[Bonnes suites à spectre non dénombrable et distribution asymptotique singulière]
Nous construisons une bonne suite à spectre non dénombrable. La construction nous permet également d’exhiber une probabilité continue singulière représentable par une bonne suite au sens du travail récent de Lesigne, Quas, Rosenblatt et Wierdl.
We construct a good sequence with uncountable spectrum. The construction also allows us to exhibit a continuous and singular probability measure representable by a good sequence in the sense of the recent work of Lesigne, Quas, Rosenblatt and Wierdl.
Révisé le :
Accepté le :
Première publication :
Keywords: Good sequences, Uncountable spectrum.
Mot clés : Bonnes suites, spectre non dénombrable.
Cuny, Christophe 1 ; Parreau, François 2
@unpublished{AIF_0__0_0_A117_0, author = {Cuny, Christophe and Parreau, Fran\c{c}ois}, title = {Good sequences with uncountable spectrum and singular asymptotic distribution}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3663}, language = {en}, note = {Online first}, }
TY - UNPB AU - Cuny, Christophe AU - Parreau, François TI - Good sequences with uncountable spectrum and singular asymptotic distribution JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3663 LA - en ID - AIF_0__0_0_A117_0 ER -
Cuny, Christophe; Parreau, François. Good sequences with uncountable spectrum and singular asymptotic distribution. Annales de l'Institut Fourier, Online first, 11 p.
[1] IP-rigidity and eigenvalue groups, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1057-1076 | DOI | MR | Zbl
[2] Rigidity and non-recurrence along sequences, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 5, pp. 1464-1502 | DOI | MR | Zbl
[3] Ergodic averaging sequences, J. Anal. Math., Volume 95 (2005), pp. 63-103 | DOI | MR | Zbl
[4] Wiener’s lemma along primes and other subsequences, Adv. Math., Volume 347 (2019), pp. 340-383 | DOI | MR | Zbl
[5] On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 598-615 | DOI | MR | Zbl
[6] Analyse harmonique des mesures, Astérisque, Société Mathématique de France, 1986 no. 135-136, 261 pages | Numdam | MR | Zbl
[7] Nonsingular transformations and spectral analysis of measures, Bull. Soc. Math. Fr., Volume 119 (1991) no. 1, pp. 33-90 | DOI | MR | Zbl
[8] Sur les coefficients de Fourier–Bohr, Stud. Math., Volume 21 (1961), pp. 103-106 | DOI | MR | Zbl
[9] Random ergodic theorems and real cocycles, Isr. J. Math., Volume 130 (2002), pp. 285-321 | DOI | MR | Zbl
[10] Generation of measures by statistics of rotations along sets of integers (2022) (accepted for publication in Indiana Univ. Math. J., https://arxiv.org/abs/2210.02233)
[11] Ergodicité et pureté des produits de Riesz, Ann. Inst. Fourier, Volume 40 (1990) no. 2, pp. 391-405 | DOI | Numdam | MR | Zbl
[12] Norm convergence in ergodic theory and the behavior of Fourier transforms, Can. J. Math., Volume 46 (1994) no. 1, pp. 184-199 | DOI | MR | Zbl
[13] Pointwise ergodic theorems via harmonic analysis, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993) (London Mathematical Society Lecture Note Series), Volume 205, Cambridge University Press, 1995, pp. 3-151 | DOI | MR | Zbl
Cité par Sources :