Let be a pseudoconvex domain in and let be a plurisubharmonic function in . For each we consider the -dimensional slice of , , let be the restriction of to and denote by the Bergman kernel of with the weight function . Generalizing a recent result of Maitani and Yamaguchi (corresponding to and ) we prove that is a plurisubharmonic function in . We also generalize an earlier results of Yamaguchi concerning the Robin function and discuss similar results in the setting of .
Soit un domaine pseudoconvexe en et soit une fonction plurisousharmonique dans . Pour fixé, soit la tranche correspondante de , la restriction de à , et le noyau de Bergman pour le domaine et le poid . En généralisant un résultat récent de Maitani et Yamaguchi (correspondant à et ), on montre que est plurisousharmonique en . On donne aussi une généralisation d’un résultat de Yamaguchi concernant la fonction de Robin et on discute des résultats du même style pour .
Keywords: Bergman spaces, plurisubharmonic function, $\bar{\partial }$-equation, Lelong number
Mot clés : espace de Bergman, fonction plurisousharmonique, équation $\bar{\partial }$, nombre de Lelong
@article{AIF_2006__56_6_1633_0, author = {Berndtsson, Bo}, title = {Subharmonicity properties of the {Bergman} kernel and some other functions associated to pseudoconvex~domains}, journal = {Annales de l'Institut Fourier}, pages = {1633--1662}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {6}, year = {2006}, doi = {10.5802/aif.2223}, mrnumber = {2282671}, zbl = {1120.32021}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2223/} }
TY - JOUR AU - Berndtsson, Bo TI - Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains JO - Annales de l'Institut Fourier PY - 2006 SP - 1633 EP - 1662 VL - 56 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2223/ DO - 10.5802/aif.2223 LA - en ID - AIF_2006__56_6_1633_0 ER -
%0 Journal Article %A Berndtsson, Bo %T Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains %J Annales de l'Institut Fourier %D 2006 %P 1633-1662 %V 56 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2223/ %R 10.5802/aif.2223 %G en %F AIF_2006__56_6_1633_0
Berndtsson, Bo. Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains. Annales de l'Institut Fourier, Volume 56 (2006) no. 6, pp. 1633-1662. doi : 10.5802/aif.2223. https://aif.centre-mersenne.org/articles/10.5802/aif.2223/
[1] Entropy jumps in the presence of a spectral gap, Duke Math. J., Volume 119 (2003), pp. 41-63 | DOI | MR | Zbl
[2] Prekopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998), pp. 785-792 | DOI | MR | Zbl
[3] On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., Volume 22 (1976), pp. 366-389 | DOI | MR | Zbl
[4] Holomorphic approximation and estimates for the -equation on strictly pseudoconvex nonsmooth domains, Duke Math. J., Volume 55 (1987), pp. 539-596 | DOI | MR | Zbl
[5] On the strict concavity of the harmonic radius in dimension , J. Math. Pures Appl. (9), Volume 81 (2002), pp. 223-240 | MR | Zbl
[6] Santaló’s inequality on by complex interpolation, C. R. Math. Acad. Sci. Paris, Volume 334 (2002), pp. 767-772 | MR | Zbl
[7] On Berndtsson’s generalization of Prekopa’s theorem, Math. Z., Volume 249 (2005), pp. 401-410 | DOI | MR | Zbl
[8] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4), Volume 15 (1982), pp. 457-511 | Numdam | MR | Zbl
[9] -estimates and existence theorems for the -operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl
[10] The partial Legendre transformation for plurisubharmonic functions, Invent. Math., Volume 49 (1978), pp. 137-148 | DOI | MR | Zbl
[11] Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France., Volume 107 (1979), pp. 295-304 | Numdam | MR | Zbl
[12] Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math., Volume 60 (1994), pp. 173-197 | MR | Zbl
[13] Robin functions for complex manifolds and applications (2004) (Manuscript)
[14] Variation of Bergman metrics on Riemann surfaces, Math. Annal., Volume 330 (2004), pp. 477-489 | DOI | MR | Zbl
[15] On logarithmic concave measures and functions, Acad. Sci. Math. (Szeged), Volume 34 (1973), pp. 335-343 | MR | Zbl
[16] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., Volume 27 (1974), pp. 53-156 | DOI | MR | Zbl
[17] Sous-ensembles analytiques d’ordre fini ou infini dans , Bull. Soc. Math. France, Volume 100 (1972), pp. 353-408 | Numdam | MR | Zbl
[18] Variations of pseudoconvex domains over , Michigan Math. J., Volume 36 (1989), pp. 415-457 | DOI | MR | Zbl
Cited by Sources: