[Results of cancellation for the Taylor tower]
We obtain vanishing results for derived functors in the sense of Dold–Puppe (Homologie nicht-additiver Funktoren. Anwendungen. Ann. Inst. Fourier Grenoble, 1961) and Taylor approximations of a functor according to Johnson–McCarthy (algebraic Goodwillie calculus) (Deriving calculus with cotriples. Trans. Amer. Math. Soc., 2004) using the combination of blocks in the category of strictly polynomial functors of Friedlander and Suslin (Cohomology of finite group schemes over a field. Invent. Math., 1997).
Nous obtenons des résultats d’annulation des foncteurs dérivés au sens de Dold–Puppe (Homologie nicht-additiver Funktoren. Anwendungen. Ann. Inst. Fourier Grenoble, 1961) et des approximations de Taylor d’un foncteur selon Johnson–McCarthy (calcul de Goodwillie algébrique) (Deriving calculus with cotriples. Trans. Amer. Math. Soc., 2004) en utilisant la combinatoire des blocs de la catégorie des foncteurs strictement polynomiaux de Friedlander et Suslin (Cohomology of finite group schemes over a field. Invent. Math., 1997).
Accepted:
Revised after acceptance:
Online First:
Mots-clés : Théorie des blocs, Foncteurs dérivé, Tour de Taylor, Foncteur strictement polynomial, Foncteur simple
Keywords: Block theory, Derived functor, Taylor tower, Strictly polynomial functors, simple functor
Pham, Van Tuan 1
@unpublished{AIF_0__0_0_A145_0, author = {Pham, Van Tuan}, title = {Des r\'esultats d{\textquoteright}annulation pour la tour de {Taylor}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3711}, language = {fr}, note = {Online first}, }
Pham, Van Tuan. Des résultats d’annulation pour la tour de Taylor. Annales de l'Institut Fourier, Online first, 60 p.
[1] Characteristic-free representation theory of the general linear group, Adv. Math., Volume 58 (1985), pp. 149-200 | DOI | Zbl
[2] Characteristic-free representation theory of the general linear group. II. Homological considerations, Adv. Math., Volume 72 (1988) no. 2, pp. 171-210 | DOI | Zbl
[3] Schur functors and Schur complexes, Adv. Math., Volume 44 (1982) no. 3, pp. 207-278 | DOI | Zbl
[4] Stable derived functors, the Steenrod algebra and homological algebra in the category of functors, Fundam. Math., Volume 168 (2001) no. 3, pp. 279-293 | DOI | MR | Zbl
[5] On the Chern–Weil homomorphism and the continuous cohomology of Lie-groups, Adv. Math., Volume 11 (1973), pp. 289-303 | DOI
[6] Homogeneous functors and their derived functors, 1967 (mimeographed notes)
[7] Operations on derived functors of non-additive functors, 1967 (mimeographed notes)
[8] The lower central series and the Adams spectral sequence, Topology, Volume 5 (1966), pp. 331-342 | DOI | MR | Zbl
[9] Derived functors of nonadditive functors and homotopy theory, Algebr. Geom. Topol., Volume 11 (2011) no. 1, pp. 327-415 | DOI | MR | Zbl
[10] Derived functors of the divided power functors, Geom. Topol., Volume 20 (2016) no. 1, pp. 257-352 | DOI | MR | Zbl
[11] Cohomology of Groups, Graduate Texts in Mathematics, 182, Springer, 1982 | DOI | MR
[12] Séminaire Henri Cartan : Algèbres d’Eilenberg–MacLane et homotopie. 7e année 1954/55. Vols. I, II. Exposés I–XI, XII–XXII (Cartan, H.; Moore, J. C.; Thom, René; Serre, Jean-Pierre, eds.), Secrétariat Mathématique, 1955 | Zbl
[13] On the cohomology of Young modules for the symmetric group, Adv. Math., Volume 224 (2010) no. 4, pp. 1419-1461 | DOI | MR | Zbl
[14] Lower central series of semi-simplicial complexes, Topology, Volume 2 (1963), pp. 159-171 | DOI | MR | Zbl
[15] Some relations between homotopy and homology, Ann. Math., Volume 82 (1965), pp. 386-413 | DOI | Zbl
[16] Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier, Volume 11 (1961), pp. 201-312 | DOI | Numdam | MR | Zbl
[17] On Schur algebras and related algebras. I, J. Algebra, Volume 104 (1986) no. 2, pp. 310-328 | DOI | Zbl
[18] On Schur algebras and related algebras. II, J. Algebra, Volume 111 (1987) no. 2, pp. 354-364 | DOI | Zbl
[19] On the groups . II. Methods of computation, Ann. Math., Volume 60 (1954), pp. 49-139 | DOI | Zbl
[20] Cohomology of finite group schemes over a field, Invent. Math., Volume 127 (1997) no. 2, pp. 209-270 | DOI | MR | Zbl
[21] Polynomial representations of , Lecture Notes in Mathematics, 830, Springer, 2007 | MR | Zbl
[22] The representation theory of the symmetric group, Encyclopedia of Mathematics and Its Applications, 16, Addison-Wesley Publishing Group, 1981 (with an introduction by Gilbert de B. Robinson) | MR
[23] Representations of algebraic groups, Pure and Applied Mathematics, 131, Academic Press Inc., 1987 | MR
[24] Representations of algebraic groups, Mathematical Surveys and Monographs, 107, American Mathematical Society, 2003 | MR
[25] Linearization, Dold–Puppe stabilization and Mac Lane’s -construction, Trans. Am. Math. Soc., Volume 350 (1998) no. 4, pp. 1555-1593 | DOI | MR | Zbl
[26] Trans. Amer. Math. Soc, Trans. Am. Math. Soc., Volume 356 (2004) no. 2, pp. 757-803
[27] Taylor towers of symmetric and exterior powers, Fundam. Math., Volume 201 (2008) no. 3, pp. 197-216 | DOI | MR | Zbl
[28] The Taylor towers for rational algebraic -theory and Hochschild homology, Homology Homotopy Appl., Volume 4 (2002) no. 1, pp. 191-212 | DOI | MR | Zbl
[29] Homology, Classics in Mathematics, Springer, 1995 (reprint of the 1975 edition)
[30] Schur algebras and representation theory, Cambridge Tracts in Mathematics, 112, Cambridge University Press, 1993 | MR
[31] Polynomial functors, Tr. Tbilis. Mat. Inst. Razmadze, Volume 91 (1988), pp. 55-66 | Zbl
[32] Introduction to functor homology, Rational representations, the Steenrod algebra and functor homology (Panoramas et Synthèses), Volume 16, Société Mathématique de France, 2003, pp. 1-26 | Zbl
[33] Infinitesimal -parameter subgroups and cohomology, J. Am. Math. Soc., Volume 10 (1997) no. 3, pp. 693-728 | DOI | Zbl
[34] Projective resolutions of representations of , J. Reine Angew. Math., Volume 482 (1997), pp. 1-13 | MR | Zbl
[35] Cohomology of classical algebraic groups from the functorial viewpoint, Adv. Math., Volume 225 (2010) no. 1, pp. 33-68 | DOI | MR | Zbl
[36] Ringel duality and derivatives of non-additive functors, J. Pure Appl. Algebra, Volume 217 (2013) no. 9, pp. 1642-1673 | DOI | MR | Zbl
[37] Bar complexes and extensions of classical exponential functors, Ann. Inst. Fourier, Volume 64 (2014) no. 6, pp. 2563-2637 | DOI | Numdam | MR | Zbl
[38] A functorial control of integral torsion in homology, Fundam. Math., Volume 237 (2017) no. 2, pp. 135-163 | DOI | MR | Zbl
[39] On the structure of graded commutative exponential functors, Int. Math. Res. Not., Volume 2021 (2021) no. 17, pp. 13305-13415 | DOI | MR | Zbl
[40] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994 | DOI | MR
[41] Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, 149, Cambridge University Press, 2003 | DOI | MR
Cited by Sources: