Empilements de cercles et modules combinatoires
Annales de l'Institut Fourier, Tome 59 (2009) no. 6, pp. 2175-2222.

Le but de cette note est de tenter d’expliquer les liens étroits qui unissent la théorie des empilements de cercles et des modules combinatoires et de comparer les approches à la conjecture de J.W. Cannon qui en découlent.

The aim of this article is to explain the deep relationships between circle-packings and combinatorial moduli of curves, and to compare the approaches to Cannon’s conjecture to which they lead.

Reçu le : 2008-07-07
Révisé le : 2008-11-07
Accepté le : 2008-11-20
DOI : https://doi.org/10.5802/aif.2488
Classification : 52C26,  30C62,  30F10,  30F40
Mots clés: empilement de cercles, quasiconforme, module de courbes
@article{AIF_2009__59_6_2175_0,
     author = {Ha\"Issinsky, Peter},
     title = {Empilements de cercles  et modules combinatoires},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {59},
     number = {6},
     year = {2009},
     pages = {2175-2222},
     doi = {10.5802/aif.2488},
     zbl = {1189.30080},
     mrnumber = {2640918},
     language = {fr},
     url = {aif.centre-mersenne.org/item/AIF_2009__59_6_2175_0/}
}
HaÏssinsky, Peter. Empilements de cercles  et modules combinatoires. Annales de l'Institut Fourier, Tome 59 (2009) no. 6, pp. 2175-2222. doi : 10.5802/aif.2488. https://aif.centre-mersenne.org/item/AIF_2009__59_6_2175_0/

[1] Ahlfors, Lars V. Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966 | MR 2241787 | Zbl 0138.06002

[2] Ahlfors, Lars V. Conformal invariants : topics in geometric function theory, McGraw-Hill Book Co., New York, 1973 (McGraw-Hill Series in Higher Mathematics) | MR 357743 | Zbl 0272.30012

[3] Bojarski, B. Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987 (Lecture Notes in Math.) Tome 1351, Springer, Berlin, 1988, pp. 52-68 | MR 982072 | Zbl 0662.46037

[4] Bonk, Mario; Kleiner, Bruce Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math., Tome 150 (2002) no. 1, pp. 127-183 | Article | MR 1930885 | Zbl 1037.53023

[5] Bonk, Mario; Kleiner, Bruce Rigidity for quasi-Möbius group actions, J. Differential Geom., Tome 61 (2002) no. 1, pp. 81-106 | MR 1949785 | Zbl 1044.37015

[6] Bonk, Mario; Kleiner, Bruce Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Tome 9 (2005), p. 219-246 (electronic) | Article | MR 2116315 | Zbl 1087.20033

[7] Cannon, James W. The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) (Oxford Sci. Publ.), Oxford Univ. Press, New York, 1991, pp. 315-369 | MR 1130181 | Zbl 0764.57002

[8] Cannon, James W. The combinatorial Riemann mapping theorem, Acta Math., Tome 173 (1994) no. 2, pp. 155-234 | Article | MR 1301392 | Zbl 0832.30012

[9] Cannon, James W.; Floyd, William J.; Parry, Walter R. Squaring rectangles : the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus : groups, geometry and special functions (Brooklyn, NY, 1992) (Contemp. Math.) Tome 169, Amer. Math. Soc., Providence, RI, 1994, pp. 133-212 | MR 1292901 | Zbl 0818.20043

[10] Cannon, James W.; Floyd, William J.; Parry, Walter R. Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math., Tome 24 (1999) no. 2, pp. 265-304 | MR 1724092 | Zbl 0939.20048

[11] Cannon, James W.; Swenson, Eric L. Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc., Tome 350 (1998) no. 2, pp. 809-849 | Article | MR 1458317 | Zbl 0910.20024

[12] Colin de Verdière, Yves Un principe variationnel pour les empilements de cercles, Invent. Math., Tome 104 (1991) no. 3, pp. 655-669 | Article | MR 1106755 | Zbl 0745.52010

[13] Gromov, Mikhael Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., Tome 53 (1981), pp. 53-73 | Article | Numdam | MR 623534 | Zbl 0474.20018

[14] Heinonen, Juha Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | MR 1800917 | Zbl 0985.46008

[15] Heinonen, Juha; Koskela, Pekka Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Tome 181 (1998) no. 1, pp. 1-61 | Article | MR 1654771 | Zbl 0915.30018

[16] Keith, Stephen Modulus and the Poincaré inequality on metric measure spaces, Math. Z., Tome 245 (2003) no. 2, pp. 255-292 | Article | MR 2013501 | Zbl 1037.31009

[17] Keith, Stephen; Laakso, Tomi Conformal Assouad dimension and modulus, Geom. Funct. Anal., Tome 14 (2004) no. 6, pp. 1278-1321 | Article | MR 2135168 | Zbl 1108.28008

[18] Koebe, Paul Kontaktprobleme der konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-phys, Tome 88 (1936), pp. 141-164

[19] Nagata, Jun-iti Modern dimension theory, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965 | MR 208571

[20] Pansu, Pierre Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math., Tome 14 (1989) no. 2, pp. 177-212 | MR 1024425 | Zbl 0722.53028

[21] Rodin, Burt; Sullivan, Dennis The convergence of circle packings to the Riemann mapping, J. Differential Geom., Tome 26 (1987) no. 2, pp. 349-360 | MR 906396 | Zbl 0694.30006

[22] Schramm, Oded Square tilings with prescribed combinatorics, Israel J. Math., Tome 84 (1993) no. 1-2, pp. 97-118 | Article | MR 1244661 | Zbl 0788.05019

[23] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Tome 6 (1982) no. 3, pp. 357-381 | Article | MR 648524 | Zbl 0496.57005

[24] Tyson, Jeremy Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn., Tome 5 (2001), p. 21-73 (electronic) | Article | MR 1872156 | Zbl 0981.30015

[25] Väisälä, Jussi Quasi-Möbius maps, J. Analyse Math., Tome 44 (1984/85), pp. 218-234 | Article | MR 801295 | Zbl 0593.30022