In this work we study analytic Levi-flat hypersurfaces in complex algebraic surfaces. First, we show that if this foliation admits chaotic dynamics (i.e. if it does not admit a transverse invariant measure), then the connected components of the complement of the hypersurface are modifications of Stein domains. This allows us to extend the CR foliation to a singular algebraic foliation on the ambient complex surface. We apply this result to prove, by contradiction, that analytic Levi-flat hypersurfaces admitting a transverse affine structure in a complex algebraic surface have a transverse invariant measure. This leads us to conjecture that Levi-flat hypersurfaces in complex algebraic surfaces that are diffeomorphic to a hyperbolic torus bundle over the circle are fibrations by algebraic curves.
Dans ce travail nous étudions les hypersurfaces Levi-plates analytiques dans les surfaces algébriques complexes. Dans un premier temps nous montrons que si leur feuilletage admet une dynamique chaotique (c’est à dire, s’il n’admet pas de mesure transverse invariante) alors les composantes connexes de l’extérieur de l’hypersurface sont des modifications de domaines de Stein. Ceci permet d’étendre le feuilletage CR en un feuilletage algébrique singulier sur la surface complexe ambiante. Nous appliquons ce résultat pour montrer, par l’absurde, qu’une hypersurface Levi-plate analytique qui admet une structure affine transverse dans une surface algébrique complexe possède une mesure transverse invariante. Ceci nous amène à conjecturer que les hypersurfaces Levi-plates dans les surfaces algébriques complexes qui sont difféomorphes à un fibré hyperbolique en tores sur le cercle sont des fibrations par courbes algébriques.
Accepted:
Published online:
Keywords: complex analysis and complex geometry, theory of foliations, Levi-flat hypersurfaces, invariant measure, Stein manifold, holomorphic convexity, analytic extension.
Mot clés : analyse et géométrie complexes, théorie des feuilletages, hypersurfaces Levi-plates, mesure transverse invariante, variété Stein, convexité holomorphe, prolongement analytique.
@article{AIF_2017__67_6_2423_0, author = {Canales Gonz\'alez, Carolina}, title = {Levi-flat hypersurfaces and their complement in complex surfaces}, journal = {Annales de l'Institut Fourier}, pages = {2423--2462}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3139}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3139/} }
TY - JOUR AU - Canales González, Carolina TI - Levi-flat hypersurfaces and their complement in complex surfaces JO - Annales de l'Institut Fourier PY - 2017 SP - 2423 EP - 2462 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3139/ DO - 10.5802/aif.3139 LA - en ID - AIF_2017__67_6_2423_0 ER -
%0 Journal Article %A Canales González, Carolina %T Levi-flat hypersurfaces and their complement in complex surfaces %J Annales de l'Institut Fourier %D 2017 %P 2423-2462 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3139/ %R 10.5802/aif.3139 %G en %F AIF_2017__67_6_2423_0
Canales González, Carolina. Levi-flat hypersurfaces and their complement in complex surfaces. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2423-2462. doi : 10.5802/aif.3139. https://aif.centre-mersenne.org/articles/10.5802/aif.3139/
[1] Chapitres supplémentaires de la théorie des équations différentielles ordinaires, “Mir”, Moscow, 1984, 329 pages (Translated from the Russian by Djilali Embarek, Reprint of the 1980 edition) | MR | Zbl
[2] The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer, 1995, xii+337 pages (Corrected reprint of the 1983 original) | MR | Zbl
[3] On the dynamics of codimension one holomorphic foliations with ample normal bundle, Indiana Univ. Math. J., Volume 57 (2008) no. 7, pp. 3101-3113 | DOI | MR | Zbl
[4] Holomorphic foliations with Liouvillian first integrals, Ergodic Theory Dyn. Syst., Volume 21 (2001) no. 3, pp. 717-756 Erratum in ibid. 23 (2003), no. 3, p. 985-987 | DOI | MR | Zbl
[5] Foliations. II, Graduate Studies in Mathematics, 60, American Mathematical Society, Providence, RI, 2003, xiv+545 pages | MR | Zbl
[6] Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl., Volume 11 (1933) no. 1, pp. 17-90 | DOI | MR | Zbl
[7] Strongly plurisubharmonic exhaustion functions on -convex spaces, Math. Ann., Volume 270 (1985) no. 1, pp. 63-68 | DOI | MR | Zbl
[8] Transversely affine foliations on projective manifolds, Math. Res. Lett., Volume 21 (2014) no. 5, pp. 985-1014 | DOI | MR | Zbl
[9] Topology and dynamics of laminations in surfaces of general type, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 495-535 | DOI | MR | Zbl
[10] Random conformal dynamical systems, Geom. Funct. Anal., Volume 17 (2007) no. 4, pp. 1043-1105 | DOI | MR | Zbl
[13] Harmonic mappings and disc bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci., Volume 21 (1985) no. 4, pp. 819-833 | DOI | MR | Zbl
[14] On the displacement rigidity of Levi flat hypersurfaces—the case of boundaries of disc bundles over compact Riemann surfaces, Publ. Res. Inst. Math. Sci., Volume 43 (2007) no. 1, pp. 171-180 http://projecteuclid.org/euclid.prims/1199403813 | DOI | MR | Zbl
[15] Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., Volume 51 (1983) no. 3, pp. 285-311 | DOI | MR | Zbl
[16] Flots transversalement affines et tissus feuilletés, Mém. Soc. Math. France (1991) no. 46, pp. 123-150 Analyse globale et physique mathématique (Lyon, 1989) | DOI | MR | Zbl
[17] Stabilité et conjugaison différentiable pour certains feuilletages, Topology, Volume 19 (1980) no. 2, pp. 179-197 | DOI | MR | Zbl
[18] Feuilletages : Études géométriques, Progress in Mathematics, 98, Birkhäuser, Basel, 1991, xiv+474 pages | MR | Zbl
[19] On Levi’s problem and the imbedding of real-analytic manifolds, Ann. Math., Volume 68 (1958), pp. 460-472 | DOI | MR | Zbl
[20] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | MR | Zbl
[21] Theory of functions on complex manifolds, Monographs in Mathematics, 79, Birkhäuser, 1984, 226 pages | MR | Zbl
[22] Bochner-Hartogs type extension theorem for roots and logarithms of holomorphic line bundles, Tr. Mat. Inst. Steklova, Volume 279 (2012), pp. 269-287 | MR | Zbl
[23] Extension properties of complex analytic objects, Max Planck Institüt für Mathematik, 2013
[24] Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse, Ann. Mat. Pura Appl., Volume 17 (1910) no. 1, pp. 61-87 http://link.springer.com/article/10.1007%2FBF02419336 | DOI | Zbl
[25] A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier, Volume 49 (1999) no. 4, pp. 1369-1385 | DOI | MR | Zbl
[26] The Hartogs extension theorem on -complete complex spaces, J. Reine Angew. Math., Volume 637 (2009), pp. 23-39 | DOI | MR | Zbl
[27] The Levi problem for complex spaces. II, Math. Ann., Volume 146 (1962), pp. 195-216 | DOI | MR | Zbl
[28] Stein domains with Levi-plane boundaries on compact complex surfaces, Mat. Zametki, Volume 66 (1999) no. 4, pp. 632-635 | DOI | MR
[29] Pseudoconvexity, the Levi problem and vanishing theorems, Several complex variables, VII (Encyclopaedia Math. Sci.), Volume 74, Springer, Berlin, 1994, pp. 221-257 | MR | Zbl
[30] Transversely affine and transversely projective holomorphic foliations, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 2, pp. 169-204 | DOI | MR | Zbl
[31] On univalent harmonic maps between surfaces, Invent. Math., Volume 44 (1978) no. 3, pp. 265-278 | DOI | MR | Zbl
[32] Gap-sheaves and extension of coherent analytic subsheaves, Lecture Notes in Mathematics, 172, Springer, Berlin, 1971, v+172 pages | MR | Zbl
[33] Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, Volume 16 (1964), pp. 159-181 | DOI | MR | Zbl
[34] Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | DOI | MR | Zbl
Cited by Sources: