Asymptotic invariants of base loci
Annales de l'Institut Fourier, Volume 56 (2006) no. 6, pp. 1701-1734.

The purpose of this paper is to define and study systematically some asymptotic invariants associated to base loci of line bundles on smooth projective varieties. The functional behavior of these invariants is related to the set-theoretic behavior of base loci.

Le but de cet article est de définir et d’étudier systématiquement quelques invariants asymptotiques associés aux lieux de base des fibrés en droites sur les variétés projectives lisses. Le comportement fonctionnel de ces invariants est lié au comportement ensembliste des lieux de base.

DOI: 10.5802/aif.2225
Classification: 14C20, 14B05, 14F17
Keywords: Base loci, asymptotic invariants, multiplier ideals
Mot clés : lieu de base, invariants asymptotiques, idéaux multiplicateurs
Ein, Lawrence 1; Lazarsfeld, Robert 2; Mustaţă, Mircea 3; Nakamaye, Michael 4; Popa, Mihnea 5

1 University of Illinois at Chicago Department of Mathematics 851 South Morgan Street (M/C 249) Chicago IL 60607-7045 (USA)
2 University of Michigan Department of Mathematics Ann Arbor, MI 48109 (USA)
3 University of Michigan Department of Mathematics Ann Arbor MI 48109 (USA)
4 University of NewMexico Department of Mathematics and Statistics Albuquerque New Mexico 87131 (USA)
5 University of Chicago Department of Mathematics 5734 S. University Av. Chicago IL 60637 (USA)
@article{AIF_2006__56_6_1701_0,
     author = {Ein, Lawrence and Lazarsfeld, Robert and Musta\c{t}\u{a}, Mircea and Nakamaye, Michael and Popa, Mihnea},
     title = {Asymptotic invariants of base loci},
     journal = {Annales de l'Institut Fourier},
     pages = {1701--1734},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {6},
     year = {2006},
     doi = {10.5802/aif.2225},
     mrnumber = {2282673},
     zbl = {1127.14010},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2225/}
}
TY  - JOUR
AU  - Ein, Lawrence
AU  - Lazarsfeld, Robert
AU  - Mustaţă, Mircea
AU  - Nakamaye, Michael
AU  - Popa, Mihnea
TI  - Asymptotic invariants of base loci
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 1701
EP  - 1734
VL  - 56
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2225/
DO  - 10.5802/aif.2225
LA  - en
ID  - AIF_2006__56_6_1701_0
ER  - 
%0 Journal Article
%A Ein, Lawrence
%A Lazarsfeld, Robert
%A Mustaţă, Mircea
%A Nakamaye, Michael
%A Popa, Mihnea
%T Asymptotic invariants of base loci
%J Annales de l'Institut Fourier
%D 2006
%P 1701-1734
%V 56
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2225/
%R 10.5802/aif.2225
%G en
%F AIF_2006__56_6_1701_0
Ein, Lawrence; Lazarsfeld, Robert; Mustaţă, Mircea; Nakamaye, Michael; Popa, Mihnea. Asymptotic invariants of base loci. Annales de l'Institut Fourier, Volume 56 (2006) no. 6, pp. 1701-1734. doi : 10.5802/aif.2225. https://aif.centre-mersenne.org/articles/10.5802/aif.2225/

[1] Bădescu, L. Algebraic surfaces, Universitext, Springer-Verlag, New York, 2001 | Zbl

[2] Bauer, T.; Küronya, A.; Szemberg, T. Zariski chambers, volumes, and stable base loci, J. reine angew. Math., Volume 576 (2004), pp. 209-233 | DOI | MR | Zbl

[3] Boucksom, S. Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Ecole Norm. Sup. (4), Volume 37 (2004), pp. 45-76 | Numdam | Zbl

[4] Boucksom, S.; Demailly, J.-P.; Păun, M.; Peternell, T. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension (Preprint math.AG/0405285)

[5] Bourbaki, N. Algèbre commutative. Éléments de mathématique, Chap. 1–7, Hermann, Paris, 1961-1965

[6] Castraveţ, A.-M.; Tevelev, J. Hilbert’s 14 -th problem and Cox rings (Preprint math.AG/0505337) | Zbl

[7] Cox, D. The homogeneous coordinate ring of a toric variety, J. Alg. Geom., Volume 4 (1995), pp. 17-50 | MR | Zbl

[8] Cutkosky, S. D. Zariski decomposition of divisors on algebraic varieties, Duke Math. J., Volume 53 (1986), pp. 149-156 | DOI | MR | Zbl

[9] Demailly, J.-P.; Ein, L.; Lazarsfeld, R. A subadditivity property of multiplier ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | DOI | MR | Zbl

[10] Ein, L.; Lazarsfeld, R.; Mustaţă, M.; Nakamaye, M.; Popa, M. Asymptotic invariants of line bundles (Preprint math.AG/0505054)

[11] Ein, L.; Lazarsfeld, R.; Mustaţă, M.; Nakamaye, M.; Popa, M. Restricted volumes and asymptotic base loci (2005) (Preprint)

[12] Ein, L.; Lazarsfeld, R.; Smith, K. Uniform bounds and symbolic powers on smooth varieties, Invent. Math., Volume 144 (2001), pp. 241-252 | DOI | MR | Zbl

[13] Hu, Y.; Keel, S. Mori Dream Spaces and GIT, Michigan Math. J., Volume 48 (2000), pp. 331-348 | DOI | MR | Zbl

[14] Javier Elizondo, E.; Kurano, K.; Watanabe, K. The total coordinate ring of a normal projective variety, J. Algebra, Volume 276 (2004), pp. 625-637 | DOI | MR | Zbl

[15] Küronya, A. Volumes of line bundles (Preprint math. AG/0211404)

[16] Lazarsfeld, R. Positivity in algebraic geometry, I–II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Volume 48–49, Springer-Verlag, Berlin, 2004 | MR | Zbl

[17] Mustaţă, M. On multiplicities of graded sequences of ideals, J. Algebra, Volume 256 (2002), pp. 229-249 | DOI | MR | Zbl

[18] Nakamaye, M. Stable base loci of linear series, Math. Ann., Volume 318 (2000), pp. 837-847 | DOI | MR | Zbl

[19] Nakamaye, M. Base loci of linear series are numerically determined, Trans. Amer. Math. Soc., Volume 355 (2002), pp. 551-566 | DOI | MR | Zbl

[20] Nakayama, N. Zariski-decomposition and abundance, Math. Society of Japan Memoirs, Volume 14, Mathematical Society of Japan, Tokyo, 2004 | MR | Zbl

[21] Tessier, B. Sur une inégalité de Minkowski pour les multiplicités, Appendix to a paper of D. Eisenbud and H.I. Levine, The degree of a C map germ, Ann. Math., Volume 106 (1977), pp. 38-44 | Zbl

[22] Wolfe, A. Asymptotic invariants of graded systems of ideals and linear systems on projective bundles, University of Michigan (2005) (Ph. D. Thesis)

Cited by Sources: