Strong scarring of logarithmic quasimodes
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2307-2347.

We consider a semiclassical pseudodifferential operator on a compact surface, such that the Hamiltonian flow generated by its principal symbol admits a hyperbolic periodic orbit at some energy. For an arbitrary small ε>0, we construct semiclassical families of quasimodes of this operator, with energy widths of order ε/|log|, and which feature a strong scar along that hyperbolic orbit. Our construction proceeds by controlling the evolution of Gaussian wavepackets up to the Ehrenfest time.

Nous considérons un opérateur pseudodifférentiel semiclassique sur une surface compacte, tel que le flot Hamiltonien engendré par son symbole principal possède, à une certaine énergie, une orbite périodique hyperbolique. Pour un paramètre ε>0 arbitrairement petit, nous construisons une famille de quasimodes de cet opérateur, dont la largeur en énergie est d’ordre ε/|log|, mais qui possèdent un poids positif (une «  grosse balafre ») autour de cette orbite périodique. Notre construction procède par un contrôle de l’évolution de paquets d’onde gaussiens jusqu’au temps d’Ehrenfest.

Received:
Accepted:
Published online:
DOI: 10.5802/aif.3137
Classification: 35-xx, 58Jxx, 37-xx
Keywords: semiclassical analysis, quasimode, QUE, strong scarring
Mot clés : analyse semiclassique, quasimode, unique ergodicité quantique, balafre d’orbite périodique
Eswarathasan, Suresh 1; Nonnenmacher, Stéphane 2, 3

1 Department of Mathematics and Statistics McGill University 805 Rue Sherbrooke Ouest Montréal (Canada)
2 Institut de Physique Théorique Université Paris-Saclay Commissariat à l’énergie atomique 91191 Gif-sur-Yvette (France)
3 Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS Université Paris-Saclay 91405 Orsay (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_6_2307_0,
     author = {Eswarathasan, Suresh and Nonnenmacher, St\'ephane},
     title = {Strong scarring of logarithmic quasimodes},
     journal = {Annales de l'Institut Fourier},
     pages = {2307--2347},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3137},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3137/}
}
TY  - JOUR
AU  - Eswarathasan, Suresh
AU  - Nonnenmacher, Stéphane
TI  - Strong scarring of logarithmic quasimodes
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2307
EP  - 2347
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3137/
DO  - 10.5802/aif.3137
LA  - en
ID  - AIF_2017__67_6_2307_0
ER  - 
%0 Journal Article
%A Eswarathasan, Suresh
%A Nonnenmacher, Stéphane
%T Strong scarring of logarithmic quasimodes
%J Annales de l'Institut Fourier
%D 2017
%P 2307-2347
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3137/
%R 10.5802/aif.3137
%G en
%F AIF_2017__67_6_2307_0
Eswarathasan, Suresh; Nonnenmacher, Stéphane. Strong scarring of logarithmic quasimodes. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2307-2347. doi : 10.5802/aif.3137. https://aif.centre-mersenne.org/articles/10.5802/aif.3137/

[1] Anantharaman, Nalini Entropy and the localization of eigenfunctions, Ann. Math., Volume 168 (2008) no. 2, pp. 435-475 | DOI | MR | Zbl

[2] Anantharaman, Nalini; Nonnenmacher, Stéphane Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier, Volume 57 (2007) no. 7, pp. 2465-2523 http://aif.cedram.org/item?id=AIF_2007__57_7_2465_0 (Festival Yves Colin de Verdière) | DOI | MR | Zbl

[3] Babič, V. M.; Lazutkin, Vladimir F. The eigenfunctions which are concentrated near a closed geodesic, Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (Russian), Izdat. Leningrad. Univ., Leningrad, 1967, pp. 15-25 | MR

[4] Barnett, Aalexander Asymptotic rate of quantum ergodicity in chaotic Euclidean billiards, Commun. Pure Appl. Math., Volume 59 (2006) no. 10, pp. 1457-1488 | DOI | MR | Zbl

[5] Borondo, Florentino; de Polavieja, Gonzalo G.; Benito, Rosa M. Scars in groups of eigenfunctions, Hamiltonian mechanics (Toruń, 1993) (NATO Adv. Sci. Inst. Ser. B Phys.), Volume 331, Plenum, New York, 1994, pp. 287-294 | DOI | MR

[6] Brooks, Shimon Logarithmic-scale quasimodes that do not equidistribute, Int. Math. Res. Not. (2015) no. 22, pp. 11934-11960 | MR | Zbl

[7] Brooks, Shimon Eisenstein quasimodes and QUE, Ann. Henri Poincaré, Volume 17 (2016) no. 3, pp. 615-643 | DOI | MR | Zbl

[8] Brooks, Shimon; Lindenstrauss, Elon Joint quasimodes, positive entropy, and quantum unique ergodicity, Invent. Math., Volume 198 (2014) no. 1, pp. 219-259 | DOI | MR | Zbl

[9] Burq, Nicolas; Zworski, Maciej Geometric control in the presence of a black box, J. Am. Math. Soc., Volume 17 (2004) no. 2, pp. 443-471 | DOI | MR | Zbl

[10] Christianson, Hans Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal., Volume 246 (2007) no. 2, pp. 145-195 corrigendum in ibid. 253 (2010), no. 3, p. 1060-1065 | DOI | MR | Zbl

[11] Christianson, Hans Quantum monodromy and nonconcentration near a closed semi-hyperbolic orbit, Trans. Am. Math. Soc., Volume 363 (2011) no. 7, pp. 3373-3438 | DOI | MR | Zbl

[12] Combescure, Monique; Robert, Didier Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal., Volume 14 (1997) no. 4, pp. 377-404 | MR | Zbl

[13] Dimassi, Mouez; Sjöstrand, Johannes Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999, xii+227 pages | DOI | MR | Zbl

[14] Duistermaat, Johannes Jisse Oscillatory integrals, Lagrange immersions and unfolding of singularities, Commun. Pure Appl. Math., Volume 27 (1974), pp. 207-281 | DOI | MR | Zbl

[15] Dyatlov, Semyon; Guillarmou, Colin Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 2, pp. 371-448 | DOI | MR | Zbl

[16] Dyatlov, Semyon; Jin, Long Semiclassical measures on hyperbolic surfaces have full support (2017) (https://arxiv.org/abs/1705.05019) | arXiv

[17] Eswarathasan, Suresh; Silberman, Lior Scarring of quasimodes on hyperbolic manifolds (2016) (http://https://arxiv.org/abs/1609.04912) | arXiv

[18] Faure, Frédéric; Nonnenmacher, Stéphane On the maximal scarring for quantum cat map eigenstates, Commun. Math. Phys., Volume 245 (2004) no. 1, pp. 201-214 | DOI | MR | Zbl

[19] Faure, Frédéric; Nonnenmacher, Stéphane; De Bièvre, Stephan Scarred eigenstates for quantum cat maps of minimal periods, Commun. Math. Phys., Volume 239 (2003) no. 3, pp. 449-492 | DOI | MR | Zbl

[20] Gérard, Christian; Sjöstrand, Johannes Semiclassical resonances generated by a closed trajectory of hyperbolic type, Commun. Math. Phys., Volume 108 (1987) no. 3, pp. 391-421 | DOI | MR | Zbl

[21] Gérard, Patrick; Leichtnam, Éric Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | DOI | MR | Zbl

[22] Guillemin, Victor Wave-trace invariants, Duke Math. J., Volume 83 (1996) no. 2, pp. 287-352 | DOI | MR | Zbl

[23] Guillemin, Victor; Paul, Thierry Some remarks about semiclassical trace invariants and quantum normal forms, Commun. Math. Phys., Volume 294 (2010) no. 1, pp. 1-19 | DOI | MR | Zbl

[24] Guillemin, Victor; Weinstein, Alan Eigenvalues associated with a closed geodesic, Bull. Am. Math. Soc., Volume 82 (1976) no. 1, pp. 92-94 corrigendum in ibid. 82 (1976), p. 966 | DOI | MR | Zbl

[25] Hagedorn, George A. Semiclassical quantum mechanics. I. The 0 limit for coherent states, Commun. Math. Phys., Volume 71 (1980) no. 1, pp. 77-93 http://projecteuclid.org/euclid.cmp/1103907396 | DOI | MR

[26] Hagedorn, George A.; Joye, Alain Semiclassical dynamics with exponentially small error estimates, Commun. Math. Phys., Volume 207 (1999) no. 2, pp. 439-465 | DOI | MR | Zbl

[27] Heller, Eric J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits, Phys. Rev. Lett., Volume 53 (1984) no. 16, pp. 1515-1518 | DOI | MR

[28] Hörmander, Lars The analysis of linear partial differential operators. III Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | DOI | MR | Zbl

[29] Kaplan, L. Scars in quantum chaotic wave functions, Nonlinearity, Volume 12 (1999) no. 2, p. R1-R40 | DOI | MR | Zbl

[30] Kaplan, L.; Heller, Eric J. Measuring scars of periodic orbits, Phys. Rev. E, Volume 59 (1999) no. 6, pp. 6609-6628 | DOI | MR

[31] Keller, Joseph B. Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems, Ann. Phys., Volume 4 (1958), pp. 180-188 | DOI | MR | Zbl

[32] Lindenstrauss, Elon Invariant measures and arithmetic quantum unique ergodicity, Ann. Math., Volume 163 (2006) no. 1, pp. 165-219 | DOI | MR | Zbl

[33] Maslov, Viktor Theory of perturbations and asymptotic methods, Études Mathématiques, Gauthier-Villars, 1972, 384 pages http://www.maths.ed.ac.uk/~aar/papers/maslovbook.pdf (French translation of Russian text, available at http://www.maths.ed.ac.uk/~aar/papers/maslovbook.pdf)

[34] Nonnenmacher, Stéphane; Voros, André Eigenstate structures around a hyperbolic point, J. Phys. A, Math. Gen., Volume 30 (1997) no. 1, pp. 295-315 | DOI | MR | Zbl

[35] Ralston, James V. On the construction of quasimodes associated with stable periodic orbits, Commun. Math. Phys., Volume 51 (1976) no. 3, pp. 219-242 http://projecteuclid.org/euclid.cmp/1103900389 | DOI | MR | Zbl

[36] Rudnick, Zeév; Sarnak, Peter The behaviour of eigenstates of arithmetic hyperbolic manifolds, Commun. Math. Phys., Volume 161 (1994) no. 1, pp. 195-213 http://projecteuclid.org/euclid.cmp/1104269797 | DOI | MR | Zbl

[37] Schubert, Roman; Vallejos, Raúl O.; Toscano, Fabricio How do wave packets spread? Time evolution on Ehrenfest time scales, J. Phys. A, Math. Theor., Volume 45 (2012) no. 21 (Article ID 215307, 28 pp.) | DOI | MR | Zbl

[38] Sjöstrand, Johannes Resonances associated to a closed hyperbolic trajectory in dimension 2, Asymptotic Anal., Volume 36 (2003) no. 2, pp. 93-113 | MR | Zbl

[39] Šnirelʼman, Alexander I. Ergodic properties of eigenfunctions, Usp. Mat. Nauk, Volume 29 (1974) no. 6(180), pp. 181-182 | MR | Zbl

[40] Toth, John A. Eigenfunction localization in the quantized rigid body, J. Differ. Geom., Volume 43 (1996) no. 4, pp. 844-858 http://projecteuclid.org/euclid.jdg/1214458534 | DOI | MR | Zbl

[41] Toth, John A. On the quantum expected values of integrable metric forms, J. Differ. Geom., Volume 52 (1999) no. 2, pp. 327-374 http://projecteuclid.org/euclid.jdg/1214425280 | DOI | MR | Zbl

[42] Colin de Verdière, Yves Quasi-modes sur les variétés Riemanniennes, Invent. Math., Volume 43 (1977) no. 1, pp. 15-52 | DOI | MR | Zbl

[43] Colin de Verdière, Yves Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 http://projecteuclid.org/euclid.cmp/1104114465 | DOI | MR | Zbl

[44] Colin de Verdière, Yves; Parisse, Bernard Équilibre instable en régime semi-classique. I. Concentration microlocale, Commun. Partial Differ. Equations, Volume 19 (1994) no. 9-10, pp. 1535-1563 | DOI | MR | Zbl

[45] Vergini, Eduardo G.; Carlo, Gabriel G. Semiclassical quantization with short periodic orbits, J. Phys. A, Math. Gen., Volume 33 (2000) no. 25, pp. 4717-4724 | DOI | MR | Zbl

[46] Vergini, Eduardo G.; Carlo, Gabriel G. Semiclassical construction of resonances with hyperbolic structure: the scar function, J. Phys. A, Math. Gen., Volume 34 (2001) no. 21, pp. 4525-4552 | DOI | MR | Zbl

[47] Vergini, Eduardo G.; Schneider, David Asymptotic behaviour of matrix elements between scar functions, J. Phys. A, Math. Gen., Volume 38 (2005) no. 3, pp. 587-616 | DOI | MR | Zbl

[48] Voros, André Semi-classical approximations, Ann. Inst. Henri Poincaré Sect. A, Volume 24 (1976) no. 1, pp. 31-90 | MR

[49] Weinstein, Alan On Maslov’s quantization condition, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) (Lecture Notes in Mathematics), Volume 459, Springer, 1975, pp. 341-372 | MR | Zbl

[50] Zelditch, Steven Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | DOI | MR | Zbl

[51] Zelditch, Steven Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal., Volume 8 (1998) no. 1, pp. 179-217 | DOI | MR | Zbl

[52] Zelditch, Steven; Zworski, Maciej Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys., Volume 175 (1996) no. 3, pp. 673-682 http://projecteuclid.org/euclid.cmp/1104276097 | DOI | MR | Zbl

[53] Zworski, Maciej Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl

Cited by Sources: