Good sequences with uncountable spectrum and singular asymptotic distribution
[Bonnes suites à spectre non dénombrable et distribution asymptotique singulière]
Annales de l'Institut Fourier, Online first, 11 p.

Nous construisons une bonne suite à spectre non dénombrable. La construction nous permet également d’exhiber une probabilité continue singulière représentable par une bonne suite au sens du travail récent de Lesigne, Quas, Rosenblatt et Wierdl.

We construct a good sequence with uncountable spectrum. The construction also allows us to exhibit a continuous and singular probability measure representable by a good sequence in the sense of the recent work of Lesigne, Quas, Rosenblatt and Wierdl.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3663
Classification : 42A55
Keywords: Good sequences, Uncountable spectrum.
Mot clés : Bonnes suites, spectre non dénombrable.

Cuny, Christophe 1 ; Parreau, François 2

1 Univ Brest, CNRS, UMR 6205, Laboratoire de Mathematiques de Bretagne Atlantique, 6 avenue Victor Le Gorgeu, 29238 Brest (France)
2 Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430 Villetaneuse (France)
@unpublished{AIF_0__0_0_A117_0,
     author = {Cuny, Christophe and Parreau, Fran\c{c}ois},
     title = {Good sequences with uncountable spectrum and singular asymptotic distribution},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3663},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Cuny, Christophe
AU  - Parreau, François
TI  - Good sequences with uncountable spectrum and singular asymptotic distribution
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3663
LA  - en
ID  - AIF_0__0_0_A117_0
ER  - 
%0 Unpublished Work
%A Cuny, Christophe
%A Parreau, François
%T Good sequences with uncountable spectrum and singular asymptotic distribution
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3663
%G en
%F AIF_0__0_0_A117_0
Cuny, Christophe; Parreau, François. Good sequences with uncountable spectrum and singular asymptotic distribution. Annales de l'Institut Fourier, Online first, 11 p.

[1] Aaronson, Jon; Hosseini, Maryam; Lemańczyk, Mariusz IP-rigidity and eigenvalue groups, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1057-1076 | DOI | MR | Zbl

[2] Bergelson, Vitaly; del Junco, Andres; Lemańczyk, Mariusz; Rosenblatt, Joseph Rigidity and non-recurrence along sequences, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 5, pp. 1464-1502 | DOI | MR | Zbl

[3] Boshernitzan, Michael; Kolesnik, Grigori; Quas, Anthony; Wierdl, Máté Ergodic averaging sequences, J. Anal. Math., Volume 95 (2005), pp. 63-103 | DOI | MR | Zbl

[4] Cuny, Christophe; Eisner, Tanja; Farkas, Bálint Wiener’s lemma along primes and other subsequences, Adv. Math., Volume 347 (2019), pp. 340-383 | DOI | MR | Zbl

[5] Erdös, Pál; Taylor, Samuel J. On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 598-615 | DOI | MR | Zbl

[6] Host, Bernard; Méla, Jean-François; Parreau, François Analyse harmonique des mesures, Astérisque, Société Mathématique de France, 1986 no. 135-136, 261 pages | Numdam | MR | Zbl

[7] Host, Bernard; Méla, Jean-François; Parreau, François Nonsingular transformations and spectral analysis of measures, Bull. Soc. Math. Fr., Volume 119 (1991) no. 1, pp. 33-90 | DOI | MR | Zbl

[8] Kahane, Jean-Pierre Sur les coefficients de Fourier–Bohr, Stud. Math., Volume 21 (1961), pp. 103-106 | DOI | MR | Zbl

[9] Lemańczyk, Mariusz; Lesigne, Emmanuel; Parreau, François; Volný, Dalibor; Wierdl, Máté Random ergodic theorems and real cocycles, Isr. J. Math., Volume 130 (2002), pp. 285-321 | DOI | MR | Zbl

[10] Lesigne, Emmanuel; Quas, Anthony; Rosenblatt, Joseph; Wierdl, Máté Generation of measures by statistics of rotations along sets of integers (2022) (accepted for publication in Indiana Univ. Math. J., https://arxiv.org/abs/2210.02233)

[11] Parreau, François Ergodicité et pureté des produits de Riesz, Ann. Inst. Fourier, Volume 40 (1990) no. 2, pp. 391-405 | DOI | Numdam | MR | Zbl

[12] Rosenblatt, Joseph Norm convergence in ergodic theory and the behavior of Fourier transforms, Can. J. Math., Volume 46 (1994) no. 1, pp. 184-199 | DOI | MR | Zbl

[13] Rosenblatt, Joseph; Wierdl, Máté Pointwise ergodic theorems via harmonic analysis, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993) (London Mathematical Society Lecture Note Series), Volume 205, Cambridge University Press, 1995, pp. 3-151 | DOI | MR | Zbl

Cité par Sources :