Algebraic equivalence of real algebraic cycles
Annales de l'Institut Fourier, Tome 49 (1999) no. 6, pp. 1797-1804.

Étant donné une variété algébrique réelle compacte non singulière, on étudie les classes de cohomologie algébrique données par les cycles algébriques, algébriquement équivalents à zéro.

Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.

@article{AIF_1999__49_6_1797_0,
     author = {Ab\'anades, Miguel and Kucharz, Wojciech},
     title = {Algebraic equivalence of real algebraic cycles},
     journal = {Annales de l'Institut Fourier},
     pages = {1797--1804},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {49},
     number = {6},
     year = {1999},
     doi = {10.5802/aif.1738},
     zbl = {0932.14033},
     mrnumber = {2001a:14061},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1738/}
}
TY  - JOUR
AU  - Abánades, Miguel
AU  - Kucharz, Wojciech
TI  - Algebraic equivalence of real algebraic cycles
JO  - Annales de l'Institut Fourier
PY  - 1999
SP  - 1797
EP  - 1804
VL  - 49
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1738/
DO  - 10.5802/aif.1738
LA  - en
ID  - AIF_1999__49_6_1797_0
ER  - 
%0 Journal Article
%A Abánades, Miguel
%A Kucharz, Wojciech
%T Algebraic equivalence of real algebraic cycles
%J Annales de l'Institut Fourier
%D 1999
%P 1797-1804
%V 49
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1738/
%R 10.5802/aif.1738
%G en
%F AIF_1999__49_6_1797_0
Abánades, Miguel; Kucharz, Wojciech. Algebraic equivalence of real algebraic cycles. Annales de l'Institut Fourier, Tome 49 (1999) no. 6, pp. 1797-1804. doi : 10.5802/aif.1738. https://aif.centre-mersenne.org/articles/10.5802/aif.1738/

[1] S. Akbulut and H. King, Topology of Real Algebraic Sets, Mathematical Sciences Research Institute Publications, Springer, 1992. | MR | Zbl

[2] S. Akbulut and H. King, Transcendental submanifolds of Rn, Comm. Math. Helv., 68 (1993), 308-318. | MR | Zbl

[3] E. Bierstone and P. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128 (1997), 207-302. | MR | Zbl

[4] J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math., 97 (1989), 585-611. | MR | Zbl

[5] A. Borel et A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. | Numdam | MR | Zbl

[6] P.E. Conner, Differentiable Periodic Maps, Lecture Notes in Math., Vol. 738, Berlin-Heidelberg-New York, Springer, 1979. | MR | Zbl

[7] W. Fulton, Intersection Theory, Ergebnisse der Math., Vol. 2, Berlin-Heidelberg-New York, Springer, 1984. | MR | Zbl

[8] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. | MR | Zbl

[9] S.T. Hu, Homotopy Theory, New York, Academic Press, 1959. | MR | Zbl

[10] W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr., 180 (1996), 135-140. | MR | Zbl

[11] J. Milnor and J. Stasheff, Characteristic Classes, Ann. of Math. Studies, Vol. 76, Princeton Univ. Press, 1974. | MR | Zbl

[12] R. Thom, Quelques propriétés globales de variétés différentiables, Comm. Math. Helv., 28 (1954), 17-86. | MR | Zbl

[13] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 167-185.. | Numdam | MR | Zbl

Cité par Sources :