We prove that if for certain values of , then
On démontre que si pour certaines valeurs de , alors
@article{AIF_1974__24_3_159_0, author = {Fefferman, Charles}, title = {Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$}, journal = {Annales de l'Institut Fourier}, pages = {159--164}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {3}, year = {1974}, doi = {10.5802/aif.523}, zbl = {0292.26013}, mrnumber = {52 #11574}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.523/} }
TY - JOUR AU - Fefferman, Charles TI - Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$ JO - Annales de l'Institut Fourier PY - 1974 SP - 159 EP - 164 VL - 24 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.523/ DO - 10.5802/aif.523 LA - en ID - AIF_1974__24_3_159_0 ER -
%0 Journal Article %A Fefferman, Charles %T Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$ %J Annales de l'Institut Fourier %D 1974 %P 159-164 %V 24 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.523/ %R 10.5802/aif.523 %G en %F AIF_1974__24_3_159_0
Fefferman, Charles. Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$. Annales de l'Institut Fourier, Volume 24 (1974) no. 3, pp. 159-164. doi : 10.5802/aif.523. https://aif.centre-mersenne.org/articles/10.5802/aif.523/
[1] Svoǐctba graničnyh značeniǐ funkciǐ iz vesovyh prostranctv i ih priloženija k kraevym zadačam. Mehanika Splošnoǐ sredy i rodstvennye problemy analiza. Moskva 1972.
,[2] O teoremah vloženija dlja vesovyh klassov, Trudi Mat. Instta AN SSSR, 60 (1961), 282-303.
,[3] Doklady AN SSSR, to appear.
,Cited by Sources: