For any sufficiently large real number , the interval contains at least one integer having at most two prime factors .
On démontre que l’intervalle contient un entier ayant au plus deux facteurs premiers dès que est un nombre réel suffisamment grand.
@article{AIF_1981__31_4_37_0, author = {Iwaniec, Henryk and Laborde, M.}, title = {$P_2$ in short intervals}, journal = {Annales de l'Institut Fourier}, pages = {37--56}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {31}, number = {4}, year = {1981}, doi = {10.5802/aif.848}, zbl = {0472.10048}, mrnumber = {83e:10061}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.848/} }
TY - JOUR AU - Iwaniec, Henryk AU - Laborde, M. TI - $P_2$ in short intervals JO - Annales de l'Institut Fourier PY - 1981 SP - 37 EP - 56 VL - 31 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.848/ DO - 10.5802/aif.848 LA - en ID - AIF_1981__31_4_37_0 ER -
Iwaniec, Henryk; Laborde, M. $P_2$ in short intervals. Annales de l'Institut Fourier, Volume 31 (1981) no. 4, pp. 37-56. doi : 10.5802/aif.848. https://aif.centre-mersenne.org/articles/10.5802/aif.848/
[1] Combinatorial strengthening of the sieve method of Eratosthenes (Russian), Uspehi Math. Nauk., 22 (1967), n° 3 (135), 199-226. | Zbl
,[2] On the distribution of almost primes in an interval, Scientia Sinica, 18 (1975), 611-627. | MR | Zbl
,[3] On the distribution of almost primes in an interval (II), Scientia Sinica, 22 (1979), 253-275. | MR | Zbl
,[4] Sieve Methods, London 1974. | MR | Zbl
and ,[5] Almost-primes in short intervals, to appear. | Zbl
, and ,[6] A new form of the error term in the linear sieve, Acta Arith., 27 (1980), 307-320. | MR | Zbl
,[7] An improvement of Selberg sieve method, I, Acta Arith., 11 (1965), 217-240. | MR | Zbl
and ,[8] Les sommes trigonométriques de Chen et les poids de Buchstab en théorie du crible, Thèse de 3e cycle, Université de Paris-Sud.
,[9] Buchstab's sifting weights, Mathematika, 26 (1979), 250-257. | MR | Zbl
,[10] Van der Corput's method and the theory of exponent pairs, Quart. J. Oxford, (2) 6 (1955), 147-153. | MR | Zbl
,[11] Selberg's sieve with weights, Mathematika, 16 (1969), 1-22. | MR | Zbl
,[12] The theory of the Riemann Zeta-Function, Oxford 1951. | MR | Zbl
,Cited by Sources: