Algebraic and symplectic Gromov-Witten invariants coincide
Annales de l'Institut Fourier, Volume 49 (1999) no. 6, pp. 1743-1795.

For a complex projective manifold Gromov-Witten invariants can be constructed either algebraically or symplectically. Using the versions of Gromov-Witten theory by Behrend and Fantechi on the algebraic side and by the author on the symplectic side, we prove that both points of view are equivalent

Pour une variété complexe projective il est possible de construire les invariants de Gromov-Witten avec des méthodes algébriques ou symplectiques. Utilisant l’approche algébrique de Behrend et Fantechi et l’approche symplectique de l’auteur, on prouve l’équivalence des deux points de vue.

@article{AIF_1999__49_6_1743_0,
     author = {Siebert, Bernd},
     title = {Algebraic and symplectic {Gromov-Witten} invariants coincide},
     journal = {Annales de l'Institut Fourier},
     pages = {1743--1795},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {6},
     year = {1999},
     doi = {10.5802/aif.1737},
     zbl = {0970.14030},
     mrnumber = {2001f:14097},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1737/}
}
TY  - JOUR
AU  - Siebert, Bernd
TI  - Algebraic and symplectic Gromov-Witten invariants coincide
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 1743
EP  - 1795
VL  - 49
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1737/
DO  - 10.5802/aif.1737
LA  - en
ID  - AIF_1999__49_6_1743_0
ER  - 
%0 Journal Article
%A Siebert, Bernd
%T Algebraic and symplectic Gromov-Witten invariants coincide
%J Annales de l'Institut Fourier
%D 1999
%P 1743-1795
%V 49
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1737/
%R 10.5802/aif.1737
%G en
%F AIF_1999__49_6_1743_0
Siebert, Bernd. Algebraic and symplectic Gromov-Witten invariants coincide. Annales de l'Institut Fourier, Volume 49 (1999) no. 6, pp. 1743-1795. doi : 10.5802/aif.1737. https://aif.centre-mersenne.org/articles/10.5802/aif.1737/

[Be] K. Behrend, GW-invariants in algebraic geometry, Inv. Math., 127 (1997), 601-617. | MR | Zbl

[BeFa] K. Behrend, B. Fantechi, The intrinsic normal cone, Inv. Math., 128 (1997), 45-88. | MR | Zbl

[BeMa] K. Behrend, Y. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke. Math. Journ., 85 (1996), 1-60. | MR | Zbl

[BiKo] J. Bingener, S. Kosarew, Lokale Modulräume in der analytischen Geometrie I, II, Vieweg 1987. | Zbl

[Do] A. Douady, Le problème des modules locaux pour les espaces ℂ-analytiques compacts, Ann. Sci. École Norm. Sup. (4), 7 (1974), 569-602. | Numdam | MR | Zbl

[Fi] G. Fischer, Complex analytic geometry, Lecture Notes Math., 538, Springer, 1976. | MR | Zbl

[Fl] H. Flenner, Über Deformationen holomorpher Abbildungen, Habilitationsschrift, Univ. Osnabrück, 1978.

[FkOn] K. Fukaya, K. Ono, Arnold conjecture and Gromov-Witten invariant, Warwick preprint 29/1996.

[Fu] W. Fulton, Intersection theory, Springer, 1984. | MR | Zbl

[FuPa] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, to appear in the proceedings of the Algebraic Geometry Conference, Santa Cruz, 1995. | Zbl

[Ha] R. Hartshorne, Residues and duality, Lecture Notes Math., 20, Springer, 1966. | Zbl

[Il] L. Illusie, Complexe cotagent et déformations I, Lecture Notes Math., 239, Springer, 1971. | MR | Zbl

[Iv] B. Iversen, Cohomology of Sheaves, Springer, 1986. | MR | Zbl

[Ka] T. Kawasaki, The signature theorem for V-manifolds, Topology, 17 (1978), 75-83. | MR | Zbl

[Kn] F. Knudson, The projectivity of the moduli space of stable curves, II: The stacks Mg, n, Math. Scand., 52 (1983), 161-199. | MR | Zbl

[KpKp] B. Kaup, L. Kaup, Holomorphic functions of several variables, de Gruyter, 1983.

[LiTi1] J. Li, G. Tian, Virtual moduli cycles and GW-invariants of algebraic varieties, Journal Amer. Math. Soc., 11 (1998), 119-174. | MR | Zbl

[LiTi2] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, preprint alg-geom/9608032. | Zbl

[LiTi3] J. Li, G. Tian, Comparison of the algebraic and the symplectic Gromov-Witten invariants, preprint alg-geom/9712035. | Zbl

[Lp] J. Lipman, Notes on Derived Categories and Derived Functors, preprint, available from http://www.math.purdue.edu/~lipman.

[Po] G. Pourcin, Théorème de Douady au-dessus de S, Ann. Scuola Norm. Sup. Pisa, 23 (1969), 451-459. | Numdam | MR | Zbl

[RaRuVe] J. P. Ramis, G. Ruget, J.-L. Verdier, Dualité relative en géométrie analytique complexe, Invent. Math., 13 (1971), 261-283. | MR | Zbl

[Ru1] Y. Ruan, Topological sigma model and Donaldson type invariants in Gromov theory, Duke Math. Journ., 83 (1996), 461-500. | MR | Zbl

[Ru2] Y. Ruan, Virtual neighborhoods and pseudo-holomorphic curves, preprint alg-geom/ 9611021. | Zbl

[RuTi1] Y. Ruan, G. Tian, A mathematical theory of quantum cohomology, Journ. Diff. Geom., 42 (1995), 259-367. | MR | Zbl

[RuTi2] Y. Ruan, G. Tian, Higher genus symplectic invariants and sigma model coupled with gravity, Inv. Math., 130 (1997), 455-516. | MR | Zbl

[Sa] I. Satake, The Gauss-Bonnet theorem for V-manifolds, Journ. Math. Soc. Japan, 9 (1957), 164-492. | MR | Zbl

[Se] J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble, 6 (1956), 1-42. | Numdam | MR | Zbl

[Si1] B. Siebert, Gromov-Witten invariants for general symplectic manifolds, preprint dg-ga/9608032, revised 12/97.

[Si2] B. Siebert, Global normal cones, virtual fundamental classes and Fulton's canonical classes, preprint 2/1997.

[Si3] B. Siebert, Symplectic Gromov-Witten invariants, to appear in New trends in Algebraic Geometry, F. Catanese, K. Hulek, C. Peters, M. Reid (eds.), Cambridge Univ. Press, 1998.

Cited by Sources: