The purpose of this paper is to define and study systematically some asymptotic invariants associated to base loci of line bundles on smooth projective varieties. The functional behavior of these invariants is related to the set-theoretic behavior of base loci.
Le but de cet article est de définir et d’étudier systématiquement quelques invariants asymptotiques associés aux lieux de base des fibrés en droites sur les variétés projectives lisses. Le comportement fonctionnel de ces invariants est lié au comportement ensembliste des lieux de base.
Keywords: Base loci, asymptotic invariants, multiplier ideals
Mot clés : lieu de base, invariants asymptotiques, idéaux multiplicateurs
@article{AIF_2006__56_6_1701_0, author = {Ein, Lawrence and Lazarsfeld, Robert and Musta\c{t}\u{a}, Mircea and Nakamaye, Michael and Popa, Mihnea}, title = {Asymptotic invariants of base loci}, journal = {Annales de l'Institut Fourier}, pages = {1701--1734}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {6}, year = {2006}, doi = {10.5802/aif.2225}, mrnumber = {2282673}, zbl = {1127.14010}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2225/} }
TY - JOUR AU - Ein, Lawrence AU - Lazarsfeld, Robert AU - Mustaţă, Mircea AU - Nakamaye, Michael AU - Popa, Mihnea TI - Asymptotic invariants of base loci JO - Annales de l'Institut Fourier PY - 2006 SP - 1701 EP - 1734 VL - 56 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2225/ DO - 10.5802/aif.2225 LA - en ID - AIF_2006__56_6_1701_0 ER -
%0 Journal Article %A Ein, Lawrence %A Lazarsfeld, Robert %A Mustaţă, Mircea %A Nakamaye, Michael %A Popa, Mihnea %T Asymptotic invariants of base loci %J Annales de l'Institut Fourier %D 2006 %P 1701-1734 %V 56 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2225/ %R 10.5802/aif.2225 %G en %F AIF_2006__56_6_1701_0
Ein, Lawrence; Lazarsfeld, Robert; Mustaţă, Mircea; Nakamaye, Michael; Popa, Mihnea. Asymptotic invariants of base loci. Annales de l'Institut Fourier, Volume 56 (2006) no. 6, pp. 1701-1734. doi : 10.5802/aif.2225. https://aif.centre-mersenne.org/articles/10.5802/aif.2225/
[1] Algebraic surfaces, Universitext, Springer-Verlag, New York, 2001 | Zbl
[2] Zariski chambers, volumes, and stable base loci, J. reine angew. Math., Volume 576 (2004), pp. 209-233 | DOI | MR | Zbl
[3] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Ecole Norm. Sup. (4), Volume 37 (2004), pp. 45-76 | Numdam | Zbl
[4] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension (Preprint math.AG/0405285)
[5] Algèbre commutative. Éléments de mathématique, Chap. 1–7, Hermann, Paris, 1961-1965
[6] Hilbert’s -th problem and Cox rings (Preprint math.AG/0505337) | Zbl
[7] The homogeneous coordinate ring of a toric variety, J. Alg. Geom., Volume 4 (1995), pp. 17-50 | MR | Zbl
[8] Zariski decomposition of divisors on algebraic varieties, Duke Math. J., Volume 53 (1986), pp. 149-156 | DOI | MR | Zbl
[9] A subadditivity property of multiplier ideals, Michigan Math. J., Volume 48 (2000), pp. 137-156 | DOI | MR | Zbl
[10] Asymptotic invariants of line bundles (Preprint math.AG/0505054)
[11] Restricted volumes and asymptotic base loci (2005) (Preprint)
[12] Uniform bounds and symbolic powers on smooth varieties, Invent. Math., Volume 144 (2001), pp. 241-252 | DOI | MR | Zbl
[13] Mori Dream Spaces and GIT, Michigan Math. J., Volume 48 (2000), pp. 331-348 | DOI | MR | Zbl
[14] The total coordinate ring of a normal projective variety, J. Algebra, Volume 276 (2004), pp. 625-637 | DOI | MR | Zbl
[15] Volumes of line bundles (Preprint math. AG/0211404)
[16] Positivity in algebraic geometry, I–II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Volume 48–49, Springer-Verlag, Berlin, 2004 | MR | Zbl
[17] On multiplicities of graded sequences of ideals, J. Algebra, Volume 256 (2002), pp. 229-249 | DOI | MR | Zbl
[18] Stable base loci of linear series, Math. Ann., Volume 318 (2000), pp. 837-847 | DOI | MR | Zbl
[19] Base loci of linear series are numerically determined, Trans. Amer. Math. Soc., Volume 355 (2002), pp. 551-566 | DOI | MR | Zbl
[20] Zariski-decomposition and abundance, Math. Society of Japan Memoirs, Volume 14, Mathematical Society of Japan, Tokyo, 2004 | MR | Zbl
[21] Sur une inégalité de Minkowski pour les multiplicités, Appendix to a paper of D. Eisenbud and H.I. Levine, The degree of a map germ, Ann. Math., Volume 106 (1977), pp. 38-44 | Zbl
[22] Asymptotic invariants of graded systems of ideals and linear systems on projective bundles, University of Michigan (2005) (Ph. D. Thesis)
Cited by Sources: