We are interested in the long time behavior of solutions of the nonlinear Schrödinger equations on the -dimensional torus in low regularity, i.e. for small initial data in the Sobolev space with . We prove that, even in this context of low regularity, the -norms, , remain under control during times, , exponential with respect to the initial size of the initial datum in , . For this, we add to the linear part of the equation a random Fourier multiplier in and show our stability result for almost any realization of this multiplier. In particular, with such Fourier multipliers, we obtain the almost global well posedness of the nonlinear Schrödinger equations in for any and any .
On considère le comportement en temps longs des solutions des équations de Schrödinger non-linéaires sur le tore de dimension en faible régularité, i.e. pour de petites conditions initiales dans l’espace de Sobolev avec . Même dans ce contexte de faible régularité, on contrôle la croissance des normes , , pendant des temps exponentiellement longs par rapport à la taille des données initiales dans , . Pour y parvenir, on ajoute à la partie linéaire de l’équation un multiplicateur de Fourier aléatoire dans et on montre le résultat de stabilité pour presque toute réalisation de ce multiplicateur. En particulier, avec de tels multiplicateurs de Fourier, on prouve l’existence presque globale des solutions des équations de Schrödinger non-linéaires dans pour n’importe quel et .
Revised:
Accepted:
Online First:
Keywords: Birkhoff normal forms, low regularity, NLS equation
Mots-clés : Formes normales de Birkhoff, faible régularité, équations de Schrödinger non-linéaires
Bernier, Joackim 1; Grébert, Benoît 1
@unpublished{AIF_0__0_0_A144_0, author = {Bernier, Joackim and Gr\'ebert, Beno{\^\i}t}, title = {Almost global existence for some nonlinear {Schr\"odinger} equations on $\mathbb{T}^d$ in low regularity}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3706}, language = {en}, note = {Online first}, }
TY - UNPB AU - Bernier, Joackim AU - Grébert, Benoît TI - Almost global existence for some nonlinear Schrödinger equations on $\mathbb{T}^d$ in low regularity JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3706 LA - en ID - AIF_0__0_0_A144_0 ER -
%0 Unpublished Work %A Bernier, Joackim %A Grébert, Benoît %T Almost global existence for some nonlinear Schrödinger equations on $\mathbb{T}^d$ in low regularity %J Annales de l'Institut Fourier %D 2025 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3706 %G en %F AIF_0__0_0_A144_0
Bernier, Joackim; Grébert, Benoît. Almost global existence for some nonlinear Schrödinger equations on $\mathbb{T}^d$ in low regularity. Annales de l'Institut Fourier, Online first, 44 p.
[1] Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., Volume 234 (2003) no. 2, pp. 253-285 | DOI | MR | Zbl
[2] A Birkhoff normal form theorem for some semilinear PDEs, Hamiltonian dynamical systems and applications (NATO Science for Peace and Security Series B: Physics and Biophysics), Springer, 2008, pp. 213-247 | DOI | MR | Zbl
[3] Almost global existence for Hamiltonian semilinear Klein–Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., Volume 60 (2007) no. 11, pp. 1665-1690 | DOI | MR | Zbl
[4] Forme normale pour NLS en dimension quelconque, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 6, pp. 409-414 | DOI | Numdam | MR | Zbl
[5] Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., Volume 135 (2006) no. 3, pp. 507-567 | DOI | MR | Zbl
[6] A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom, Commun. Math. Phys., Volume 119 (1988) no. 1, pp. 95-108 | DOI | MR | Zbl
[7] A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems, Celest. Mech., Volume 37 (1985) no. 1, pp. 1-25 | DOI | MR | Zbl
[8] Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, Ann. PDE, Volume 6 (2020) no. 2, 14, 65 pages | DOI | MR | Zbl
[9] Long-time existence for semi-linear beam equations on irrational Tori, J. Dyn. Differ. Equations, Volume 33 (2021) no. 3, pp. 1363-1398 | DOI | MR | Zbl
[10] Birkhoff normal forms for Hamiltonian PDEs in their energy space, J. Éc. Polytech., Math., Volume 9 (2022), pp. 681-745 | DOI | Numdam | MR | Zbl
[11] Dynamics of nonlinear Klein–Gordon equations in low regularity on , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 40 (2023) no. 5, pp. 1009-1049 | DOI | MR | Zbl
[12] Almost global solutions of capillary-gravity water waves equations on the circle, Lecture Notes of the Unione Matematica Italiana, 24, Springer; Unione Matematica Italiana, Bologna, 2018, x+268 pages | DOI | MR | Zbl
[13] An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS, Commun. Math. Phys., Volume 375 (2020) no. 3, pp. 2089-2153 | DOI | MR | Zbl
[14] Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., Volume 6 (1996) no. 2, pp. 201-230 | DOI | MR | Zbl
[15] A remark on normal forms and the “-method” for periodic NLS, J. Anal. Math., Volume 94 (2004), pp. 125-157 | DOI | MR | Zbl
[16] Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations, Ergodic Theory Dyn. Syst., Volume 24 (2004) no. 5, pp. 1331-1357 | DOI | MR | Zbl
[17] Long time stability result for 1-dimensional nonlinear Schrödinger equation, J. Differ. Equations, Volume 315 (2022), pp. 90-121 | DOI | MR | Zbl
[18] Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations, Numer. Math., Volume 110 (2008) no. 2, pp. 113-143 | DOI | MR | Zbl
[19] Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions, Arch. Ration. Mech. Anal., Volume 187 (2008) no. 2, pp. 341-368 | DOI | MR | Zbl
[20] Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., Volume 181 (2010) no. 1, pp. 39-113 | DOI | MR | Zbl
[21] On long time existence for small solutions of semi-linear Klein–Gordon equations on the torus, J. Anal. Math., Volume 107 (2009), pp. 161-194 | DOI | MR | Zbl
[22] Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus, Commun. Partial Differ. Equations, Volume 38 (2013) no. 7, pp. 1123-1140 | DOI | MR | Zbl
[23] A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus, Anal. PDE, Volume 6 (2013) no. 6, pp. 1243-1262 | DOI | MR | Zbl
[24] Long time solutions for quasilinear Hamiltonian perturbations of Schrödinger and Klein-Gordon equations on tori, Anal. PDE, Volume 16 (2023) no. 5, pp. 1133-1203 | DOI | MR | Zbl
[25] Long time existence for fully nonlinear NLS with small Cauchy data on the circle, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 22 (2021) no. 1, pp. 109-182 | DOI | MR | Zbl
[26] Quadratic lifespan and growth of Sobolev norms for derivative Schrödinger equations on generic tori, J. Differ. Equations, Volume 312 (2022), pp. 276-316 | DOI | MR | Zbl
[27] Rigorous estimates for the series expansions of Hamiltonian perturbation theory, Celest. Mech., Volume 37 (1985) no. 2, pp. 95-112 | DOI | MR
[28] Sobolev norms explosion for the cubic NLS on irrational tori, Nonlinear Anal., Theory Methods Appl., Volume 220 (2022), 112865, 25 pages | DOI | MR | Zbl
[29] Birkhoff normal form and Hamiltonian PDEs, Partial differential equations and applications (Séminaires et Congrès), Volume 15, Société Mathématique de France, 2007, pp. 1-46 | MR | Zbl
[30] Modified scattering for the cubic Schrödinger equation on product spaces: the nonresonant case, Math. Res. Lett., Volume 23 (2016) no. 3, pp. 841-861 | DOI | MR | Zbl
[31] Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential, Commun. Math. Phys., Volume 329 (2014) no. 1, pp. 405-434 | DOI | MR | Zbl
[32] Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc., Volume 17 (2015) no. 1, pp. 71-149 | DOI | MR | Zbl
[33] Erratum to “Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation” [ MR3312404], J. Eur. Math. Soc., Volume 19 (2017) no. 2, pp. 601-602 | DOI | MR | Zbl
[34] Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum Math. Pi, Volume 3 (2015), e4, 63 pages | DOI | MR | Zbl
[35] An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russ. Math. Surv., Volume 32 (1977), pp. 1-65 | DOI | Zbl
[36] Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., Volume 213 (1993) no. 2, pp. 187-216 | DOI | MR | Zbl
[37] Long time stability of Hamiltonian partial differential equations, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3176-3222 | DOI | MR | Zbl
Cited by Sources: