L’immeuble de points fixes d’une polarité d’un quadrangle de Moufang de type est un ensemble de Moufang. Il en va de même pour l’immeuble de points fixes d’un automorphisme semi-linéaire d’ordre 2 d’un octogone de Moufang qui stabilise au moins deux cloisons d’un type mais aucun de l’autre. Nous montrons que ces deux classes d’ensembles de Moufang sont en fait identiques, que chaque membre de cette classe peut être construit comme l’immeuble de points fixes d’un groupe d’ordre 4 agissant sur un immeuble de type , et que pour chacun de ces ensembles de Moufang, le groupe engendré par tous les sous-groupes radiciels est un groupe simple.
The fixed point building of a polarity of a Moufang quadrangle of type is a Moufang set, as is the fixed point building of a semi-linear automorphism of order of a Moufang octagon that stabilizes at least two panels of one type but none of the other. We show that these two classes of Moufang sets are, in fact, the same, that each member of this class can be constructed as the fixed point building of a group of order acting on a building of type and that the group generated by all the root groups of any one of these Moufang sets is simple.
Révisé le :
Accepté le :
Publié le :
Keywords: building, descent, polarity, Moufang set, Moufang quadrangle, Moufang octagon
Mot clés : immeubles, descent, polarité, ensemble de Moufang, quadrangle de Moufang, octogone de Moufang
De Medts, Tom 1 ; Segev, Yoav 2 ; Weiss, Richard M. 3
@article{AIF_2017__67_6_2349_0, author = {De Medts, Tom and Segev, Yoav and Weiss, Richard M.}, title = {Tits endomorphisms and buildings of type~$F_4$}, journal = {Annales de l'Institut Fourier}, pages = {2349--2421}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3138}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3138/} }
TY - JOUR AU - De Medts, Tom AU - Segev, Yoav AU - Weiss, Richard M. TI - Tits endomorphisms and buildings of type $F_4$ JO - Annales de l'Institut Fourier PY - 2017 SP - 2349 EP - 2421 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3138/ DO - 10.5802/aif.3138 LA - en ID - AIF_2017__67_6_2349_0 ER -
%0 Journal Article %A De Medts, Tom %A Segev, Yoav %A Weiss, Richard M. %T Tits endomorphisms and buildings of type $F_4$ %J Annales de l'Institut Fourier %D 2017 %P 2349-2421 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3138/ %R 10.5802/aif.3138 %G en %F AIF_2017__67_6_2349_0
De Medts, Tom; Segev, Yoav; Weiss, Richard M. Tits endomorphisms and buildings of type $F_4$. Annales de l'Institut Fourier, Tome 67 (2017) no. 6, pp. 2349-2421. doi : 10.5802/aif.3138. https://aif.centre-mersenne.org/articles/10.5802/aif.3138/
[1] Simple groups of Lie type, 28, John Wiley & Sons, 1972, viii+331 pages (Pure and Applied Mathematics) | MR | Zbl
[2] Automorphisms of quadrangles, Math. Ann., Volume 328 (2004) no. 3, pp. 399-413 | DOI | MR | Zbl
[3] An algebraic structure for Moufang quadrangles, Mem. Am. Math. Soc., Volume 173 (2005) no. 818, vi+99 pages | DOI | MR | Zbl
[4] A course on Moufang sets, Innov. Incidence Geom., Volume 9 (2009), pp. 79-122 | MR | Zbl
[5] Moufang sets of type , Math. Z., Volume 265 (2010) no. 3, pp. 511-527 | DOI | MR | Zbl
[6] Moufang sets and Jordan division algebras, Math. Ann., Volume 335 (2006) no. 2, pp. 415-433 | DOI | MR | Zbl
[7] Infinite-dimensional quadratic forms admitting composition, Proc. Am. Math. Soc., Volume 125 (1997) no. 8, pp. 2207-2216 | DOI | MR | Zbl
[8] Valued fields, Springer Monographs in Mathematics, Springer, 2005, x+205 pages | MR | Zbl
[9] Introduction to Lie algebras and representation theory, 9, Springer, 1972, xii+169 pages (Graduate Texts in Mathematics) | MR | Zbl
[10] Über die Einfachheit der speziellen projektiven Gruppen, Proc. Imp. Acad. Tokyo, Volume 17 (1941), pp. 57-59 | DOI | MR | Zbl
[11] Descent in buildings, Annals of Mathematics Studies, 190, Princeton University Press, 2015, xvi+336 pages | DOI | MR | Zbl
[12] Exceptional Moufang quadrangles of type , Can. J. Math., Volume 51 (1999) no. 2, pp. 347-371 | DOI | MR | Zbl
[13] Moufang sets from groups of mixed type, J. Algebra, Volume 300 (2006) no. 2, pp. 820-833 | DOI | MR | Zbl
[14] Galois involutions and exceptional buildings, Enseign. Math., Volume 62 (2016) no. 1-2, pp. 207-260 | DOI | MR | Zbl
[15] Rhizospheres in spherical buildings, Math. Ann., Volume 369 (2017) no. 1-2, pp. 839-868 | DOI
[16] Lectures on Chevalley groups, Yale University, 1968, iii+277 pages (Notes prepared by John Faulkner and Robert Wilson) | MR | Zbl
[17] Moufang sets related to polarities in exceptional Moufang quadrangles of type , Innov. Incidence Geom., Volume 10 (2009), pp. 121-132 | MR | Zbl
[18] Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), American Mathematical Society, 1966, pp. 33-62 | MR | Zbl
[19] Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, 386, Springer, 1974, x+299 pages | MR | Zbl
[20] Moufang octagons and the Ree groups of type , Am. J. Math., Volume 105 (1983) no. 2, pp. 539-594 | DOI | MR | Zbl
[21] Twin buildings and groups of Kac-Moody type, Groups, combinatorics & geometry (Durham, 1990) (Lond. Math. Soc. Lect. Note Ser.), Volume 165, Cambridge University Press, 1992, pp. 249-286 | DOI | MR | Zbl
[22] Les groupes simples de Suzuki et de Ree, Séminaire Bourbaki, Vol. 6, Société Mathématique de France, 1995, pp. Exp. No. 210, 65-82 | MR | Zbl
[23] Moufang polygons, Springer Monographs in Mathematics, Springer, 2002, x+535 pages | DOI | MR | Zbl
[24] The structure of spherical buildings, Princeton University Press, 2003, xiv+135 pages | MR | Zbl
[25] Quadrangular algebras, Mathematical Notes, 46, Princeton University Press, 2006, x+131 pages | MR | Zbl
[26] The structure of affine buildings, Annals of Mathematics Studies, 168, Princeton University Press, 2009, xii+368 pages | MR | Zbl
Cité par Sources :