/euclid.cmp/1104269797 | DOI | MR | Zbl
[37] How do wave packets spread? Time evolution on Ehrenfest time scales, J. Phys. A, Math. Theor., Volume 45 (2012) no. 21 (Article ID 215307, 28 pp.) | DOI | MR | Zbl
[38] Resonances associated to a closed hyperbolic trajectory in dimension 2, Asymptotic Anal., Volume 36 (2003) no. 2, pp. 93-113 | MR | Zbl
[39] Ergodic properties of eigenfunctions, Usp. Mat. Nauk, Volume 29 (1974) no. 6(180), pp. 181-182 | MR | Zbl
[40] Eigenfunction localization in the quantized rigid body, J. Differ. Geom., Volume 43 (1996) no. 4, pp. 844-858 http://projecteuclid.org/euclid.jdg/1214458534 | DOI | MR | Zbl
[41] On the quantum expected values of integrable metric forms, J. Differ. Geom., Volume 52 (1999) no. 2, pp. 327-374 http://projecteuclid.org/euclid.jdg/1214425280 | DOI | MR | Zbl
[42] Quasi-modes sur les variétés Riemanniennes, Invent. Math., Volume 43 (1977) no. 1, pp. 15-52 | DOI | MR | Zbl
[43] Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 http://projecteuclid.org/euclid.cmp/1104114465 | DOI | MR | Zbl
[44] Équilibre instable en régime semi-classique. I. Concentration microlocale, Commun. Partial Differ. Equations, Volume 19 (1994) no. 9-10, pp. 1535-1563 | DOI | MR | Zbl
[45] Semiclassical quantization with short periodic orbits, J. Phys. A, Math. Gen., Volume 33 (2000) no. 25, pp. 4717-4724 | DOI | MR | Zbl
[46] Semiclassical construction of resonances with hyperbolic structure: the scar function, J. Phys. A, Math. Gen., Volume 34 (2001) no. 21, pp. 4525-4552 | DOI | MR | Zbl
[47] Asymptotic behaviour of matrix elements between scar functions, J. Phys. A, Math. Gen., Volume 38 (2005) no. 3, pp. 587-616 | DOI | MR | Zbl
[48] Semi-classical approximations, Ann. Inst. Henri Poincaré Sect. A, Volume 24 (1976) no. 1, pp. 31-90 | MR
[49] On Maslov’s quantization condition, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) (Lecture Notes in Mathematics), Volume 459, Springer, 1975, pp. 341-372 | MR | Zbl
[50] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | DOI | MR | Zbl
[51] Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal., Volume 8 (1998) no. 1, pp. 179-217 | DOI | MR | Zbl
[52] Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys., Volume 175 (1996) no. 3, pp. 673-682 http://projecteuclid.org/euclid.cmp/1104276097 | DOI | MR | Zbl
[53] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl
Cited by Sources: