This paper is concerned with the symbol calculus of microdifferential operators with exponential symbols. The composition law of exponential symbols is given. As an application, we find a sufficient condition of ellipticity for microdifferential operators of infinite order.
Cet article s’intéresse au calcul symbolique des opérateurs microdifférentiels avec symboles exponentiels. On donne la loi de composition des symboles exponentiels. Comme application, on trouve une condition suffisante d’ellipticité pour les opérateurs microdifférentiels d’ordre infini.
@article{AIF_1983__33_4_227_0, author = {Aoki, Takashi}, title = {Calcul exponentiel des op\'erateurs microdiff\'erentiels d'ordre infini. {I}}, journal = {Annales de l'Institut Fourier}, pages = {227--250}, publisher = {Imprimerie Louis-Jean}, address = {Gap}, volume = {33}, number = {4}, year = {1983}, doi = {10.5802/aif.947}, zbl = {0495.58025}, mrnumber = {85f:58111}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.947/} }
TY - JOUR TI - Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. I JO - Annales de l'Institut Fourier PY - 1983 DA - 1983/// SP - 227 EP - 250 VL - 33 IS - 4 PB - Imprimerie Louis-Jean PP - Gap UR - https://aif.centre-mersenne.org/articles/10.5802/aif.947/ UR - https://zbmath.org/?q=an%3A0495.58025 UR - https://www.ams.org/mathscinet-getitem?mr=85f:58111 UR - https://doi.org/10.5802/aif.947 DO - 10.5802/aif.947 LA - fr ID - AIF_1983__33_4_227_0 ER -
Aoki, Takashi. Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. I. Annales de l'Institut Fourier, Volume 33 (1983) no. 4, pp. 227-250. doi : 10.5802/aif.947. https://aif.centre-mersenne.org/articles/10.5802/aif.947/
[1] Growth order of microdifferential operators of infinite order, J. Fac. Sci., Univ. Tokyo, Sec. IA, 29 (1982), 143-159. | MR: 84a:58072 | Zbl: 0489.35080
,[2] Invertibility for microdifferential operators of infinite order, Publ. RIMS, Kyoto Univ., 18 (1982), 421-449. | MR: 84c:58079 | Zbl: 0512.35077
,[3] The exponential calculus of microdifferential operators of infinite order I, Proc. Japan Acad., 58A (1982), 58-61. | MR: 83e:58082 | Zbl: 0507.58039
,[4] The exponential calculus of microdifferential operators of infinite order II, Proc. Japan, Acad., 58A (1982), 154-157. | MR: 83k:58077 | Zbl: 0507.58039
,[5] Opérateurs pseudo-différentiels analytiques et opérateurs d'ordre infini, Ann. Inst. Fourier, Grenoble, 22, 3 (1972), 229-268. | Numdam | MR: 49 #5939 | Zbl: 0235.47029
,[6] Opérateurs pseudo-différentiels analytiques d'ordre infini, Astérisque, 2-3 (1973), 128-134. | Zbl: 0273.35057
,[7] Poisson's summation formula and Hamburger's theorem, Publ. RIMS, Kyoto Univ., 18 (1982), 833-846. | MR: 84h:46049 | Zbl: 0499.10042
and ,[8] Fourier integral operators I, Acta Math., 127 (1971), 79-183. | MR: 52 #9299 | Zbl: 0212.46601
,[9] Systèmes d'équations micro-différentielles, Cours rédigé par Teresa Monteiro-Fernandes, Prépublications mathématiques de l'Université de Paris-Nord, 1977.
,[10] Micro-hyperbolic pseudo-differential operators I, J. Math. Soc. Japan, 27 (1975), 359-404. | MR: 51 #14167 | Zbl: 0305.35066
and ,[11] Second-microlocalization and asymptotic expansions, Lect. Notes in Phys., Springer, No. 126 (1980), 21-76. | MR: 81i:58038 | Zbl: 0458.46027
and ,[12] On holonomic systems of micro-differential equations III, Publ. RIMS, Kyoto Univ., 17 (1981), 813-979. | MR: 83e:58085 | Zbl: 0505.58033
and .[13] Problème de Cauchy pour les systèmes microdifférentiels dans le domaine complexe, Inventiones Math., 46 (1978), 17-38. | MR: 80a:58031 | Zbl: 0369.35061
and ,[14] Micro-hyperbolic systems, Acta Math., 142 (1979), 1-55. | MR: 80b:58060 | Zbl: 0413.35049
and ,[15] On the theory of Radon transformations of hyperfunctions, Master's thesis in Univ. Tokyo, 1976 (en japonais).
,[16] On the theory of Radon transformations of hyperfunctions, J. Fac. Sci., Univ. Tokyo, Sec. IA, 28 (1981), 331-413. | MR: 84e:58067 | Zbl: 0576.32008
,[17] On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, 17 (1970), 467-517. | MR: 45 #7252 | Zbl: 0212.46101
,[18] Deuxième microlocalisation, Lect. Notes in Phys., Springer, No. 126 (1980), 77-89. | MR: 81j:58071 | Zbl: 0466.35003
.[19] Pseudo-differential equations and theta functions, Astérisque, 2-3 (1973), 286-291. | MR: 57 #7701 | Zbl: 0288.35045
,[20] Linear differential equations of infinite order and theta functions, Advances in Math., 47 (1983), 300-325. | MR: 84h:14054 | Zbl: 0546.35047
, and ,[21] Microfunctions and pseudo-differential equations, Lect. Notes in Math., Springer, No. 287 (1973), 265-529. | MR: 54 #8747 | Zbl: 0277.46039
, and ,[22] Microlocal analysis of partial differential operators with irregular singularities, à paraître. | Zbl: 0556.35017
,Cited by Sources: