On démontre ici qu’il existe un seul simplexe métrisable dont les points extrémaux sont denses. Ce simplexe est homogène au sens que pour tout couple de face , affinement homéomorphes, il existe un automorphisme de qui transforme en . Tout simplexe métrisable est affinement homéomorphe à une face de . L’ensemble des points extrémaux de est homéomorphe à l’espace de Hilbert . On caractérise les matrices qui représentent .
It is proved that there is a unique metrizable simplex whose extreme points are dense. This simplex is homogeneous in the sense that for every 2 affinely homeomorphic faces and there is an automorphism of which maps onto . Every metrizable simplex is affinely homeomorphic to a face of . The set of extreme points of is homeomorphic to the Hilbert space . The matrices which represent are characterized.
@article{AIF_1978__28_1_91_0, author = {Lindenstrauss, Joram and Olsen, Gunnar and Sternfeld, Y.}, title = {The {Poulsen} simplex}, journal = {Annales de l'Institut Fourier}, pages = {91--114}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, number = {1}, year = {1978}, doi = {10.5802/aif.682}, zbl = {0363.46006}, mrnumber = {80b:46019a}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.682/} }
TY - JOUR AU - Lindenstrauss, Joram AU - Olsen, Gunnar AU - Sternfeld, Y. TI - The Poulsen simplex JO - Annales de l'Institut Fourier PY - 1978 SP - 91 EP - 114 VL - 28 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.682/ DO - 10.5802/aif.682 LA - en ID - AIF_1978__28_1_91_0 ER -
%0 Journal Article %A Lindenstrauss, Joram %A Olsen, Gunnar %A Sternfeld, Y. %T The Poulsen simplex %J Annales de l'Institut Fourier %D 1978 %P 91-114 %V 28 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.682/ %R 10.5802/aif.682 %G en %F AIF_1978__28_1_91_0
Lindenstrauss, Joram; Olsen, Gunnar; Sternfeld, Y. The Poulsen simplex. Annales de l'Institut Fourier, Tome 28 (1978) no. 1, pp. 91-114. doi : 10.5802/aif.682. https://aif.centre-mersenne.org/articles/10.5802/aif.682/
[1] Compact convex sets and boundary integrals, Springer-Verlag, 1971. | MR | Zbl
,[2] Selected topics from infinite dimensional topology, Warsaw, 1975. | Zbl
and ,[3] On the characterization of the dimension of a compact metric space K by the representing matrices of C(K), Israel. J. of Math., 22 (1975), 148-167. | MR | Zbl
and ,[4] A new proof that every polish space is the extreme boundary of a simplex, Bull. London Math, Soc., 7 (1975), 97-100. | MR | Zbl
,[5] Spaces of affine continuous functions on simplexes, A.M.S. Trans., 134 (1968), 503-525. | MR | Zbl
,[6] Affine product of simplexes, Math. Scand., 22 (1968), 165-175. | MR | Zbl
,[7] Banach spaces whose duals are L1 spaces and their representing matrices. Acta Math., 120 (1971), 165-193. | MR | Zbl
and ,[8] The Gurari space is unique, Arch. Math., 27 (1976), 627-635. | MR | Zbl
,[9] On separable Lindenstrauss spaces, J. Funct. Anal., 26 (1977), 103-120. | MR | Zbl
,[10] A simplex with dense extreme points, Ann. Inst. Fourier, Grenoble, 11 (1961), 83-87. | Numdam | MR | Zbl
,[11]
, Characterization of Bauer simplices and some other classes of Choquet simplices by their representing matrices, to appear.[12] Some remarks on the Gurari space, Studia Math., XLI (1972), 207-210. | MR | Zbl
,Cité par Sources :