Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.
Étant donné une variété algébrique réelle compacte non singulière, on étudie les classes de cohomologie algébrique données par les cycles algébriques, algébriquement équivalents à zéro.
@article{AIF_1999__49_6_1797_0, author = {Ab\'anades, Miguel and Kucharz, Wojciech}, title = {Algebraic equivalence of real algebraic cycles}, journal = {Annales de l'Institut Fourier}, pages = {1797--1804}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {6}, year = {1999}, doi = {10.5802/aif.1738}, mrnumber = {2001a:14061}, zbl = {0932.14033}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1738/} }
TY - JOUR TI - Algebraic equivalence of real algebraic cycles JO - Annales de l'Institut Fourier PY - 1999 DA - 1999/// SP - 1797 EP - 1804 VL - 49 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1738/ UR - https://www.ams.org/mathscinet-getitem?mr=2001a:14061 UR - https://zbmath.org/?q=an%3A0932.14033 UR - https://doi.org/10.5802/aif.1738 DO - 10.5802/aif.1738 LA - en ID - AIF_1999__49_6_1797_0 ER -
Abánades, Miguel; Kucharz, Wojciech. Algebraic equivalence of real algebraic cycles. Annales de l'Institut Fourier, Volume 49 (1999) no. 6, pp. 1797-1804. doi : 10.5802/aif.1738. https://aif.centre-mersenne.org/articles/10.5802/aif.1738/
[1] Topology of Real Algebraic Sets, Mathematical Sciences Research Institute Publications, Springer, 1992. | MR: 94m:57001 | Zbl: 0808.14045
and ,[2] Transcendental submanifolds of Rn, Comm. Math. Helv., 68 (1993), 308-318. | MR: 94j:57032 | Zbl: 0806.57017
and ,[3] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128 (1997), 207-302. | MR: 98e:14010 | Zbl: 0896.14006
and ,[4] Algebraic models of smooth manifolds, Invent. Math., 97 (1989), 585-611. | MR: 91b:14076 | Zbl: 0687.14023
and ,[5] La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. | Numdam | MR: 26 #6990 | Zbl: 0102.38502
et ,[6] Differentiable Periodic Maps, Lecture Notes in Math., Vol. 738, Berlin-Heidelberg-New York, Springer, 1979. | MR: 81f:57018 | Zbl: 0417.57019
,[7] Intersection Theory, Ergebnisse der Math., Vol. 2, Berlin-Heidelberg-New York, Springer, 1984. | MR: 85k:14004 | Zbl: 0541.14005
,[8] Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. | MR: 33 #7333 | Zbl: 0122.38603
,[9] Homotopy Theory, New York, Academic Press, 1959. | MR: 21 #5186 | Zbl: 0088.38803
,[10] Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr., 180 (1996), 135-140. | MR: 97e:14009 | Zbl: 0877.14003
,[11] Characteristic Classes, Ann. of Math. Studies, Vol. 76, Princeton Univ. Press, 1974. | MR: 55 #13428 | Zbl: 0298.57008
and ,[12] Quelques propriétés globales de variétés différentiables, Comm. Math. Helv., 28 (1954), 17-86. | MR: 15,890a | Zbl: 0057.15502
,[13] Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 167-185.. | Numdam | MR: 53 #434 | Zbl: 0263.57011
,Cited by Sources: