P 2 in short intervals
Annales de l'Institut Fourier, Tome 31 (1981) no. 4, pp. 37-56.

On démontre que l’intervalle [x,x+x 0,45 ] contient un entier ayant au plus deux facteurs premiers dès que x est un nombre réel suffisamment grand.

For any sufficiently large real number x, the interval [x,x+x 0,45 ] contains at least one integer having at most two prime factors .

@article{AIF_1981__31_4_37_0,
     author = {Iwaniec, Henryk and Laborde, M.},
     title = {$P_2$ in short intervals},
     journal = {Annales de l'Institut Fourier},
     pages = {37--56},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {31},
     number = {4},
     year = {1981},
     doi = {10.5802/aif.848},
     mrnumber = {83e:10061},
     zbl = {0472.10048},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.848/}
}
TY  - JOUR
AU  - Iwaniec, Henryk
AU  - Laborde, M.
TI  - $P_2$ in short intervals
JO  - Annales de l'Institut Fourier
PY  - 1981
DA  - 1981///
SP  - 37
EP  - 56
VL  - 31
IS  - 4
PB  - Imprimerie Durand
PP  - 28 - Luisant
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.848/
UR  - https://www.ams.org/mathscinet-getitem?mr=83e:10061
UR  - https://zbmath.org/?q=an%3A0472.10048
UR  - https://doi.org/10.5802/aif.848
DO  - 10.5802/aif.848
LA  - en
ID  - AIF_1981__31_4_37_0
ER  - 
Iwaniec, Henryk; Laborde, M. $P_2$ in short intervals. Annales de l'Institut Fourier, Tome 31 (1981) no. 4, pp. 37-56. doi : 10.5802/aif.848. https://aif.centre-mersenne.org/articles/10.5802/aif.848/

[1] A. A. Buchstab, Combinatorial strengthening of the sieve method of Eratosthenes (Russian), Uspehi Math. Nauk., 22 (1967), n° 3 (135), 199-226. | Zbl 0199.09001

[2] Jing-Run Chen, On the distribution of almost primes in an interval, Scientia Sinica, 18 (1975), 611-627. | MR 56 #15584 | Zbl 0381.10033

[3] Jing-Run Chen, On the distribution of almost primes in an interval (II), Scientia Sinica, 22 (1979), 253-275. | MR 82d:10065 | Zbl 0408.10030

[4] H. Halberstam and H.-E. Richert, Sieve Methods, London 1974. | MR 54 #12689 | Zbl 0298.10026

[5] H. Halberstam, D. R. Heath-Brown and H.-E. Richert, Almost-primes in short intervals, to appear. | Zbl 0461.10041

[6] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith., 27 (1980), 307-320. | MR 82d:10069 | Zbl 0444.10038

[7] W. B. Jurkat and H.-E. Richert, An improvement of Selberg sieve method, I, Acta Arith., 11 (1965), 217-240. | MR 34 #2540 | Zbl 0128.26902

[8] M. Laborde, Les sommes trigonométriques de Chen et les poids de Buchstab en théorie du crible, Thèse de 3e cycle, Université de Paris-Sud.

[9] M. Laborde, Buchstab's sifting weights, Mathematika, 26 (1979), 250-257. | MR 82m:10070 | Zbl 0429.10028

[10] R. A. Rankin, Van der Corput's method and the theory of exponent pairs, Quart. J. Oxford, (2) 6 (1955), 147-153. | MR 17,240a | Zbl 0065.27802

[11] H.-E. Richert, Selberg's sieve with weights, Mathematika, 16 (1969), 1-22. | MR 40 #119 | Zbl 0192.39703

[12] E. C. Titchmarsh, The theory of the Riemann Zeta-Function, Oxford 1951. | MR 13,741c | Zbl 0042.07901

Cité par Sources :