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ALMOST GLOBAL EXISTENCE FOR SOME
NONLINEAR SCHRÖDINGER EQUATIONS ON Td IN

LOW REGULARITY

by Joackim BERNIER & Benoît GRÉBERT (*)

Abstract. — We are interested in the long time behavior of solutions of the
nonlinear Schrödinger equations on the d-dimensional torus in low regularity, i.e.
for small initial data in the Sobolev space Hs0 (Td) with s0 > d/2. We prove that,
even in this context of low regularity, the Hs-norms, s ⩾ 0, remain under control
during times, Tε = exp

( | log ε|2

4 log | log ε|

)
, exponential with respect to the initial size

of the initial datum in Hs0 , ∥u(0)∥Hs0 = ε. For this, we add to the linear part
of the equation a random Fourier multiplier in ℓ∞(Zd) and show our stability
result for almost any realization of this multiplier. In particular, with such Fourier
multipliers, we obtain the almost global well posedness of the nonlinear Schrödinger
equations in Hs0 (Td) for any s0 > d/2 and any d ⩾ 1.

Résumé. — On considère le comportement en temps longs des solutions des
équations de Schrödinger non-linéaires sur le tore de dimension d en faible régula-
rité, i.e. pour de petites conditions initiales dans l’espace de Sobolev Hs0 (Td) avec
s0 > d/2. Même dans ce contexte de faible régularité, on contrôle la croissance des
normes Hs, s ⩾ 0, pendant des temps Tε = exp

( | log ε|2

4 log | log ε|

)
exponentiellement

longs par rapport à la taille des données initiales dans Hs0 , ∥u(0)∥Hs0 = ε. Pour
y parvenir, on ajoute à la partie linéaire de l’équation un multiplicateur de Fourier
aléatoire dans ℓ∞(Zd) et on montre le résultat de stabilité pour presque toute réa-
lisation de ce multiplicateur. En particulier, avec de tels multiplicateurs de Fourier,
on prouve l’existence presque globale des solutions des équations de Schrödinger
non-linéaires dans Hs0 (Td) pour n’importe quel s0 > d/2 et d ⩾ 1.

1. Introduction

The long time behavior of solutions of Hamiltonian partial differential
equations has been a major issue in the PDE community for two decades. A

Keywords: Birkhoff normal forms, low regularity, NLS equation.
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2 Joackim BERNIER & Benoît GRÉBERT

central question, initially posed by Bourgain [14], concerns the possibility
that a solution sees its Sobolev Hs-norm tend to infinity when time tends
to infinity for s large enough although the energy (the Hamiltonian) is
conserved (see also [15, 16]). Such a behavior would clearly contrast with
the behavior of solutions of linear PDEs. A number of results have been
obtained to postpone this eventuality to very long times with respect to the
size of the initial data (see e.g. [3, 5, 8, 12, 13, 14, 25]). Unfortunately they
only concern very regular solutions (the larger is s, the longer is the stability
time) contrary to what the numerical simulations suggest ([18, 19]). On
the contrary we consider here low regularity solutions of an emblematic
Hamiltonian PDE, namely the nonlinear Schrödinger equation. Concretely
we consider the Cauchy problem

(NLS)
{

i∂tu = −∆u + V ∗ u + σ|u|2pu,

u(0) = u(0),

where t ∈ R, x ∈ Td = (R/2πZ)d, d ⩾ 1, p ⩾ 1 is an integer, σ ∈ {−1, 1}
allows to consider both the focusing and the defocusing cases and u 7→ V ∗u

is a Fourier multiplier with a potential V ≡ (Vk)k∈Zd ∈ ℓ∞(Zd;R) whose
Fourier coefficients are real and bounded. More precisely, we identify every
function v ∈ L2(Td) with the sequence of its Fourier coefficients

vk = (2π)−d/2
∫
Td

v(x) e−ik·x dx, k ∈ Zd

and so V ∗ u is defined by the relation (V ∗ u)k = (2π)−d/2Vkuk. Our main
result is

Theorem 1.1. — There exists a non empty set V ⊂ ℓ∞(Zd) such that
for V ∈ V and s0 > d/2, there exits ε0 ≡ ε0(s0, V, d, p) > 0 such that for any
u(0) ∈ Hs0(Td) satisfying ε := ∥u(0)∥Hs0 ⩽ ε0, the Cauchy problem (NLS)
has a unique solution

u ∈ C0((−Tε, Tε); Hs0(Td)) ∩ C1((−Tε, Tε); Hs0−2(Td))
with

Tε = ε− | log ε|
4 log | log ε| .

If moreover u(0) ∈ Hs(Td) for some s ⩾ 0 then u ∈ C0((−Tε, Tε); Hs(Td))
and

(1.1) ∥u(t)∥Hs ⩽ Cs∥u(0)∥Hs for |t| ⩽ Tε

where Cs ⩾ 1 is a constant depending only on s.

ANNALES DE L’INSTITUT FOURIER



A NEKHOROSHEV THEOREM FOR NLS ON Td IN LOW REGULARITY 3

Remark 1.2. — The set V of the Fourier multipliers for which Theorem
1.1 holds is defined by formula (1.7): the Fourier multipliers must be con-
stant on every dyadic block Bn given by (1.4). As a consequence it does not
contain any open set and it has zero measure in any reasonable measure on
ℓ∞(Zd). Nevertheless it is not so small since, by Lemma 3.4, almost surely,
the random potential V defined by (1.7) belongs to V.

Remark 1.3. — The estimate (1.1) means that, to control the growth of
the Hs norm for very long times, the initial datum only needs to be small
in Hs0 . In particular, as recently highlighted in [26], contrary to what is
usually assumed, it does not have to be small in Hs (moreover note that
we do not have to assume that s ⩾ s0).

Remark 1.4. — In this paper we consider (NLS) on square tori Td. Nev-
ertheless, a minor modification of the proof would allow us to extend this
result to any flat tori Rd/Γ, where Γ could be any lattice of Rd. Indeed, as
explained below, the key point in this paper is to have linear frequencies
ωk constant on dyadic blocks modulo the integers (i.e. in R/Z). Since the
linear frequencies are of the form ωk = λk + (2π)−d/2Vk (where λk are the
eigenvalues of the Laplace operator) and the coefficients Vk are in ℓ∞, it
could be easily achieved even if the eigenvalues λk were not integers.

1.1. Context and further bibliographical comments

Let us first situate this theorem in regard to previous results. First, we
point out that the local well-posedness of (NLS) in Hs, s > d/2, provides
a similar result but for much shorter times: we would only have Tε ≃
ε−2p. On the side of stability over long times, the work of Bambusi and
Bambusi–Grebert (see [1, 4, 5]) established, by a normal form method, the
following result concerning (NLS): for large families of Fourier multipliers
V ∈ Hm(Td) with m > 0, for r ≫ 1 chosen arbitrarily large, s ⩾ s0(r) ≳ r2

and ∥u(0)∥Hs = ε small enough, the existence time of the solution of (NLS)
is larger than ε−r and we have

∥u(t)∥Hs ⩽ 2ε for |t| ⩽ ε−r.

In this result the time of stability is directly related to the regularity of
the solution, we have stability in Hs for time of order ε−c

√
s where c > 0

is a universal constant. In [13], in dimension d = 1, this time has been
enlarged to ε−cs. We also note that this result was extended in [8] to the
case with V = 0 but then for random initial data. The main flaw in all

TOME 0 (0), FASCICULE 0



4 Joackim BERNIER & Benoît GRÉBERT

these results is that they apply only in very high regularity although the
corresponding partial differential equations are locally well-posed in low
regularity. Theorem 1.1 relaxes this constraint: s only need to be larger
than d/2, this last constraint coming from the fact that we want to work
in an algebra. We also note that in the result of Bambusi–Grebert, the
coefficients of the Fourier multipliers are decreasing and actually correspond
to potentials in Hm which is not the case in Theorem 1.1. Moreover, the
potential, V ∈ V, we actually consider are not very generic in ℓ∞ : the
eigenvalues of the operator u 7→ V ∗u have a lot of multiplicities (see (1.7)).
As we will see, this specificity is a key ingredient allowing us to have the
stability result (see Subsections 1.2 and 3.1 for details).

On the side of instability, Colliander–Keel–Staffilani–Takaoka–Tao
(see [20]), considered the cubic nonlinear Schrödinger equation, on the two
dimensional torus T2 without Fourier multipliers (V = 0 in (NLS)) and
proved that for any ε ≪ 1, any K ≫ 1 and s > 1 there exists a solution u

and a time T such that

∥u(T )∥Hs ⩾ K and ∥u(0)∥Hs ⩽ ε.

After that, Guardia–Kaloshin (see [32, 33]), proved a quantitative estimate
on T :

0 < T ⩽ e( K
ε )c

where c > 0 is a constant depending only on s. A maybe less intuitive
extension is then obtained by M. Guardia (see [31]): he proves that this
“almost unbounded” behavior is not a consequence of the exact resonances,
since it persists when one adds a convolution potential V , i.e. for (NLS)
with V ∈ H70s/17+(T2). Of course the stability time we obtain, although
of exponential type, is much shorter than the instability time obtained
by Guardia. Furthermore (1.1) is obtained for bounded Fourier multipliers
while the one of [31] requires a strong polynomial decay of these multipli-
ers. In other words, to obtain the instability in [31] the linear frequencies
are supposed to be asymptotically close to the fully resonant situation (i.e.
V = 0) while for (1.1) this is not the case. We conjecture that our result is
still true with some slow polynomial decay(1) on the Fourier multipliers but
we can glimpse a proof only for d = 1. Nevertheless it appears that the fact
of being asymptotically close (in Fourier variables) to the resonant case is
decisive for the appearance of weak turbulence phenomena (of course we
could easily extend our result to the case where (Vk)k∈Zd decreases loga-
rithmically but this is not fair since this does not put V in a Sobolev space).

(1) i.e. V would belong to some low regularity Sobolev spaces.

ANNALES DE L’INSTITUT FOURIER



A NEKHOROSHEV THEOREM FOR NLS ON Td IN LOW REGULARITY 5

Regarding to the last sentence, it deserves to mention the following less
turbulent case: Hani–Pausader–Tzvetkov–Visciglia considered in [34] the
cubic nonlinear Schrödinger equation on the wave-guide manifolds R × Td

(1.2) i∂tu + ∆R×Tdu = |u|2u, (t, x, y) ∈ R × R × Td,

and proved that when 2 ⩽ d ⩽ 4 the equation admits unbounded solutions
in Hs for s large enough. However when adding a “typical” convolution
potential V to (1.2), it is proved in [30] that all the small solutions remain
bounded in Hs. So in this less turbulent case, the fact of having an exactly
resonant linear part is decisive for the appearance of weak turbulence phe-
nomena.
We also mention a recent result by Giuliani–Guardia where the authors
proved that the Colliander–Keel–Staffilani–Takaoka–Tao ideas still apply
when considering irrational tori (see [28]).

In finite dimension n, the standard Nekhoroshev result [35] controls
the dynamics over times of order exp

(
−αε−1/(τ+1)) for some α > 0 and

τ > n + 1 (see for instance [7, 27, 36]) which is, of course, much better
than Tε = exp

(
− |log ε|2

4 log|log ε|
)

Nevertheless, clearly this standard result does
not extend to the infinite dimensional context, i.e. when n → +∞. Ac-
tually this kind of exponential times exp

(
−α |log ε|2

log|log ε|
)

were obtained by
Benettin–Fröhlich–Giorgilli in [6] for a Hamiltonian system with infinitely
many degrees of freedom but with finite-range couplings. We also notice
that this time was suggested by Bourgain as the optimal time that we
could obtain in an analytical context (see eq. (2.14) in [15]). We note that
in [23] a Nekhoroshev result for (NLS) equation was proved in an analytical
context and for time of order ε−α|log ε|β with β < 1. See also mention [13]
for results in Gevrey regularity and [17] for a result in class of regularity
between C∞ and Gevrey. We note that all these results with exponential
stability time were proved for very regular solutions while we only assume,
in Theorem 1.1, Hs0 regularity with s0 > d/2. Actually, in our case, the
exponential time is linked to the very good control of the small divisors
that we obtain for Fourier multipliers in V (see (1.8)).

We point out that our theorem implies the so called almost global well-
posedness of (NLS) on Hs(Td) for any d ⩾ 1 and any s > d/2 when the
Fourier multiplier V is chosen in the non empty set V.

We also point out that we have recently shown (see [10]) a normal form
result for (NLS) in weak regularity (in fact in the energy space H1) in
dimension d = 1 or d = 2 and almost surely with respect to the random
Fourier coefficients of potentials V ∈ Hm, m > 0. On one hand this later
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6 Joackim BERNIER & Benoît GRÉBERT

result is better because it holds true for almost all Fourier multipliers but
the price we pay is that we essentially control only a finite (but large!)
number of Fourier modes and in particular it cannot prove the almost
global well-posedness. We note that both results are based on a new way of
estimating the so-called small divisors. This result has been extended to the
nonlinear Klein–Gordon in S2 in [11]. As in this paper but for other reasons,
it was crucial to use partially resonant Birkhoff normal form, precisely
normal forms that decompose the dynamics on large blocks of modes with
an increasing size of the blocks (see (1.7) in our case).

1.2. Ideas of the proof

We now give an idea of the proof of Theorem 1.1. We do not try to
explain the Birkhoff normal form procedure (which is quite classical, an in-
troduction can be found in [2] or in [29]) but rather to present the novelties
of this paper.

First let us note that to control the Hs of the solution it is enough to
control the observable

(1.3) Ns(u) =
∑
n⩾0

(2n)2sJn where Jn =
∑

k∈Bn

|uk|2

and Zd =
⋃

n⩾0 Bn stands for the standard dyadic decomposition(2) of the
Fourier space

(1.4) Bn = {k ∈ Zd | 2n ⩽ |k| < 2n+1} and B0 = {k ∈ Zd | |k| < 2}.

Indeed, it is clear that
√

Ns is a norm which is equivalent to the standard
Hs norm

2−2s∥u∥2
Hs ⩽ Ns(u) ⩽ ∥u∥2

Hs .

Therefore, to control the variations of the Hs norm of the solutions it is
enough to control the (relative) variation of the super-actions Jn. Note that
it is useless to control the variations of each action |uk|2 or of the standard
super-actions

∑
|k|=m |uk|2 (as it is usually done, see e.g. [5, 8, 13, 22, 23,

24, 25, 37]).
Concretely, it means that in the Birkhoff normal form procedure, we only

have to remove all the monomials of the form uk1 . . . ukq uℓ1 . . . uℓq , where
2 ⩽ q and k, ℓ ∈ (Zd)q are such that

(1.5) ∃n ∈ N, ♯{j ∈ J1, qK | kj ∈ Bn} ≠ ♯{j ∈ J1, qK | ℓj ∈ Bn}
(2) We point out that we chose this standard dyadic decomposition just for simplicity.
Our result could be easily extended provided that the size of the blocks grows exponential
fast.

ANNALES DE L’INSTITUT FOURIER
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where J1, qK := [1, q] ∩ Z. Indeed, it is simple to check that the remaining
ones commute with the super actions Jn. Therefore it is enough to control
the small divisors

Ω(k, ℓ) := 2i(ωk1 + · · · + ωkq
− ωℓ1 − · · · − ωℓq

)

whenever (k, ℓ) is non-resonant (i.e. it satisfies (1.5)) and the frequencies(3)

ωk, k ∈ Zd, are defined by

ωk := |k|2 + (2π)−d/2Vk.

For potentials V ∈ Hm, m > 0, drawn following classical probability laws,
it is standard to establish lower bounds of the kind (see e.g. [5])

(1.6) |Ω(k, ℓ)| ⩾ γ(q, V )
(

max
1⩽j⩽q

(⟨kj⟩, ⟨ℓj⟩)
)−αq

whenever k ̸= ℓ up to a permutation, where α > 0 is a constant depending
only on m and γ(q, V ) > 0 depends only on q and V . Of course, as usual,
the maximum could be replaced by the third largest number (as in [5]) or
even by the minimum as in [10]. Nevertheless, it seems that the “losses of
derivatives” associated with such estimates are too big to hope to put (NLS)
in Birkhoff normal form in low regularity. That is why, the previous almost
global well-posedness results only deal with very smooth solutions to (NLS).

In this paper, we take advantage of the fact that it is enough to have small
divisor estimates when (k, ℓ) satisfies (1.5) to draw potentials V which are
much less generic but which enjoy much better small divisors estimates.
For simplicity(4) , we consider potentials of the form

(1.7) V (x) = 1
(2π)d/2

∑
k∈Zd

Vk eik·x where Vk = Xn, n when k ∈ Bn

and Xn ∼ U(0, 1) are independent random variables uniformly distributed
in [0, 1]. Note that, this choice makes (NLS) partially resonant : generically
the frequencies inside a same block are not rationally independent and so,
a priori there should be energy exchanges inside blocks. Thanks to these
multiplicities (in the values of (Vk)k) we have actually much less small
divisors to estimate and so we have much better lower bounds on them.
Roughly speaking, in the probability estimates, we do not have to make
converge sums with respect to k but only sums with respect to n ≃ log2 k.

(3) which are the eigenvalues of the linearized vector field.
(4) this choice could be easily generalized.

TOME 0 (0), FASCICULE 0



8 Joackim BERNIER & Benoît GRÉBERT

Therefore using standard estimates, we prove in Lemma 3.4 that, almost
surely,

(1.8) (1.5) =⇒ |Ω(k, ℓ)| ⩾ γ(q, V )
(

log max
1⩽j⩽q

(⟨kj⟩, ⟨ℓj⟩)
)−(2q+1)

.

We point out that the gain between the standard small divisor esti-
mates (1.6) and the new ones (1.8) is huge: we have replaced polynomial
losses of derivatives by logarithmic ones. Moreover, using technics inspired
by [9, 21], these logarithms losses can almost be considered as constants.
So it means that we have no losses in our small divisor estimates. It is the
main novelty of this paper and the reason why we can prove the almost
global well-posedness of (NLS) in low regularity (i.e. Theorem 1.1).

The rest of the proof is quite classical but contains some technicalities
mainly due to the three following facts :

• since we work in low regularity, it is harder to justify some stan-
dard formal computations. In particular, we approximate the non-
smooth solutions by smooth solutions in order to prove that if τ (0)

is the change of variable associated with the Birkhoff normal form
procedure then v(t) := τ (0)(u(t)) is time derivable (see (3.13) for
details).

• since we prove a Nekhoroshev result (i.e. stability for exponentially
long times), we have to optimize the order of the normal form with
respect to the size of the solution and so to track all the constants
carefully.

• the logarithmic losses associated with the small divisors involve the
largest index (see (1.8)). They can be seen as logarithmic losses
of derivatives at each step of the Birkhoff normal form procedure.
Therefore, a priori, the Hamiltonian flows we have to introduce
cannot be simply defined by a fix point argument. To overcome
this technicality we introduce a truncation in the spirit of [9] (see
subsection 3.2 for details).

Notation. — We shall use the notation A ≲ B to denote A ⩽ CB where
C is a positive constant depending on parameters fixed once for all, for
instance d and p. We will emphasize by writing ≲s when the constant C

depends on some other parameter s.

2. Hamiltonian formalism and Birkhoff normal form
The results and formalisms of this section are standard and quite similar

to the ones of [1, 5, 10]. Nevertheless, since we aim at proving a Nekhoroshev

ANNALES DE L’INSTITUT FOURIER
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result, we have to track carefully the constants and, since we work in low
regularity, we have to pay attention to justify the formal computations.

2.1. Functional setting

We use the standard functional setting to deal with Hamiltonian systems.
Nevertheless to avoid any possible confusion we recall it precisely (and we
refer to Section 3.1 of [10] for further details and comments).

We always identity any function u ∈ L1(Td;C) with the sequence of its
Fourier coefficients

uk = (2π)−d/2
∫
Td

u(x) e−ik·x dx, k ∈ Zd

We also naturally extend this definition to any distribution u ∈ D′(Td;C)
by continuity. With such a convention, for all s ∈ R and all u ∈ Hs(Td;C),
we have

∥u∥2
Hs =

∑
k∈Zd

⟨k⟩2s|uk|2

and for u ∈ L2(Td;C), the Fourier inversion formula reads

u(x) = (2π)−d/2
∑

k∈Zd

uk eik·x .

We always consider L2(Td;C) = H0(Td;C) as a real vector space. So it is
naturally equipped with the following scalar product

∀u, v ∈ L2, (u, v)L2 := ℜ
∫
Td

u(x)v(x) dx = ℜ
∑

k∈Zd

ukvk.

Identifying distributions with their Fourier coefficients, we also equip D′(Td)
with the discrete ℓp norms p ⩾ 1,

∥u∥p
ℓp =

∑
k∈Zd

|uk|p and ∥u∥ℓ∞ := sup
k∈Zd

|uk|.

Being given s ∈ R, we define the ℓ1
s norm by

∥u∥ℓ1
s

:=
∑

k∈Zd

⟨k⟩s|uk|.

As usual we extend this scalar product when u ∈ Hs(Td;C) and v ∈
H−s(Td;C). Being given a smooth function P : ℓ1(Zd;C) → R and u ∈ ℓ1,
its gradient ∇P (u) is the unique element of ℓ∞(Zd;C) satisfying

∀v ∈ ℓ1(Zd;C), (∇P (u), v)L2 = dP (u)(v).

TOME 0 (0), FASCICULE 0



10 Joackim BERNIER & Benoît GRÉBERT

Note that it can be checked that

∀k ∈ Zd, (∇P (u))k = 2∂uk
P (u).

We equip L2(Td;C) of the usual symplectic form (i·, ·)L2 . Therefore a
smooth map τ : Ω → ℓ1(Zd;C), where Ω is an open set of ℓ1(Zd;C), is
symplectic if

∀u ∈ Ω, ∀v, w ∈ ℓ1(Zd;C), (iv, w)L2 = (i dτ(u)(v), dτ(u)(w))L2 .

Moreover, if P, Q : ℓ1(Zd;C) → R are two functions such that ∇P is
ℓ1(Zd;C) valued then the Poisson bracket of P and Q is defined by

{P, Q}(u) := (i∇P (u), ∇Q(u))L2 .

Note that, as usual, we have

(2.1) {P, Q} = 2i
∑

k∈Zd

∂uk
P (u)∂uk

Q(u) − ∂uk
P (u)∂uk

Q(u).

2.2. A class of homogeneous polynomials

In this section, we aim at establishing the main properties of the class of
Hamiltonians defined just below. The two main results are Proposition 2.5
in which we prove its stability by Poisson bracket and Proposition 2.8 in
which we study their Hamiltonian flows.

Definition 2.1 (homogeneous polynomials). — For q ⩾ 2, let H2q be
the space of the homogeneous formal polynomials of degree 2q of the form

P (u) =
∑

k,ℓ∈(Zd)q

Pk,ℓ uk1 . . . ukq
uℓ1 . . . uℓq

with Pk,ℓ ∈ C, satisfying the reality condition

(2.2) Pℓ,k = Pk,ℓ

the symmetry condition

(2.3) ∀ϕ, σ ∈ Sq, Pϕk,σℓ = Pk,ℓ

the zero momentum condition

(2.4) Pk,ℓ ̸= 0 =⇒ k1 + · · · + kq = ℓ1 + · · · + ℓq

and the bound

(2.5) ∥P∥ℓ∞ = sup
k,ℓ∈(Zd)q

|Pk,ℓ| < ∞.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.2. — The formal homogeneous polynomials define naturally
smooth real valued functions on ℓ1(Zd). More quantitatively, if q ⩾ 2,
P ∈ H2q and u(1), . . . , u(2q) ∈ ℓ1(Zd) we have

(2.6)
∑

h∈(Zd)2q

|Phu
(1)
h1

. . . u
(2q)
h2q

| ⩽ ∥P∥ℓ∞

2q∏
j=1

∥u(j)∥ℓ1

In other words, the multi-linear map naturally associated with P is well
defined and continuous on ℓ1.

Proof. — The estimate (2.6) is a direct consequence of the zero momen-
tum condition (2.4). Using the reality condition (2.2), it is straightforward
to check that P is real valued. □

Corollary 2.3. — We can permute derivatives with the sum defin-
ing P .

Proof. — It is a classical corollary of the continuity of the multi-linear
maps associated with P . □

Corollary 2.4. — If P ∈ H2q vanishes everywhere on ℓ1 then P = 0
(i.e. all its coefficients vanish).

Proof. — It follows from the symmetry condition (2.3) and Corollary 2.3
that we have

Pk,ℓ ≈k,ℓ ∂uk1
· · · ∂ukq

∂uℓ1
· · · ∂uℓq

P (0) = 0. □

Now, in the following proposition, we focus on the stability of the class
by Poisson brackets.

Proposition 2.5. — Let q, q′ ⩾ 2, P ∈ H2q and Q ∈ H2q′ be two
homogeneous polynomials. Then, there exists a unique S ∈ H2(q+q′−1)
such that for all u ∈ ℓ1(Zd), we have

{P, Q}(u) = S(u).

Moreover, we have the estimate

∥S∥ℓ∞ ⩽ 4 q q′∥P∥ℓ∞∥Q∥ℓ∞ .
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Proof. — Thanks to the symmetry condition (2.3) and the zero momen-
tum condition (2.4), we note that for all u ∈ ℓ1 and m ∈ Zd

∂um
P (u) = q

∑
k1+···+kq=ℓ1+···+ℓq−1+m

Pk,ℓ,m uk1 . . . ukq
uℓ1 . . . uℓq−1

and that a similar formula holds for ∂um
P (u). Therefore, as usual, we

deduce that

{P, Q}(u) = 2iqq′
∑

m∈Zd

∂um
P (u)∂umQ(u) − ∂umP (u)∂um

Q(u)

=
∑

k1+···+kq′′ =ℓ1+···+ℓq′′

Rk,ℓuk1 . . . ukq′′ uℓ1 . . . uℓq′′

where we have set q′′ = q + q′ − 1, Rk,ℓ = 2iqq′Tk,ℓ,

Tk,ℓ = Pk1,...,kq,ℓ1,...,ℓq−1,•Qkq+1,...,kq′′ ,•,ℓq,...,ℓq′′

− Pk1,...,kq−1,•,ℓ1,...,ℓq
Qkq,...,kq′′ ,ℓq+1,...,ℓq′′ ,•

(the missing index being given implicitly by the zero momentum condition,
e.g. the first one is k1 + · · · + kq − ℓ1 − · · · − ℓq−1) and the converge of
the series is ensured by Lemma 2.2. The coefficients Rk,ℓ satisfy clearly the
reality condition and enjoy the bound

|Rk,ℓ| ⩽ 4 q q′∥P∥ℓ∞∥Q∥ℓ∞ .

Moreover, they can be extended by zero in such a way that they enjoy the
zero momentum condition (2.4). However, a priori, they do not satisfy the
symmetry condition (2.3), so we just have to set

Sk,ℓ := ((q′′)!)−2
∑

ϕ,σ∈Sq′′

Rϕk,σℓ. □

Now, we are going to estimate the vector fields these Hamiltonians gen-
erate.

Lemma 2.6. — Let q ⩾ 2 and P ∈ H2q be a homogeneous formal poly-
nomial of degree 2q. Then, if u(1), . . . , u(2q−1) ∈ ℓ1(Zd) and w ∈ ℓ∞(Zd),
we have∑

h∈(Zd)2q

|Phu
(1)
h1

. . . u
(2q−1)
h2q−1

wh2q | ⩽ ∥P∥ℓ∞∥w∥ℓ∞

∏
1⩽j⩽2q−1

∥u(k)∥ℓ1 .

Proof. — This estimate is still a direct consequence of the zero momen-
tum condition (2.4). □

As a consequence, we get the following corollary directly by duality.
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Corollary 2.7. — Let q ⩾ 2, P ∈ H2q be a homogeneous formal
polynomial of degree 2q. Then for all u ∈ ℓ1, ∇P (u) ∈ ℓ1 and we have the
estimates

∥∇P (u)∥ℓ1 ⩽ 2q∥P∥ℓ∞∥u∥2q−1
ℓ1 .

Moreover, the map ∇P : ℓ1 → ℓ1 is smooth and locally Lipschitz :

∀v ∈ ℓ1, ∥d∇P (u)(v)∥ℓ1 ⩽ (2q)2∥P∥ℓ∞∥u∥2q−2
ℓ1 ∥v∥ℓ1 .

As a consequence, we are in position to study the existence of Hamilton-
ian flows in ℓ1(Zd).

Proposition 2.8 (Lie transform). — Let q ⩾ 2, χ ∈ H2q and

εχ := 1
4(2q∥χ∥ℓ∞)− 1

2q−2 .

Then there exists C∞ map Φχ : [−1, 1] × Bℓ1(0, εχ) → ℓ1(Zd) such that if
|t| ⩽ 1 and ∥u∥ℓ1 < εχ, we have

(2.7) −i∂tΦt
χ(u) = ∇χ(Φt

χ(u)) and Φ0
χ(u) = u.

Moreover, being given ∥u∥ℓ1 < εχ and |t| ⩽ 1, it enjoys the following
properties :

(i) Φt
χ is symplectic :

∀v, w ∈ ℓ1, (iv, w)L2 = (i dΦt
χ(u)(v), dΦt

χ(u)(w))L2 .

(ii) Φt
χ is invertible :

(2.8) ∥Φt
χ(u)∥ℓ1 < εχ =⇒ Φ−t

χ (Φt
χ(u)) = u.

(iii) Φt
χ is close to the identity :

(2.9) ∥Φt
χ(u) − u∥ℓ1 ⩽

(
∥u∥ℓ1

εχ

)2q−2
∥u∥ℓ1 .

(iv) Φt
χ is locally Lipschitz :

(2.10) ∀v ∈ ℓ1, ∥dΦt
χ(u)(v)∥ℓ1 ⩽ 2∥v∥ℓ1 .

Proof. — Since, by Corollary 2.7, the vector field i∇χ is locally-Lipschitz,
the local existence and the smoothness of the flow Φt

χ is ensured by the
Cauchy–Lipchitz Theorem. The only thing we have to check is that the
solutions exist for |t| ⩽ 1. Without loss of generality we only consider
positive times. More precisely, let T > 0 and v ∈ C1([0, T ); ℓ1) be a solution
of the Cauchy problem

−i∂tv(t) = ∇χ(v(t)) and v(0) = u ∈ Bℓ1(0, εχ).
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It is enough to prove that if u ̸= 0, 0 ⩽ t < T and t ⩽ 1 then ∥v(t)∥ℓ1 ⩽
2∥u∥ℓ1 < 2εχ. We set I = [0, T ) ∩ [0, 1] and we aim at proving that S = I

where

S = {t ∈ I | ∀τ ∈ [0, t], ∥v(τ)∥ ⩽ 2∥u∥ℓ1}.

Since v is continuous, S is clearly non-empty and closed in I. Moreover, if
t ∈ I then

∥v(t) − u∥ℓ1 ⩽
∫ t

0
∥∇χ(v(τ))∥ℓ1dτ

⩽ 2qt∥χ∥ℓ∞(2∥u∥ℓ1)2q−1

⩽ 22q−1
(

∥u∥ℓ1

4εχ

)2q−2
∥u∥ℓ1

⩽ 2−2q+3
(

∥u∥ℓ1

εχ

)2q−2
∥u∥ℓ1

(2.11)

and so ∥v(t)∥ℓ1 ⩽ (1 + 2−2q+3)∥u∥ℓ1 < 2∥u∥ℓ1 . Therefore, since v is contin-
uous, S is open and so, since I is connected, we have S = I.

Now, that we have checked the existence of Φχ, we focus on proper-
ties (i), (ii) and (iii). First, the property (ii) is ensured by the fact that Φχ

is a flow. Moreover the property (iii) has been proven in (2.11). Finally,
since Φχ is a Hamiltonian flow, it is standard to check (i) (i.e. that Φt

χ is
symplectic).

Finally, we focus on (iv). If w ∈ ℓ1, we have

(2.12) −i∂tdΦt
χ(u)(w) = d∇χ(v(t))(dΦt

χ(u)(w))

and thus

∥dΦt
χ(u)(w) − w∥ℓ1 ⩽

∫ t

0
∥d∇χ(v(τ))(dΦτ

χ(u)(w))∥ℓ1dτ

⩽ (2q)2∥χ∥ℓ∞

∫ t

0
∥v(τ)∥2q−2

ℓ1 ∥dΦτ
χ(u)(w)∥ℓ1dτ

⩽

(
∥u∥ℓ1

εχ

)2q−2 ∫ t

0
∥dΦτ

χ(u)(w)∥ℓ1dτ.

Therefore, as a consequence of Grönwall’s inequality, we get (2.10). □

Now, we aim at establishing Hs tame estimates.

Lemma 2.9 (Hs tame estimates). — Let s ⩾ 0, q ⩾ 2 and P ∈ H2q be
a homogeneous formal polynomial of degree 2q. Then, if u(1), . . . , u(2q−1) ∈
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ℓ1 ∩ Hs and w ∈ H−s, we have∑
h∈(Zd)2q

|Phu
(1)
h1

. . . u
(2q−1)
h2q−1

wh2q |

⩽ (2q − 1)(s−1)+∥P∥ℓ∞∥w∥H−s ×
2q−1∑
j=1

∥u(j)∥Hs

∏
k ̸=j

∥u(k)∥ℓ1

where (s − 1)+ = max(s − 1, 0).

Proof. — We define u
(2q)
k = ⟨k⟩−2sw−k in order to have ∥u(2q)∥Hs =

∥w∥H−s . Using the zero momentum condition, we have

J :=
∑

h∈(Zd)2q

|Phu
(1)
h1

. . . u
(2q−1)
h2q−1

wh2q
|

⩽ ∥P∥ℓ∞

∑
σ1h1+···+σ2qh2q=0

|u(1)
h1

| . . . |u(2q)
h2q

| ⟨h2q⟩2s.

where σj = 1 if j ⩽ q and σj = −1 else. Since, by Jensen (and the triangle
inequality), we have

⟨σ1h1 + · · · + σ2q−1h2q−1⟩s ⩽ (2q − 1)(s−1)+(⟨h1⟩s + · · · + ⟨h2q−1⟩s)

where (s − 1)+ = max(s − 1, 0), applying the Young’s inequality for convo-
lutions, we deduce that

J ⩽ ∥P∥ℓ∞(2q − 1)(s−1)+∥u
(2q)
h2q

∥Hs

2q−1∑
j=1

∥u
(j)
hj

∥Hs

∏
k ̸=j

∥u
(k)
hk

∥ℓ1 . □

As a consequence, the following corollary follows directly by duality
(see [10] for more details).

Corollary 2.10. — Let q ⩾ 2, s ⩾ 0 and P ∈ H2q be a homogeneous
formal polynomial of degree 2q. Then for all u ∈ ℓ1 ∩ Hs, ∇P (u) ∈ Hs and
we have the estimates

(2.13) ∥∇P (u)∥Hs ⩽ 2q(2q − 1)1+(s−1)+∥P∥ℓ∞∥u∥2q−2
ℓ1 ∥u∥Hs

Moreover, the map ∇P : ℓ1 ∩ Hs → Hs is smooth and locally Lipschitz :
for all v ∈ ℓ1 ∩ Hs

(2.14) ∥d∇P (u)(v)∥Hs

⩽ 2q(2q − 1)2+(s−1)+∥P∥ℓ∞∥u∥2q−3
ℓ1 × (∥u∥Hs∥v∥ℓ1 + ∥u∥ℓ1∥v∥Hs).

Thus, we also get tame estimates for the Lie transforms.
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Proposition 2.11 (Tame estimates for Lie transforms). — Let q ⩾ 2,
χ ∈ H2q and s ⩾ 0. Then, being given t ∈ [−1, 1] and u ∈ ℓ1 ∩ Hs such
that ∥u∥ℓ1 < εχ, the map Φχ : [−1, 1] × Bℓ1(0, εχ) → ℓ1(Zd) given by
Proposition 2.8 enjoys the following properties :

(i) Φt
χ preserves the Hs regularity : Φt

χ(u) ∈ Hs.
(ii) Φt

χ is close to the identity in Hs

(2.15) ∥Φt
χ(u) − u∥Hs ≲s

(
∥u∥ℓ1

εχ

)2q−2
∥u∥Hs .

(iii) Φt
χ is locally Lipschitz on Hs ∩ ℓ1.

(2.16) ∀w ∈ ℓ1 ∩ Hs, ∥dΦt
χ(u)(w)∥Hs ≲s ∥w∥Hs + ε−1

χ ∥w∥ℓ1∥u∥Hs .

(iv) Φt
χ : Bℓ1(0, εχ) ∩ Hs → ℓ1 ∩ Hs is smooth.

Proof. — Since we proven in Corollary 2.10 and Corollary 2.7 that i∇χ

is smooth and locally Lipschitz on ℓ1 ∩ Hs, the local existence of the flow
of the equation −i∂tv(t) = ∇χ(v(t)) in ℓ1 ∩ Hs is ensured by the Cauchy
Lipschitz Theorem. Therefore to prove (i) and (iv) we just have to prove
if u ∈ ℓ1 ∩ Hs satisfies ∥u∥ℓ1 < εχ then ∥Φt

χ(u)∥Hs remains bounded while
|t| ⩽ 1. We recall that the existence of Φt

χ(u) in ℓ1 for |t| ⩽ 1 is ensured
by Proposition 2.11. Without loss of generality, we only consider positive
times. By definition of v(t) := Φt

χ(u), noticing that (2q − 1)1+(s−1)+ ≲s 2q,
we have

∥v(t) − u∥Hs ⩽
∫ t

0
∥∇χ(v(τ))∥Hsdτ

(2.13)
≲s 2q2q∥χ∥ℓ∞

∫ t

0
∥v(τ)∥2q−2

ℓ1 ∥v(τ)∥Hsdτ

(2.9)
≲s 2q(4εχ)−(2q−2)

∫ t

0
(2∥u∥ℓ1)2q−2∥v(τ)∥Hsdτ

≲s

(
∥u∥ℓ1

εχ

)2q−2 ∫ t

0
∥v(τ)∥Hsdτ.

(2.17)

Therefore, since ∥u∥ℓ1 < εχ and v(0) = u, it follows by Grönwall that

(2.18) ∥v(t)∥Hs ⩽ etCs ∥u∥Hs

where Cs is a constant depending only on s. Therefore, we deduce that
v(t) ∈ Hs for t ∈ [−1, 1] (i.e. the assertion (i)), and plugging (2.18)
into (2.17) that Φt

χ is close to the identity (i.e. that (ii) holds).

ANNALES DE L’INSTITUT FOURIER



A NEKHOROSHEV THEOREM FOR NLS ON Td IN LOW REGULARITY 17

If w ∈ ℓ1 ∩ Hs, ∂t dΦt
χ(u)(w) is solution to (2.12), thus we have

∥dΦt
χ(u)(w) − w∥Hs ⩽

∫ t

0
∥d∇χ(v(τ))(dΦτ

χ(u)(w))∥Hsdτ

(2.14)
≲s 2q2q∥χ∥ℓ∞

∫ t

0
∥v(τ)∥2q−3

ℓ1 (∥v(τ)∥ℓ1∥dΦτ
χ(u)(w)∥Hs

+ ∥v(τ)∥Hs∥dΦτ
χ(u)(w)∥ℓ1)dτ.

Then we use that ∥v(τ)∥ℓ1 ⩽ 2∥u∥ℓ1 (see (2.9)), ∥v(τ)∥Hs ≲s ∥u∥Hs (just
proved in (2.18)) and ∥dΦτ

χ(u)(w)∥ℓ1 ⩽ 2∥w∥ℓ1 (see (2.10)) to get

∥dΦt
χ(u)(w) − w∥Hs ≲s ε−1

χ ∥u∥Hs∥w∥ℓ1 +
∫ t

0
∥dΦτ

χ(u)(w)∥Hsdτ.

Therefore, as a consequence of Grönwall’s inequality, we get (2.16). □

Finally, in the following proposition, we prove that if Z is a quadratic
integrable polynomial then adZ is diagonal (and so easy to invert).

Proposition 2.12. — Let q ⩾ 2, P ∈ H2q and Z be a polynomial of
the form Z(u) =

∑
k∈Zd gk|uk|2 where gk ∈ R satisfies |gk| ≲ ⟨k⟩2s for some

s ⩾ 0. Then, that for all u ∈ Hs ∩ ℓ1, we have(5)

{P, Z}(u) = −2i
∑

k,ℓ∈(Zd)q

 q∑
j=1

gkj − gℓj

Pk,ℓuk1 . . . ukn
uℓ1 . . . uℓq

.

Proof. — This proposition is standard, we refer for example to [10, Lem-
ma 3.14] for a detailed proof in a similar setting. □

2.3. Birkhoff normal form

In this section, we consider a Hamiltonian system of the form

(2.19) H = Z2 + P

where P ∈ H2p+2 (p ⩾ 1 is a number given by (NLS)) stands for the
nonlinear part of the system and Z2 is a quadratic Hamiltonian of the form

Z2(u) =
∑

k∈Zd

ωk|uk|2.

The frequencies ωk ∈ R are real numbers. We assume for convenience that
|ω| ≲ ⟨k⟩2. Therefore, by Lemma 2.2, if s > max(1, d/2), H is a smooth
function on Hs(Td;C).

(5) note that the convergence of this series is ensured by Proposition 2.9.
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Definition 2.13 (small divisors). — The small divisors, Ω(k, ℓ), are
defined for k, ℓ ∈ (Zd)q, q ⩾ 2, by

Ω(k, ℓ) = 2i(ωk1 + · · · + ωkq
− ωℓ1 − · · · − ωℓq

).

Definition 2.14 (resonance). — Being given ν > 0, a homogeneous
polynomial P ∈ H2q, with q ⩾ 2, is ν-resonant (resp. ν-nonresonant) if

∀k, ℓ ∈ (Zd)q, |Ω(k, ℓ)| ⩾ ν =⇒ Pk,ℓ = 0

(resp. |Ω(k, ℓ)| < ν ⇒ Pk,ℓ = 0).
We denote by H

(ν−res)
2q (resp. H

(ν−nonres)
2q ) the real vector space they gen-

erate.

In this section, we aim at proving the following theorem.

Theorem 2.15 (Birkhoff normal form). — Let H be the Hamiltonian
given by (2.19) and ν ∈ (0, 1). There exists a constant C > 1, depending
only on P , such that for all r ⩾ 2, setting

ρ =
√

ν

Cr
,

there exist two C∞ symplectic maps τ (0) and τ (1) making the following
diagram to commute

(2.20) Bℓ1(0, ρ) τ(0)
//

idℓ1

22Bℓ1(0, 2 ρ) τ(1)
// ℓ1(Zd)

such that on Bℓ1(0, 2ρ) ∩ H1, H ◦ τ (1) admits the decomposition

(2.21) H ◦ τ (1) = Z2 +
r∑

q=2
L(2q) + R

where L(2q) ∈ H
(ν−res)

2q is a ν-resonant homogeneous polynomial of degree
2q satisfying

∥L(2q)∥ℓ∞ ⩽ C2q

(
q2

ν

)q−2

and R : Bℓ1(0, 2ρ) → R is a C∞ function which is a remainder term of
order 2r + 2 : for all s ⩾ 0 and all u ∈ Bℓ1(0, 2ρ) ∩ Hs,

(2.22) ∥∇R(u)∥Hs ≲s C2r

(
r3

ν

)r−1

∥u∥2r
ℓ1 ∥u∥Hs .
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Moreover, for all s ⩾ 0 and they do not make the Hs norm increase too
much: if u ∈ ℓ1 ∩ Hs satisfies ∥u∥ℓ1 < 2σρ with σ ∈ {0, 1} then

(2.23) ∥τ (σ)(u)∥Hs ≲s ∥u∥Hs .

Furthermore, the map τ (σ) : Bℓ1(0, 2σρ) ∩ Hs → ℓ1 ∩ Hs is smooth.

Proof.
Step 1: Setting of the induction. — Let C2 > 1 be the constant depend-

ing only P such that the estimates (2.29), (2.36) below hold. We are going
to prove by induction that for all r ∈ J1, rK, setting

ρ :=
√

ν

112C2r
,

there exist two C∞ symplectic maps τ (0) and τ (1) making the diagram (2.20)
to commute and such that on Bℓ1(0, 2ρ) ∩ H1, H ◦ τ (1) admits the decom-
position (2.21) where

L(2q) ∈ H2q is ν-resonant for q ⩽ r

and satisfies the estimate

(2.24) ∥L(2q)∥ℓ∞ ⩽ C2q−3
2 ν−q+2 min(q, r)2(q−2) for 2 ⩽ q ⩽ r.

Moreover the remainder term R : Bℓ1(0, 2ρ) → R is a C∞ map satisfying,
for all u ∈ Bℓ1(0, 2ρ),

(2.25) ∥∇R(u)∥ℓ1 ⩽ Kr
ℓ1(25C2

2 ν−1r2)r−1

r−1∏
j=1

(1 + 2−2j)

2r

∥u∥2r+1
ℓ1

where Kℓ1 > 1 is an universal constant given by (2.38), and for all s ⩾ 0
and all u ∈ Bℓ1(0, 2ρ) ∩ Hs,

(2.26) ∥∇R(u)∥Hs ⩽ Kr
s(25C2

2 ν−1r2)r−1

r−1∏
j=1

(1 + 2−2j)

2r

∥u∥2r
ℓ1 ∥u∥Hs

where Ks > 1 is the constant depending only on s given by (2.39), and if
u ∈ ℓ1 ∩ Hs satisfies ∥u∥ℓ1 < 2σρ with σ ∈ {0, 1} then we have

(2.27) ∥τ (σ)(u)∥Hs ⩽

r−1∏
j=1

1 + Ms2−j

 ∥u∥Hs

where Ms > 0 is the constant depending only on s given by (2.15), and

(2.28) ∥τ (σ)(u)∥ℓ1 ⩽

(
1 +

∥u∥2
ℓ1

22σρ2

)
∥u∥ℓ1 .
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Note that, since the product in (2.26) and (2.27) are convergent and
that Kr

s ≲s rr, this result (when r = r) is just refinement of Theorem 2.15.
The fact that τ (σ) : Bℓ1(0, 2σρ) ∩ Hs → ℓ1 ∩ Hs is smooth is just a direct
corollary of the construction and property iv) of Proposition 2.11.

We are going to proceed by induction on r. First, we note that the case
r = 1 is obvious, provided that C2 is chosen large enough to ensure that

(2.29) ∥P∥ℓ∞ ⩽ C2p−1
2

and so(6) ∥P∥ℓ∞ ⩽ C2p−1
2 ν−p+1 min(p + 1, 1)2(p−1).

From now, we assume that the property holds at step r < r and we are
going to prove it at the step r+ 1. In order to get convenient notations, we
denote with a subscript ♯ the maps corresponding to the step r+ 1 (like for
example τ (1),♯ or R♯).

Step 2: Resolution of the cohomological equation. — In order to remove
the ν-non resonant terms of L(2r+2), we define a Hamiltonian χ ∈ H2r+2
by

χk,ℓ :=
L

(2r+2)
k,ℓ

iΩ(k, ℓ) if |Ω(k, ℓ)| ⩾ ν and χk,ℓ = 0 else.

As a consequence of Proposition 2.12 it can be easily checked that

L(2r+2),♯ = {χ, Z2} + L(2r+2)

where L(2r+2),♯ ∈ H
(ν−res)

2r+2 is the ν-resonant part of L(2r+2), i.e.

(2.30) L
(2r+2),♯
k,ℓ = L

(2r+2)
k,ℓ if |Ω(k, ℓ)| < ν and L

(2r+2),♯
k,ℓ = 0 else.

Step 3: The new variables. — The Hamiltonian χ clearly enjoys the
bound

∥χ∥ℓ∞ ⩽ ν−1∥L(2r+2)∥ℓ∞ ⩽ C2r−1
2 ν−rr2(r−1).

We recall that the Hamiltonian flow of χ is given by Proposition (2.8) and
is well defined for |t| ⩽ 1 on Bℓ1(0, εχ) where

(2.31) εχ = 1
4(2(r + 1)∥χ∥ℓ∞)− 1

2r ⩾
1
4(2(r + 1)C2r−1

2 ν−rr2(r−1))− 1
2r

⩾

√
ν

8rC2
= 14ρ.

Now, we aim at defining

τ (1),♯ := τ (1) ◦ Φ1
χ and τ (0),♯ := Φ−1

χ ◦ τ (0).

(6) we recall that p ⩾ 1 and ν ∈ (0, 1).
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So we have to check that these maps are well defined on Bℓ1(0, 2ρ♯) and
Bℓ1(0, ρ♯) respectively. First, since ρ♯ ⩽ ρ, thanks to the estimate (2.28), we
know that τ (0) maps Bℓ1(0, ρ♯) on Bℓ1(0, 2ρ♯). Moreover since 2ρ♯ ⩽ 2ρ ⩽
εχ (see (2.31)), it follows that τ (0),♯ is well defined on Bℓ1(0, ρ♯). Then, in
order to prove that τ (1),♯ is well defined, we just have to check that Φ1

χ

maps Bℓ1(0, 2ρ♯) on Bℓ1(0, 2ρ). Indeed, if ∥u∥ℓ1 < 2ρ♯ then (since Φ1
χ is

close to the identity, see (2.9))

∥Φ1
χ(u)∥ℓ1

2ρ
⩽

(
1 +

(
∥u∥ℓ1

εχ

)2r
)

∥u∥ℓ1

2ρ

⩽

(
1 +

(
∥u∥ℓ1

14ρ♯

)2r
)

∥u∥ℓ1

2ρ♯

r

r + 1

⩽ (1 + 7−2r) r

r + 1
∥u∥ℓ1

2ρ♯
⩽

∥u∥ℓ1

2ρ♯
< 1.

(2.32)

Then, we note that by composition it is clear that τ (1),♯ and τ (0),♯ are
symplectic. Now, we aim at proving that τ (0),♯ is close to the identity in
ℓ1. Indeed, if ∥u∥ℓ1 < ρ♯, we have

∥τ (0),♯(u)∥ℓ1 ⩽

(
1 +

(
∥τ (0)(u)∥ℓ1

εχ

)2r)
∥τ (0)(u)∥ℓ1

⩽

(
1 +

(
∥u∥ℓ1

7ρ

)2r
)

∥τ (0)(u)∥ℓ1

⩽

(
1 +

(
∥u∥ℓ1

7ρ

)2r
)(

1 +
(

∥u∥ℓ1

ρ

)2
)

∥u∥ℓ1

⩽

(
1 +

(
∥u∥ℓ1

ρ

)2
+ 2

(
∥u∥ℓ1

7ρ

)2r
)

∥u∥ℓ1

⩽

(
1 + (1 + 2 7−2r)

(
r

r + 1

)2(∥u∥ℓ1

ρ♯

)2
)

∥u∥ℓ1

⩽

(
1 +

(
∥u∥ℓ1

ρ♯

)2
)

∥u∥ℓ1 .

We note that as a consequence ∥τ (0),♯(u)∥ℓ1 < 2ρ♯ and so ∥τ (0),♯(u)∥ℓ1 < εχ.
Therefore as a consequence of the induction hypothesis and the invertibil-
ity of Hamiltonian flow of χ (i.e. (2.8)) the diagram (2.20) commute at the
step r + 1.
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Now, we aim at proving that τ (1),♯ is close to the identity in ℓ1. Indeed,
if ∥u∥ℓ1 < 2ρ♯, we have

∥τ (1),♯(u)∥ℓ1

⩽

1 +
(

∥Φ1
χ(u)∥ℓ1

2ρ

)2
 ∥Φ1

χ(u)∥ℓ1

(2.32)
⩽

(
1 +

[
(1 + 7−2r) r

r + 1

]2(∥u∥ℓ1

2ρ♯

)2
)

∥Φ1
χ(u)∥ℓ1

⩽

(
1 +

[
(1 + 7−2r) r

r + 1

]2(∥u∥ℓ1

2ρ♯

)2
)(

1 + 7−2r
(

∥u∥ℓ1

2ρ♯

)2
)

∥u∥ℓ1

⩽

[
1 +

([
(1 + 7−2r) r

r + 1

]2
+ 2 7−2r

)(
∥u∥ℓ1

2ρ♯

)2
]

∥u∥ℓ1

⩽

(
1 +

(
∥u∥ℓ1

2ρ♯

)2
)

∥u∥ℓ1 .

Finally, the Hs estimate (2.27) of τ (1),♯ and τ (0),♯ is a direct corollary of
their definition and of the Hs estimate of Φt

χ (see (2.15)).
Step 4: The new expansion. — Let us note that since Φχ is the Hamil-

tonian flow of χ (see (2.7)), if Q is a smooth real valued function on ℓ1 ∩H1,
provided that ∥u∥ℓ1 < 2ρ♯ and |t| ⩽ 1, we have

d
dt

Q(Φt
χ(u)) = {χ, Q}(Φt

χ(u)).

Therefore, since Φ0
χ = idℓ1 , the Taylor expansion of Q(Φt

χ(u)) in t = 0 at
the order m is given by

Q(Φ1
χ(u)) =

m∑
n=0

adn
χQ(u)
n! +

∫ 1

0

(1 − t)m

m! adm+1
χ Q(u)dt.

As a consequence, we also get explicitly the Taylor expansion of L(2q) ◦ Φ1
χ

at the order 2r :

L(2q) ◦ Φ1
χ(u) =

mq∑
n=0

adn
χL(2q)(u)

n! +
∫ 1

0

(1 − t)mq

mq! admq+1
χ L(2q)(u)dt.

where mq is the smallest index such that (mq + 1)r+ q > r. Now, recalling
that by induction hypothesis, we have H ◦τ (1) = Z2 +L(4) + · · ·+L(2r) +R

and that, by construction, τ (1),♯ = τ (1) ◦ Φ1
χ, we deduce that

H ◦ τ (1),♯ = Z2 + L(4),♯ + · · · + L(2r),♯ + R♯
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where

L(2q),♯ :=
∑

n⩾0, q′⩾2
nr+q′=q

1
n! adn

χL(2q′) +
∑
n⩾1

nr+1=q

1
n! adn−1

χ {χ, Z2}.

and

(2.33) R♯ =
r∑

q=2

∫ 1

0

(1 − t)mq

mq! admq+1
χ L(2q) ◦ Φt

χdt

+
∫ 1

0

(1 − t)m1

m1! adm1
χ {χ, Z2} ◦ Φt

χdt + R ◦ Φ1
χ.

We are going to estimate this new remainder term carefully at the next
steps of the proof. For the moment, we focus on estimating L(2q),♯.

We recall that −{χ, Z2} = L(2r+2) − L(2r+2),♯ ∈ H2r+2 is nothing but
the ν-nonresonant part of L(2r+2) (see (2.30)). Therefore, we have

(2.34)
∥∥∥∥ 1

n!L
(2r+2) + 1

(n + 1)!{χ, Z2}
∥∥∥∥

ℓ∞
⩽

1
n!∥L(2r+2)∥ℓ∞

and so we do not have to take into account the contribution of the terms
associated with Z2 in the estimate of ∥L(2q),♯∥ℓ∞ for q ⩾ r+ 1. As a conse-
quence, we deduce of Proposition 2.5 that, for all 2 ⩽ q ⩽ r, L(2q),♯ ∈ H2q

is indeed a homogeneous polynomial of degree 2q and that it satisfies the
bound

(2.35) ∥L(2q),♯∥ℓ∞ ⩽
∑

n⩾0, q′⩾2
nr+q′=q

4n(r + 1)n∥L(2r+2)∥n
ℓ∞

νnn! ∥L(2q′)∥ℓ∞

n−1∏
j=0

(q′ +rj).

By induction hypothesis, we know that

∥L(2q)∥ℓ∞ ⩽ C2q−3
2 ν−q+2 min(q, r)2(q−2)

for all q. We aim at proving that

∥L(2q,♯)∥ℓ∞ ⩽ C2q−3
2 ν−q+2 min(q, r + 1)2(q−2).

First, we note that since the sum in (2.35) is trivial for q ⩽ r + 1 (i.e. it
is reduced to n = 0), we only have to focus on the case q ⩾ r + 2 (else the
estimate is obvious).
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Then, using the induction hypothesis in (2.35), for q ⩾ r + 2, we get(7)

B♯
q := ∥L(2q),♯∥ℓ∞

C2q−3
2 ν−q+2(r + 1)2(q−2)

⩽
∑

n⩾0, q′⩾2
nr+q′=q

ν−n+(q−2)−(q′−2)−n(r−1)C
−(2q−3)+n(2r−1)+(2q′−3)
2

× (r + 1)n−2(q−2)r2n(r−1)+2(q′−2) 4nqn

n!

Therefore, thanks to the relation nr + q′ = q, we get

B♯
q ⩽

∑
n⩾0, q′⩾2
nr+q′=q

C−n
2 (r + 1)n−2(q−2)r2(q−2)−2n 4nqn

n!

⩽
∑

n⩾0, q′⩾2
nr+q′=q

qn

(
r

r + 1

)2(q−2)
r−n8nC−n

2
n! .

Then, using the estimate A−qqn ⩽ e−n nn(log(A))−n whenever A > 1 and
the convexity of the logarithm, we get

qn

(
r

r + 1

)2(q−2)
⩽ 242−n e−n nn

(
log
(

1 + 1
r

))−n

⩽ 24 e−n nn
(
log(2)

)−n
rn.

Therefore, since e−nnn ⩽ n!, we get

B♯
q ⩽

(
r

r + 1

)2(q−2)
+

∑
n⩾1, q′⩾2
nr+q′=q

248n
(
log(2)

)−n
C−n

2 .

Moreover, since q ⩾ r + 2 and r ⩾ 1, we have(
r

r + 1

)2(q−2)
⩽

(
r

r + 1

)2r
⩽ e−1

and so, as expected, since C2 can be chosen large enough,

(2.36) B♯
q ⩽ e−1 + 28

log(2)C−1
2 ⩽ 1.

(7) we simply control the product by qn.
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Step 5: Estimate of the new remainder term in ℓ1. — Finally, we just
have to control the new remainder term R♯ (given by (2.33)). Reasoning
as in (2.34), with a small abuse of notations, we ignore the contribution of
the terms coming from {χ, Z2}.

We have to control terms of the form ∇(Q ◦ Φt
χ)(u) where ∥u∥ℓ1 < 2ρ♯

and Q is a smooth function in ℓ1. First, let us prove the following formula
which is very convenient

(2.37) ∇(Q◦Φt
χ)(u) = −i(dΦ−t

χ )(Φt
χ(u))

[
i(∇Q)(Φt

χ(u))
]

on Bℓ1(0, 2ρ♯).

Indeed, by (2.8) and (2.9), we have Φt
χ ◦ Φ−t

χ = idℓ1 on Bℓ1(0, εχ/2) and so

[(dΦt
χ) ◦ Φ−t

χ ]dΦ−t
χ = idℓ1 on Bℓ1(0, εχ/2).

We note that if ∥u∥ℓ1 < 2ρ♯ then ∥Φt
χ(u)∥ℓ1 < 2ρ < εχ/2 (see (2.31),(2.32))

and so we have

(dΦt
χ)[(dΦ−t

χ ) ◦ Φt
χ] = idℓ1 on Bℓ1(0, 2ρ♯).

Therefore, since Φt
χ is symplectic, if ∥u∥ℓ1 < 2ρ♯, we have, for all v ∈ ℓ1

(∇(Q ◦ Φt
χ)(u), v)L2

= d(Q ◦ Φt
χ)(u)(v) = ((∇Q) ◦ Φt

χ(u), dΦt
χ(u)(v))L2

= (i(∇Q) ◦ Φt
χ(u), i dΦt

χ(u)(v))L2

=
(

dΦt
χ(u)[(dΦ−t

χ )(Φt
χ(u))]

(
i(∇Q) ◦ Φt

χ(u)
)
, i dΦt

χ(u)(v)
)

L2

= ((dΦ−t
χ )(Φt

χ(u))
(
i(∇Q) ◦ Φt

χ(u)
)
, iv)L2

= (−i(dΦ−t
χ )(Φt

χ(u))
(
i(∇Q) ◦ Φt

χ(u)
)
, v)L2

which is clearly equivalent to (2.37).
Now thanks to this identity (2.37) and the estimate (2.10) on dΦ−t

χ , by
the triangular inequality, we have

∥∇R♯(u)∥ℓ1

⩽ ∥∇(R ◦ Φ1
χ)(u)∥ℓ1 + max

0⩽t⩽1

r∑
q=2

1
mq! ∥∇(admq+1

χ L(2q) ◦ Φt
χ(u))∥ℓ1

≲ ∥(∇R) ◦ Φ1
χ(u)∥ℓ1 + max

0⩽t⩽1

r∑
q=2

1
mq! ∥∇(admq+1

χ L(2q)) ◦ Φt
χ(u)∥ℓ1 .

Then, estimating the vector field of admq+1
χ L(2q) by Corollary 2.7, we get

∥∇R♯(u)∥Hs ≲ r

r∑
q=2

∥admq+1
χ L(2q)∥ℓ∞

mq! ∥Φt
χ(u)∥2fq+1

L∞
t ℓ1 + ∥(∇R) ◦ Φ1

χ(u)∥ℓ1
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where fq := (mq + 1)r + q − 1. We note that by definition of mq, we have
r ⩽ fq < 2r. Therefore, since Φt

χ is close to the identity, we have the
estimates

∥Φt
χ(u)∥2fq+1

L∞
t ℓ1 ⩽ 24r+1∥u∥2fq+1

ℓ1

Estimating the sum as at the previous step (thanks to Proposition 2.5), it
comes

∥∇R♯(u)∥ℓ1

≲ 25r
r∑

q=2

(
8

(log 2)C2

)mq+1
(mq +1)

(
C

2fq−1
2 ν−fq+1(r+1)2(fq−1))∥u∥2fq+1

ℓ1

+ ∥(∇R) ◦ Φ1
χ(u)∥ℓ1 .

Recalling that by definition (r + 1)2ν−1C2
2 = (16 · 7ρ♯)2 ⩾ (2ρ♯)2, we have

C
2fq−1
2 ν−fq+1(r + 1)2(fq−1)∥u∥2fq

ℓ1

⩽ C2r−1
2 ν−r+1(r + 1)2(r−1)

(
∥u∥ℓ1

2ρ♯

)2(fq−r)
∥u∥2r

ℓ1

⩽ C2(C2
2 ν−1r2)r−1∥u∥2r

ℓ1

and so (since mq ⩽ r and 8
(log 2)C2

< 1)

∥∇R♯(u)∥ℓ1 ≲ (25C2
2 ν−1r2)r−1∥u∥2r+1

ℓ1 + ∥(∇R) ◦ Φ1
χ(u)∥ℓ1 .

Now, thanks to induction hypothesis, since Φ1
χ is close to the identity, we

have

∥(∇R) ◦ Φ1
χ(u)∥ℓ1 ⩽ Kr

ℓ1(25C2
2 ν−1r2)r−1

r−1∏
j=1

(1 + 2−2j)

2r

∥Φ1
χ(u)∥2r+1

ℓ1

⩽ Kr
ℓ1(25C2

2 ν−1r2)r−1

 r∏
j=1

(1 + 2−2j)

2r

∥u∥2r+1
ℓ1

and so

(2.38) ∥∇R♯(u)∥ℓ1 ≲ (25C2
2 ν−1r2)r−1

1+Kr
ℓ1

 r∏
j=1

(1+2−2j)

2r
∥u∥2r+1

ℓ1 .
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Therefore, provided that the constant Kℓ1 > 1 is chosen large enough, we
deduce that as expected

∥∇R♯(u)∥ℓ1 ⩽ Kr+1
ℓ1 (25C2

2 ν−1r2)r−1

 r∏
j=1

(1 + 2−2j)

2r

∥u∥2r+1
ℓ1 .

Step 6: Estimate of the new remainder term in Hs. — The proof is
similar to the one in ℓ1. As previously, with a small abuse of notations,
we ignore the contribution of the terms coming from {χ, Z2}. Thanks to
this identity (2.37) and the estimate (2.16) on dΦ−t

χ , by the triangular
inequality, we have

∥∇R♯(u)∥Hs ⩽ ∥∇(R ◦ Φ1
χ)(u)∥Hs

+ max
0⩽t⩽1

r∑
q=2

1
mq! ∥∇(admq+1

χ L(2q) ◦ Φt
χ(u))∥Hs

≲s ∥(∇R) ◦ Φ1
χ(u)∥Hs

+
r∑

q=2

1
mq! ∥∇(admq+1

χ L(2q)) ◦ Φt
χ(u)∥L∞

t Hs

+ ε−1
χ ∥Φt

χ(u)∥L∞
t Hs

(
∥(∇R) ◦ Φ1

χ(u)∥ℓ1

+
r∑

q=2

1
mq! ∥∇(admq+1

χ L(2q)) ◦ Φt
χ(u)∥L∞

t ℓ1

)
.

Fortunately, the previous step has been devoted to estimating this last term
in parenthesis. Therefore, since ∥Φt

χ(u)∥L∞
t Hs ≲s ∥u∥Hs and ∥u∥ℓ1ε−1

χ < 1,
we have
∥∇R♯(u)∥Hs ≲s ∥(∇R) ◦ Φ1

χ(u)∥Hs

+
r∑

q=2

1
mq! ∥∇(admq+1

χ L(2q)) ◦ Φt
χ(u)∥L∞

t Hs

+ Kr
ℓ1(25C2

2 ν−1r2)r−1

 r∏
j=1

(1 + 2−2j)

2r

∥u∥2r
ℓ1 ∥u∥Hs .

Estimating the vector field of admq+1
χ L(2q) by Corollary 2.10 and proceeding

as previously (i.e. as in step 5), we get
r∑

q=2

1
mq! ∥∇(admq+1

χ L(2q)) ◦ Φt
χ(u)∥L∞

t Hs ≲s (25C2
2 ν−1r2)r−1∥u∥2r

ℓ1 ∥u∥Hs
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Now, thanks to induction hypothesis, since Φ1
χ is close to the identity (in

ℓ1 and Hs) we have

∥(∇R) ◦ Φ1
χ(u)∥Hs

⩽ Kr
s(25C2

2 ν−1r2)r−1

r−1∏
j=1

(1 + 2−2j)

2r

∥Φ1
χ(u)∥2r

ℓ1 ∥Φ1
χ(u)∥Hs

≲s Kr
s(25C2

2 ν−1r2)r−1

 r∏
j=1

(1 + 2−2j)

2r

∥u∥2r
ℓ1 ∥u∥Hs

and so

(2.39) ∥∇R♯(u)∥Hs ≲s (25C2
2 ν−1r2)r−1

×

1 + (Kr
s + Kr

ℓ1)

 r∏
j=1

(1 + 2−2j)

2r
 ∥u∥2r

ℓ1 ∥u∥Hs .

Therefore, the constant Ks ⩾ Kℓ1 > 1 can be chosen large enough(8) to
get

∥∇R♯(u)∥Hs ⩽ Kr+1
s (25C2

2 ν−1r2)r−1

 r∏
j=1

(1 + 2−2j)

2r

∥u∥2r
ℓ1 ∥u∥Hs

which conclude the induction. □

3. Proof of Theorem 1.1

In this section we aim at proving Theorem 1.1 thanks to the Birkhoff nor-
mal form theorem (Theorem 2.15). Therefore, we recall that (NLS) rewrites
as an Hamiltonian system

i∂tu = 1
2∇H(u)

where the Hamiltonian H of (NLS) writes

(3.1) H(u) := Z2(u) + P (u)

with
Z2(u) =

∫
Td

|∇u(x)|2 + (V ∗ u)(x)u(x)dx

(8) note it can be easily checked that this definition is not circular : the constant in (2.39)
does not depend on Ks.
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and
P (u) =

∫
Td

σ

p + 1 |u(x)|2p+2dx.

In order to apply the results of Section 2, it is worth to notice that these
functions rewrites

(3.2) Z2(u) =
∑

k∈Zd

ωk|uk|2 where ωk := |k|2 + (2π)−d/2Vk

and

P (u) = σ(2π)−pd

p + 1
∑

k1+···+kp+1=ℓ1+···+ℓp+1

uk1 . . . ukp+1uℓ1 . . . uℓp+1 .

Note that P ∈ H2p+2 and satisfies ∥P∥ℓ∞ ⩽ (2π)−pd(p + 1)−1.
Before proving Theorem 1.1 thanks to a bootstrap argument, we begin

with two technical subsections in which we define the non-resonant poten-
tial (i.e. the set V) and we study the resonant Hamiltonians (according to
Definition 2.14).

3.1. Non resonant potentials

First, we define the set V of the Fourier multiplier V for which we are
going to prove Theorem 1.1.

Definition 3.1 (Set V). — A Fourier multiplier V ∈ ℓ∞(Zd;R) belongs
to V if exists γ > 0 such that for all q ⩾ 2, all k, ℓ ∈ (Zd)q we have

(k, ℓ) satisfies (1.5) =⇒ |Ω(k, ℓ)| ⩾ γ q−4
(

log2 max
1⩽j⩽q

(|kj |, |ℓj |)
)−(2q+1)

.

Remark 3.2. — We recall that the small divisors Ω(k, ℓ) are defined in
Definition 2.13 (the frequencies ωk being given by (3.2)) and that the con-
dition “(k, ℓ) satisfies (1.5)” only means that uk1 . . . ukq

uℓ1 . . . uℓq
does not

commute with the super-actions Jn (defined in (1.3)).

Remark 3.3. — In order to include more potentials, we could easily ex-
tend this definition by considering estimates of the form

|Ω(k, ℓ)| ⩾ γ cq
1

(
log max

1⩽j⩽q
(|kj |, |ℓj |)

)−c2q

where c1, c2 > 0 would depend on V but for simplicity we chose to have
explicit constants (the constant 4 in the definition of Tε in Theorem 1.1
would then be related to c2).
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In the following lemma (which is the main result of this section), we
prove that the set V is non-empty.

Lemma 3.4. — Almost surely, the random potential V defined by (1.7)
belongs to V.

Proof. — We aim at estimating the probability of the following events

Eγ :=
{

∃q ⩾ 2, ∃k, ℓ ∈ (Zd)q, (1.5) =⇒ |Ω(k, ℓ)| ⩽ γck,ℓ

}
where γ > 0 and the constants ck,ℓ > 0 will be defined later.

Step 1: To make the multiplicities appear. — By definition of V , we
note that Ω(k, ℓ) writes under the form

|Ω(k, ℓ)| = 2 |a + (2π)−d/2(Xn1 + · · · + Xnq
− Xm1 − · · · − Xmq

)|
=: Υa(n, m)

where a ∈ Z is an integer (depending on k, ℓ) and nj is the integer such
that kj ∈ Bnj (mj being defined similarly with respect to ℓj) and (Bn)n

denotes the usual dyadic decomposition of the Fourier space given by (1.4).
Therefore, provided that ρn,m > 0 is a constant such that ρn,m ⩾ ck,ℓ, by
definition of the non-resonance condition (1.5), we have

Eγ ⊂
⋃
q⩾2

⋃
n,m∈Nq

n/∈Sqm

⋃
a∈Z

{
Υa(n, m) ⩽ γρn,m

}
where n /∈ Sqm just mean that n ̸= m up to a permutation. As a conse-
quence, we deduce the estimate

P(Eγ) ⩽
∑
q⩾2

∑
n,m∈Nq

n/∈Sqm

∑
a∈Z

P
(
Υa(n, m) ⩽ γρn,m

)
.

Step 2: To reduce the sum with respect to a. — Now, we note that since
the random variables Xn are bounded by 1, if |a| > q then

Υa(n, m) ⩾ 2|a| − 4(2π)−d/2q ⩾ 2(|a| − q) ⩾ 2.

Therefore, assuming from now that γ and ρn,m are such that γρn,m < 2,
we have

|a| > q =⇒ P
(
Υa(n, m) ⩽ γρn,m

)
= 0

and so

(3.3) P(Eγ) ⩽
∑
q⩾2

(2q + 1)
∑

n,m∈Nq

n/∈Sqm

sup
a∈Z

P
(
Υa(n, m) ⩽ γρn,m

)
.
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Step 3: Estimation of P
(
Υa(n, m) ⩽ γρn,m

)
. — We note that since

n /∈ Sqm, Υa(n, m) writes under the form

Υa(n, m) = 2(2π)−d/2|bXk + Y |

where b ∈ Z∗, k ∈ {n1, . . . , nq, m1, . . . , mq} and Y is random variable
independent of Xk. Therefore, since Xk ∼ U(0, 1) is uniformly distributed
in (0, 1), we have

P(|Ω(k, ℓ)| ⩽ γρn,m) = E
∫ 1

0
12(2π)−d/2|bxk+Y |⩽γρn,m

dxk

⩽ (2π)d/2γρn,m.

(3.4)

Step 4: Conclusion. — Putting (3.3) and (3.4) together we deduce that

(3.5) P(Eγ) ≲d γ
∑
q⩾2

(2q + 1)
∑

(n,m)∈N2q\{(0,0)}

ρn,m.

Therefore, we set

ck,ℓ = q−4
(

log2 max
1⩽j⩽q

(|kj |, |ℓj |)
)−(2q+1)

and

ρn,m = q−4
(

max
1⩽j⩽q

(|mj |, |nj |)
)−(2q+1)

.

Since whenever(9) n /∈ Sqm

max
1⩽j⩽q

(|kj |, |ℓj |) ⩾ 2max1⩽j⩽q(|mj |,|nj |)

as required, we have ρn,m ⩾ ck,ℓ. Finally, thank to (3.5) and the mean
value inequality, we get

P(Eγ) ≲d γ
∑
q⩾2

q−3
∑
m⩾1

m2q − (m − 1)2q

m2q+1 ≲d γ
∑
q⩾2

q−2 ≲d γ

which is enough to deduce that P
(⋂

γ>0 Eγ

)
⩽ infγ>0 P(Eγ) = 0. □

3.2. Smallness of the resonant Hamiltonian

As we can see in our Birkhoff normal form theorem (Theorem 2.15),
we do not have removed the ν-resonant terms (associated with L in The-
orem 2.15). In this subsection, we are going to prove (in Proposition 3.6
below) that they do not make increase to much some observables NN,s

which are equivalent to the square of the Hs norm.
(9) and so max1⩽j⩽q(|kj |, |ℓj |) ̸= 0 .

TOME 0 (0), FASCICULE 0



32 Joackim BERNIER & Benoît GRÉBERT

Definition 3.5 (NN,s). — Let N ⩾ 1 be of the form N = 2nmax with
nmax ∈ N. For all s > 0 and u ∈ Hs(Td), we set

NN,s(u) = N (low)
N,s (u) + N (high)

N,s (u)

where

N (low)
N,s =

∑
0⩽n<nmax

(2n)2sJn and N (high)
N,s (u) =

∑
k⩾N

|k|2s|uk|2.

We recall that the super actions Jn are defined in (1.3). In the proof of
Theorem 1.1, the parameter N will be optimized with respect to ε (the
size of the initial datum). It will be chosen much larger than usually in the
literature(10) : it will be of the form N = ε−r(ε) where r(ε) goes to +∞
as ε goes to 0. Of course, as expected we note that these observables are
equivalent to the square of the Hs norm :

2−2s∥ · ∥2
Hs ⩽ NN,s ⩽ ∥ · ∥2

Hs .

The following proposition is the main result of this section. We prove
that the ν-resonant Hamiltonians almost commute with the NN,s norm.

Proposition 3.6. — Let V ∈ V be a non-resonant potential (and γ > 0
be the associated constant), N ⩾ 1 be an integer of the form N = 2nmax

with nmax ∈ N∗, q ⩾ 2 be an integer and ν ∈ (0, 1) be a small real number
such that

(3.6) γq−4(log2(2qN)
)−(2q+1)

⩾ ν.

If L ∈ H (ν−res) is a ν-resonant homogeneous polynomial of degree 2q then
for s ⩾ 0, η ∈ (0, 1] and u ∈ ℓ1

η ∩ Hs(Td) we have

|{NN,s, L}(u)| ≲s q2s+1N−η∥L∥ℓ∞∥u∥ℓ1
η
∥u∥2q−3

ℓ1 ∥u∥2
Hs .

The rest of this subsection is devoted to the proof of this proposition. In
particular, from now we assume that V ∈ V and L are fixed and that ν,
q and N satisfy the estimate (3.6). As usual, in order to prove our multi-
linear estimates, we introduce the functions µ1, . . . , µ2q : (Zd)2q → R+
such that for all h ∈ (Zd)2q and j ∈ J1, 2qK, µj(h) is the jest largest
number among |h1|, . . . , |h2q|. In other words, (µj(h))j is the nondecreasing
sequence which is equal to (|hj |)j up to a permutation(11) .

(10) usually the truncation parameter is of the form N = ε−η with 0 < η ≪ 1 (see
e.g. [1, 5, 8]).
(11) i.e. ∃σ ∈ S2q , ∀j ∈ J1, 2qK, µj(h) = |hσj |.
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Lemma 3.7. — If k, ℓ ∈ (Zd)q satisfy

|Ω(k, ℓ)| < ν and k1 + · · · + kq = ℓ1 + · · · + ℓq,

then either µ2(k, ℓ) ⩾ N or (k, ℓ) does not satisfy (1.5).

Proof. — We assume that (k, ℓ) satisfies (1.5). Since V ∈ V is non-
resonant and ν, q and N satisfy the estimate (3.6), we have

γq−4(log2 µ1(k, ℓ)
)−(2q+1)

⩽ Ω(k, ℓ) ⩽ ν ⩽ γq−4(log2
(
2qN

))−(2q+1)
.

As a consequence, we deduce that µ1(k, ℓ) ⩾ 2qN . Moreover, since (k, ℓ)
satisfies the zero momentum condition k1 + · · ·+kq = ℓ1 + · · ·+ℓq, we have
(2q −1)µ2(k, ℓ) ⩾ µ1(k, ℓ) and so, finally we deduce that µ2(k, ℓ) > N . □

Now, we decompose L in two parts L = L(low) + L(high), where L(low)

and L(high) are two homogeneous ν-resonant polynomials of degree 2q in
H2q defined by

L
(low)
k,ℓ =

{
Lk,ℓ if µ2(k, ℓ) < N

0 otherwise

and

L
(high)
k,ℓ =

{
0 if µ2(k, ℓ) < N

Lk,ℓ otherwise.

As a consequence of Lemma 3.7, we prove in the following lemma that
L(low) commutes with NN,s.

Lemma 3.8. — The Hamiltonians L(low) and NN,s commute, i.e.

{L(low), NN,s} = 0.

Proof. — First, we note that as a consequence of Proposition 2.12, for
all u ∈ Hs(Td), we have

(3.7) {L(low), NN,s}(u)

= −2
∑

k,ℓ∈(Zd)q

µ2(k,ℓ)<N

 q∑
j=1

gkj − gℓj

Lk,ℓuk1 . . . ukq uℓ1 . . . uℓq

where gk = |k|2s if k ⩾ N and gk = (2n)2s if k ∈ Bn with n < nmax.
Moreover, since L is ν-resonant, as a consequence of Lemma 3.7, if Lk,ℓ ̸= 0
and µ2(k, ℓ) < N then (k, ℓ) does not satisfy (1.5). In other words, the sum
in (3.7) can be restricted to the indices such that µ2(k, ℓ) < N and (k, ℓ)
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does not satisfy (1.5). Therefore, since N is of the form N = 2nmax , all the
indices also satisfy µ1(k, ℓ) < N and so

q∑
j=1

gkj − gℓj = (2m1)2s + · · · + (2mq )2s − (2n1)2s − · · · − (2nq )2s

where mj (resp. nj) is the index such that kj ∈ Bmj (resp. ℓj ∈ Bnj ). But
since here we only consider indices such that (k, ℓ) does not satisfy (1.5),
m and n are equal up to a permutation (i.e. m ∈ Sqn) and so this sum
is trivial: gk1 + · · · + gkq

− gℓ1 − · · · − gℓq
= 0. Therefore, as a consequence

of (3.7), we have proven that {L(low), NN,s}(u) = 0. □

We are now in position to prove Proposition 3.6.
Proof of Proposition 3.6. — In view of Lemma 3.8 it remains to prove,

under the hypothesis of the proposition, that

(3.8) |{NN,s, L(high)}(u)| ≲s q2s+1N−η∥L∥ℓ∞∥u∥ℓ1
η
∥u∥2q−3

ℓ1 ∥u∥2
Hs .

Following the notations introduced for (3.7) we get∣∣{L(high), NN,s}(u)
∣∣

= 2

∣∣∣∣∣∣∣∣∣
∑

k,ℓ∈(Zd)q

µ2(k,ℓ)⩾N

 q∑
j=1

gkj
− gℓj

Lk,ℓuk1 . . . ukq
uℓ1 . . . uℓq

∣∣∣∣∣∣∣∣∣
⩽ 2∥L∥ℓ∞

∑
k,ℓ∈(Zd)q

µ2(k,ℓ)⩾N, Ω(k,ℓ)⩽ν
k1+···+kq=ℓ1+···+ℓq

∣∣∣∣∣∣
q∑

j=1
gkj − gℓj

∣∣∣∣∣∣ |uk1 . . . ukq uℓ1 . . . uℓq |.

First we order the first two indices of (k, ℓ) in such a way that either
µ1(k, ℓ) = |k1| and µ2(k, ℓ) = |k2| or µ2(k, ℓ) = |ℓ1|:

∑
k,ℓ∈(Zd)q, Ω(k,ℓ)⩽ν

µ2(k,ℓ)⩾N
k1+···+kq=ℓ1+···+ℓq

∣∣∣∣∣∣
q∑

j=1
gkj

− gℓj

∣∣∣∣∣∣ |uk1 . . . ukq
uℓ1 . . . uℓq

| ⩽ (2q)2(Σ1 + Σ2
)

where

Σ1 =
∑

k,ℓ∈(Zd)q, Ω(k,ℓ)⩽ν
µ1(k,ℓ)=|k1|⩾µ2(k,ℓ)=|k2|⩾N

k1+···+kq=ℓ1+···+ℓq

∣∣∣∣∣∣
q∑

j=1
gkj − gℓj

∣∣∣∣∣∣ |uk1 . . . ukq uℓ1 . . . uℓq |
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and

Σ2 =
∑

k,ℓ∈(Zd)q

µ1(k,ℓ)=|k1|⩾µ2(k,ℓ)=|ℓ1|⩾N
k1+···+kq=ℓ1+···+ℓq

∣∣∣∣∣∣
q∑

j=1
gkj

− gℓj

∣∣∣∣∣∣ |uk1 . . . ukq
uℓ1 . . . uℓq

|.

We begin by estimating Σ1. Using Ω(k, ℓ) ⩽ ν ⩽ 1, we get

|k1|2 + |k2|2 ⩽ (2q − 2)|µ3(k, ℓ)|2 + 2q(2π)−d/2∥V ∥ℓ∞

⩽ 2q(∥V ∥ℓ∞ + 1)⟨µ3(k, ℓ)⟩2.

Hence, since gk ⩽ |k|2s for any integer k,∣∣∣∣∣∣
q∑

j=1
gkj

− gℓj

∣∣∣∣∣∣ ⩽ (2(2q)s(∥V ∥ℓ∞ + 1)s + q − 2)⟨µ3(k, ℓ)⟩2s

≲s qs+1⟨µ3(k, ℓ)⟩2s.

and thus, setting v
(j)
h = |uh| if h ⩽ q and v

(j)
h = |u−h| else, by Young we

have

Σ1 ≲s qs+1
∑

k,ℓ∈(Zd)q

µ1(k,ℓ)=|k1|⩾µ2(k,ℓ)=|k2|⩾N
k1+···+kq=ℓ1+···+ℓq

⟨µ3(k, ℓ)⟩2s|uk1 . . . ukq
uℓ1 . . . uℓq

|

= qs+1
∑

h∈(Zd)2q

µ1(h)=|h1|⩾µ2(h)=|h2|⩾N
h1+···+h2q=0

⟨µ3(h)⟩2sv
(1)
h1

· · · v
(2q)
h2q

⩽ qs+1N−η

2q∑
j=3

∑
h∈(Zd)2q

µ1(h)=|h1|⩾µ2(h)=|h2|⩾N
µ3(h)=|hj |

h1+···+h2q=0

|h1|η|h2|s|hj |sv
(1)
h1

· · · v
(2q)
h2q

⩽ 2qs+2N−η∥u∥ℓ1
η
∥u∥2q−3

ℓ1 ∥u∥2
Hs .

Now we estimate Σ2. We note that, in the sum Σ2,∣∣∣∣∣∣
q∑

j=1
gkj − gℓj

∣∣∣∣∣∣ ⩽ |k1|2s − |ℓ1|2s + (2q − 2)µ3(k, ℓ)2s.

On the other hand, by the mean value theorem,

|k1|2s − |ℓ1|2s ⩽ 2s|k1 − ℓ1||k1|2s−1
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and, using the zero momentum condition we have,

|k1| ⩽ 2q|ℓ1| and |k1 − ℓ1| ⩽ 2qµ3(k, ℓ).

Therefore, since 0 < η ⩽ 1, we get∣∣∣∣∣∣
q∑

j=1
gkj − gℓj

∣∣∣∣∣∣ ⩽ 4s(2q)2s|k1|s|ℓ1|s−1µ3(k, ℓ)

≲ q2s|k1|s|ℓ1|s−ηµ3(k, ℓ)η

Thus, recalling that in Σ2 we have |ℓ1| ⩾ N , as previously we get

Σ2 ≲s q2sN−η
∑

2⩽j⩽2q
j ̸=q+1

∑
h∈(Zd)2q

h1+···+h2q=0

⟨h1⟩s⟨hq+1⟩s⟨hj⟩ηv
(1)
h1

· · · v
(2q)
h2q

⩽ 2q2s+1N−η∥u∥ℓ1
η
∥u∥2q−3

ℓ1 ∥u∥2
Hs . □

3.3. Proof of Theorem 1.1

3.3.1. Approximation by smooth solutions

In order to justify the formal computation, we are going to prove Theo-
rem 1.1 when u(0) is smooth. So first, let us check that this assumption can
be done without loss of generality. More precisely, we assume that Theo-
rem 1.1 holds if we add the assumption that u(0) ∈ C∞(Td) and we aim at
proving that this assumption can be removed.

Let u(0) ∈ Hs⋆ , where s⋆ = max(s, s0), be such that ε = ∥u(0)∥Hs0 ⩽ ε0.
Let u(0,n) ∈ C∞, n ⩾ 1, be a sequence of functions such that

sup
n⩾1

∥u(0,n)∥Hs0 ⩽ ∥u(0)∥Hs0 and u(0,n) −→
n→∞

u(0) in Hs⋆ .

Since ε 7→ Tε is increasing (provided that ε is small enough), for all n ⩾ 1,
the solution u(n) of (NLS) with initial condition u(0,n) satisfies u(n) ∈
C∞([−Tε, Tε] × Td;C) and

M := sup
n⩾1

sup
|t|⩽Tε

∥u(n)∥Hs⋆ < ∞.

We are going to prove that u(n) is of Cauchy in C0([−Tε, Tε]; Hs⋆(Td)).
Indeed, by Duhamel, it satisfies

(3.9) u(n)(t) = eit(∆−V ∗) u(n,0) +
∫ t

0
ei(t−τ)(∆−V ∗) |u(τ)|2pu(τ)dτ
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and so, since Hs⋆ is an algebra (because s⋆ ⩾ s0 > d/2), we have

∥u(n)(t) − u(m)(t)∥Hs⋆

⩽ ∥u(0,n) − u(0,m)∥Hs⋆ + pCs⋆
M2p

∫
[0;t]

∥u(n)(τ) − u(m)(τ)∥Hs⋆ dτ

where Cs⋆
> 0 is a constant depending only on s⋆. Therefore as a conse-

quence of Grönwall’s inequality, we have

sup
|t|⩽Tε

∥u(n)(t) − u(m)(t)∥Hs⋆ ⩽ ∥u(0,n) − u(0,m)∥Hs⋆ epCs⋆ M2pTε

which proves that u(n) is of Cauchy in C0([−Tε, Tε]; Hs⋆(Td)). This space
being a Banach space, we denote by u ∈ C0([−Tε, Tε]; Hs⋆(Td)) its limit.
Passing to the limit in (3.9), we deduce that u ∈ C1([−Tε, Tε]; Hs⋆−2(Td))
is also a solution of (NLS) on [−Tε, Tε]. Moreover, since s⋆ ⩾ s, ∥u(n)∥L∞Hs

goes to ∥u∥L∞Hs as n goes to +∞, which proves that u also satisfies the
bound ∥u∥L∞Hs ≲s ∥u(0)∥Hs .

3.3.2. Setting of the bootstrap

Now we focus more directly on the proof of Theorem 1.1. We assume
that V ∈ V is fixed (the set V being defined in Definition 3.1). Thanks
to the previous step, from now we assume without loss of generality that
u(0) ∈ C∞(Td;C) satisfies ε := ∥u(0)∥Hs0 ⩽ ε0 where ε0 > 0 is a con-
stant depending only(12) on s0 > d/2 which will be determined later (see
formula (3.19) below).

We denote by u ∈ C0((−T−, T+); Hs0)∩C1((−T−, T+); Hs0−2) the max-
imal solution of (NLS) associated with u(0), i.e. T+ > 0 satisfies

T+ = +∞ or lim sup
t→+∞

∥u∥Hs0 = +∞.

Of course T− is defined similarly. Since by assumption u(0) ∈ C∞, for all
s ⩾ 0, u(0) ∈ Hs, and thus, since the non-linearity enjoys tame estimates,
u ∈ C0((−T−, T+); Hs) for all s ⩾ 0. Therefore, since C∞(Td) = H∞(Td),
it is clear that

u ∈ C∞((−T−, T+) × Td;C) ⊂ C1((−T−, T+); ℓ1 ∩ H1).

From now, without loss of generality, we only consider non-negative times.
We consider a constant Gs0 > 1 depending only on s0 and that will be
determined later (see formula (3.21) below). In order to prove that T+ >

(12) and also on V and d but we do not track these dependencies.
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Tε and that ∥u(t)∥Hs0 ⩽ Gs0∥u(0)∥Hs0 for all t ∈ [0, Tε], by a standard
bootstrap argument, it is enough to prove that

(3.10) 0 ⩽ T < min(Tε, T+)
sup0⩽t⩽T ∥u(t)∥Hs0 ⩽Gs0∥u(0)∥Hs0

}
=⇒ ∥u(T)∥Hs0 < Gs0∥u(0)∥Hs0 .

The estimate of the Hs norms for s ̸= s0 will just be a byproduct of the
proof (see estimate (3.20) below).

3.3.3. Parameters and change of variable

Following (3.10), from now and until the end of this proof, we consider
T > 0 such that T < min(Tε, T+) and for all t ∈ [0, T ], ∥u(t)∥Hs0 ⩽
Gs0∥u(0)∥Hs0 .
We consider the following parameters which will be optimized later with
respect to ε ≡ ∥u(0)∥Hs0 (see formula (3.17) and (3.18) below) :

• N ⩾ 1 is integer of the form N = 2nmax with nmax ∈ N,
• r ⩾ 2 is an integer (it will be the order of the Birkhoff normal form),
• ν > 0 is the size of the small divisors in the Birkhoff normal form.

In order to apply Proposition 3.6 and to have small divisors as large
as possible, we set

(3.11) ν := γ̃r−4(log2(2rN)
)−(2r+1)

where γ̃ = min(γ, 1) and γ > 0 is the constant associated with the
non-resonance of V (see Definition 3.1). We note that by construc-
tion we have ν < 1.

Since s0 > d/2, we set

Ks0 :=
√∑

k∈Zd

⟨k⟩−2s0

and by Cauchy–Schwarz we have ∥ · ∥ℓ1 ⩽ Ks0∥ · ∥Hs0 .

We recall that u satisfies

∀t ∈ [0, T ], i∂tu(t) = ∇H

2 (u(t))

where H, the Hamiltonian of (NLS), is given by (3.1). Therefore, we apply
the Birkoff normal form Theorem 2.15 to the Hamiltonian H. In order
to apply the changes of variables to u(t), the parameters we are going to
design will satisfy the constraint

(3.12) Gs0Ks0ε <

√
ν

Cr
= ρ.
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Therefore, we have
∀t ∈ [0, T ], ∥u(t)∥ℓ1 < ρ

and so it makes sense to consider

v(t) := τ (0)(u(t)).

Note that, as a consequence of Theorem 2.15, we have ∥v(t)∥ℓ1 < 2ρ and

u(t) = τ (1)(v(t)).

Moreover, thanks to (2.23), we have

∀t ∈ [0, T ], ∀s ⩾ 0, M−1
s ∥v(t)∥Hs ⩽ ∥u(t)∥Hs ⩽ Ms∥v(t)∥Hs

where Ms ⩾ 1 is a constant depending only on s. Finally, we aim at proving
that

(3.13) i∂tv(t) = 1
2∇(H ◦ τ (1))(v(t)).

Recalling that u ∈ C1((−T−, T+); ℓ1 ∩ H1) and τ (0) is smooth in ℓ1, by
composition v ∈ C1([0, T ]; ℓ1 ∩ H1) and we have

i∂tv(t) = i∂tτ
(0)(u(t)) = i dτ (0)(u(t))(∂tu(t))

= − i
2dτ (0)(u(t))(i(∇H) ◦ τ (1)(v(t))).

Therefore, to get (3.13), we only have to prove that

(3.14) dτ (0)(u(t))i = i[dτ (1)(v(t))]∗ on ℓ1

where [dτ (1)(v(t))]∗ denotes the adjoint of dτ (1)(v(t)). On the one hand,
since τ (1) is symplectic, we note that we have

(3.15) [dτ (1)(v(t))]∗i dτ (1)(v(t)) = i

and on the other hand, since τ (1) ◦ τ (0) = idℓ1 on Bℓ1(0, ρ), we note that

dτ (1)(v(t))dτ (0)(u(t)) = idℓ1 .

Therefore, multiplying on the right (3.15) by dτ (0)(u(t)), we get (3.14).

3.3.4. Sobolev norm estimates

Let s ⩾ 0. We recall that the observable NN,s is given by Definition 3.5
and that it is equivalent to ∥ · ∥2

Hs . Since τ (1) : Bℓ1(0, 2ρ) ∩ Hs → ℓ1 ∩
Hs is smooth, by composition v ∈ C1([0, T ]; Hs). As a consequence, by
composition, we have

∂tNN,s(v(t)) = (∇NN,s(v(t)), ∂tv(t))L2 = 1
2{NN,s, H ◦ τ (1)}(v(t)).
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Thanks to the decomposition (2.21) of H ◦ τ (1) it comes

∂tNN,s(v(t)) =
r∑

q=2
{NN,s, L(2q)}(v(t)) + (i∇NN,s(v(t)), ∇R(v(t)))L2 .

On the one hand, we have

|(i∇NN,s(v(t)), ∇R(v(t)))L2 |

⩽
√

NN,s(v(t))∥∇R(v(t))∥Hs

≲s

√
NN,s(v(t))C2r

(
r3

ν

)r−1

∥v(t)∥2r
ℓ1 ∥v(t)∥Hs

≲s C2r

(
r3

ν

)r−1

∥v(t)∥2r
ℓ1 NN,s(v(t))

≲s (CMs0Gs0Ks0)2r

(
r3

ν

)r−1

ε2rNN,s(v(t)).

While, on the other hand, by Proposition 3.6, for all η ∈ (0, 1], we have(13)

|{NN,s, L(2q)}(v(t))| ≲s 2qN−η∥L(2q)∥ℓ∞∥v(t)∥ℓ1
η
∥v(t)∥2q−3

ℓ1 ∥v(t)∥2
Hs .

We choose
η ≡ ηs0 = min

[
1,

1
2

(
s0 − d

2

)]
in such a way that d/2 < d/2 + ηs0 < s0 and so

∥v(t)∥ℓ1
ηs0

⩽ Kd/2+ηs0
∥v(t)∥Hs0 .

Therefore, we have

|{NN,s, L(2q)}(v(t))|

≲s 2qK2q−2
d/2+ηs0

N−η∥L(2q)∥ℓ∞∥v(t)∥2q−2
Hs0 ∥v(t)∥2

Hs

≲s 2q(Ms0Gs0Kd/2+ηs0
)2q−2N−η∥L(2q)∥ℓ∞ε2q−2NN,s(v(t))

≲s (2CMs0Gs0Kd/2+ηs0
)2q−2N−η

(
q2

ν

)q−2

ε2q−2NN,s(v(t)).

The parameters we are going to design will satisfy the constraint

(3.16) 4CMs0Gs0Kd/2+ηs0
ε <

√
ν

Cr
.

Thus we get

|{NN,s, L(2q)}(v(t))| ≲s 2−2qN−ηNN,s(v(t))

(13) Here we used q2s+1 ≲s 2q for all q ∈ N.
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and so

|∂tNN,s(v(t))| ≲s

[
N−η + (CMs0Gs0Ks0)2r

(
r3

ν

)r−1

ε2r

]
NN,s(v(t)).

Therefore, to homogenize this sum, we fix the parameter N in such a way
that

(3.17) 2−1ε− r
η ⩽ N < ε− r

η .

and so N−η ⩽ 2ηεr ⩽ 2εr. Recalling that ν is defined as

ν = γ̃r−4(log2(2rN)
)−(2r+1)

(see (3.11)), we have (using that ε < 1 and log2(2r) ⩽ r)

ν−(r−1) ⩽ γ̃−rr4r
(
log2(2rε− r

η )
)2r2

⩽ γ̃−rr4r

(
log2(2r) − r

η
log(ε)

)2r2

⩽ 22r2
γ̃−rr3r2

η−2r2
log2r2

(ε−1)
and so

|∂tNN,s(v(t))| ≲s [1 + (Cγ̃−1Ms0Gs0Ks0)2r(2η−1)2r2
r4r2

log2r2
(ε−1) εr]

× εrNN,s(v(t)).

We fix r as an integer satisfying

(3.18) |log ε|
4 log|log ε|

⩽ r ⩽
|log ε|

3 log|log ε|
=: rε.

Note that this definition makes sense provided that ε0 is smaller than an
universal constant. Therefore, we have

log2r2
(ε−1) εr ⩽ exp

(
− 1

36
(log ε)2

log|log ε|

)
.

and so, since

(3.19) (Cγ̃−1Ms0Gs0Ks0)2rε(2η−1
s0

)2r2
ε r

4r2
ε

ε exp
(

− 1
36

(log ε)2

log|log ε|

)
−→
ε→0

0

we deduce that provided that ε0 is small enough with respect to a constant
depending only on s0, this quantity is bounded by 1 (and (3.12), (3.16) are
satisfied), and so that we have

|∂tNN,s(v(t))| ⩽ ΥsT −1
ε NN,s(v(t)) where Tε = exp

(
|log ε|2

4 log|log ε|

)
and Υs > 1 is a constant depending only on s. As a consequence, by
Grönwall, since 0 ⩽ t ⩽ T < Tε we get

NN,s(v(t)) ⩽ eΥstT −1
ε NN,s(v(0)) < eΥs NN,s(v(0))
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and so

(3.20) ∀t ∈ [0, T ], ∥u(t)∥2
Hs < M4

s 22s eΥs ∥u(0)∥2
Hs .

Therefore, to conclude the bootstrap (see (3.10)) it is enough to set(14)

(3.21) Gs0 := M2
s0

2s0eΥs0 .
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