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GOOD SEQUENCES WITH UNCOUNTABLE
SPECTRUM AND SINGULAR ASYMPTOTIC

DISTRIBUTION

by Christophe CUNY & François PARREAU

Abstract. — We construct a good sequence with uncountable spectrum. The
construction also allows us to exhibit a continuous and singular probability measure
representable by a good sequence in the sense of the recent work of Lesigne, Quas,
Rosenblatt and Wierdl.

Résumé. — Nous construisons une bonne suite à spectre non dénombrable. La
construction nous permet également d’exhiber une probabilité continue singulière
représentable par une bonne suite au sens du travail récent de Lesigne, Quas,
Rosenblatt et Wierdl.

1. Good sequences with uncountable spectrum

Let S = (sn)n⩾1 be an increasing sequence of positive integers. We say
that S is a good sequence if the following limit exists for every λ ∈ S1

(S1 = {z ∈ C : |z| = 1})

(1.1) c(λ) = cS(λ) := lim
N→+∞

1
N

N∑
n=1

λsn .

Equivalently, S is good if, for every λ ∈ S1, the following limit exists

(1.2) lim
N→+∞

1
πS(N)

∑
1⩽k⩽N, k∈S

λk,

where πS(N) = # (S ∩ [1, N ]).
Good sequences have been studied by many authors. See for instance

Rosenblatt and Wierdl [13] who introduced that notion, Rosenblatt [12],
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2 Christophe CUNY & François PARREAU

Boshernitzan, Kolesnik, Quas and Wierdl [3], Lemańczyk, Lesigne, Parreau,
Volný and Wierdl [9] or Cuny, Eisner and Farkas [4].

Given a good sequence S, we define its spectrum as the set

(1.3) ΛS := {λ ∈ S1 : c(λ) ̸= 0} .

By [13, Theorem 2.22] (due to Weyl), for any good sequence S, ΛS has
Lebesgue measure 0. If moreover S has positive upper density, i.e. satis-
fies lim supN→+∞(πS(N)/N) > 0, then ΛS is countable. See [4, Proposi-
tion 2.12 and Corollary 2.13] for a proof based on a result of Boshernitzan
published in [12]. See also [8] for more general results of that type.

On another hand, up to our knowledge, no good sequence with uncount-
able spectrum is known.

In [4], good sequences have been studied in connection with Wiener’s
lemma. In particular, the authors of [4] obtained the following results for
good sequences, see their Proposition 2.6 and Theorem 2.10. Recall that if
τ is a finite measure on S1, then τ̂(n) =

∫
S1 λn dτ(λ), for every n ∈ Z.

Proposition 1.1. — Let S = (sn)n⩾1 be a good sequence. Then, for
every probability measure µ on S1, we have

1
N

N∑
n=1

|µ̂(sn)|2 −→
N→+∞

∫
(S1)2

c(λ1λ2) dµ(λ1) dµ(λ2) .

In particular, if S has countable spectrum and µ is continuous

(1.4) 1
N

N∑
n=1

|µ̂(sn)|2 −→
N→+∞

0 .

Remark. — (1.4) implies that µ̂(sn) converges in density to 0, by the
Koopman-von Neumann Lemma (see e.g. [4, Lemma 2.1]).

The above considerations yield and put into perspective the following
question: does there exist a good sequence with uncountable spectrum?

We answer positively to that question below. To state the result, we need
some more notation.

Let (mj)j⩾1 be an increasing sequence of positive integers such that
mj+1/mj ⩾ 3 for every j ⩾ 1.

We associate with (mj)j⩾1 the sequence S = (sn)n⩾1 made out of the
integers (an empty sum is assumed to be 0)

(1.5)

mk +
∑

1⩽j⩽k−1
ωjmj : k ⩾ 1, (ω1, . . . , ωk−1) ∈ {−1, 0, 1}k−1
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in increasing order. Notice that our assumption on (mj)j⩾1 implies that all
the integers in (1.5) are positive and distinct.

Denote by ∥ · ∥ the distance to the nearest integer: ∥t∥ := min{|m − t| :
m ∈ Z} for every t ∈ R.

Theorem 1.2. — Let (mj)j⩾1 be an increasing sequence of positive
integers such that mj+1/mj ⩾ 3 for every j ⩾ 1, and define S as above.
Then S is a good sequence and

(1.6) Λ :=

e2iπθ : θ ∈ [0, 1)\Q,
∑
j⩾1

∥mjθ∥2 < ∞

 ⊂ ΛS .

Proof. — For every k ⩾ 1, consider the following set of integers

Mk :=

 ∑
1⩽j⩽k−1

ωjmj : (ωℓ)1⩽ℓ<k ∈ {−1, 0, 1}k−1

 .

For every k ⩾ 1 and every θ ∈ [0, 1), set

Lk(θ) :=
∏

1⩽j⩽k−1

1
3(1 + 2 cos(2πmjθ))(1.7)

= 1
3k−1

∏
1⩽j⩽k−1

(1 + e−2iπmjθ + e2iπmjθ)

= 1
3k−1

∑
x∈Mk

e2iπxθ .(1.8)

Let θ ∈ [0, 1). As −1/3 ⩽ (1 + 2 cos(2πθmj))/3 ⩽ 1 for all j, if 1 +
2 cos(2πθmj) is infinitely often non positive, then (Lk(θ))k⩾1 converges to 0.

Assume now that 1 + 2 cos(2πθmj) > 0 for j ⩾ J , for some integer
J . Then, the convergence of (Lk(θ))k⩾1 follows from the convergence of
(
∏k

j=J(1 + 2 cos(2πθmj))/3)k⩾J which is clear since we have an infinite
product of positive terms less than or equal to 1. Moreover this infinite
product converges, i.e. the limit is non-zero, if and only if

∞∑
k=J

[
1 − 1

3(1 + 2 cos(2πmkθ))
]

=
∞∑

k=J

2
3
(
1 − cos(2πmkθ)

)
< +∞,

which is equivalent to
∑∞

k=J ∥mkθ∥2 < +∞.
If e2iπθ is in the set Λ defined by (1.6) the above condition is satisfied and

moreover, as θ is then irrational, the product
∏J−1

j=1 (1 + 2 cos(2πθmj))/3
does not vanish.

Hence in any case (Lk(θ))k⩾1 converges, say to L(θ), and L does not
vanish on Λ.

TOME 0 (0), FASCICULE 0



4 Christophe CUNY & François PARREAU

We wish to prove that ( 1
N

∑N
n=1 e2iπsnθ)N⩾1 converges to L(θ) for every

θ ∈ [0, 1).
Let N ⩾ 1. Since (sn)n⩾1 is the increasing sequence made out of the

numbers given by (1.5), we can write sN+1 = mkN
+
∑

1⩽j⩽kN −1 ωj(N)mj .
The integers s1, . . . , sN may be split into consecutive blocks

m1 + M1, . . . , mkN −1 + MkN −1, WN ,

where WN = {ℓ ∈ mkN
+ MkN

: ℓ ⩽ sN } .

As each block Mk consists in 3k−1 integers, we have

(1.9) 3kN −1 − 1
2 ⩽ N <

3kN − 1
2 .

We may furthermore split WN into translates of blocks Mk. Namely,
if ωkN −1(N) ̸= −1, then WN begins with mkN

− mkN −1 + MkN −1, if
ωkN −1(N) = 1 another block mkN

+ 0 × mkN −1 + MkN −1 follows, and
so on. More precisely, WN is the disjoint union

WN =
⋃

1⩽j⩽kN −1

⋃
ω<ωj(N)

mkN
+

kN −1∑
ℓ=j+1

ωℓ(N)mℓ + ωmj + Mj

 .

Hence, by (1.8),

(1.10)
N∑

n=1
e2iπsnθ

=
kN −1∑
j=1

3j−1 e2iπmjθ Lj(θ) +
kN −1∑
j=1

∑
ω<ωj(N)

3j−1 e2iπuj(ω)θ Lj(θ),

where uj(ω) = mkN
+
∑kN −1

ℓ=j+1 ωℓ(N)mℓ + ωmj .
Let us first assume that L(θ) = 0, that is Lj(θ) → 0 as j → +∞. Then

we have

1
N

∣∣∣∣∣
N∑

n=1
e2iπsnθ

∣∣∣∣∣⩽ 1
N

kN −1∑
j=1

3j−1|Lj(θ)|+ 1
N

kN −1∑
j=1

∑
ω<ωj(N)

3j−1|Lj(θ)| −→
N→+∞

0,

where the convergence follows from (1.9).
Assume now that L(θ) ̸= 0. Then e2iπmnθ −→

n→+∞
1.

Fix ε > 0. Let r ⩾ 1 be such that e−r < ε, and let d ⩾ 1 be such that
|1 − e2iπmjθ | < ε/(r + 1) and |L(θ) − Lj(θ)| < ε for every j ⩾ d.

ANNALES DE L’INSTITUT FOURIER
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For every N such that kN ⩾ d+r, we have on one hand, since (Ln(θ))n⩾1
is bounded by 1,

(1.11)
kN −r−1∑

j=1
3j−1| e2iπmjθ Lj(θ) − L(θ)|

+
kN −r−1∑

j=1

∑
ω<ωj(N)

3j−1| e2iπuj(ω)θ Lj(θ) − L(θ)|

⩽
kN −r−1∑

j=1
3j−1[2 + 2 × 2] ⩽ 3kN −r < 3kN ε.

And on the other hand, as kN − r ⩾ d, when kN − r ⩽ j ⩽ kN we have
|1 − e2iπmjθ | < ε/(r + 1) and

|1 − e2iπuj(ω)θ | ⩽
kN∑

ℓ=kN −r

|1 − e2iπmℓθ | < ε

for every choice of ω. So,

(1.12)
kN −1∑

j=kN −r

3j−1| e2iπmjθ Lj(θ) − L(θ)|

+
kN −1∑

j=kN −r

∑
ω<ωj(N)

3j−1| e2iπuj(ω)θ Lj(θ) − L(θ)|

<

kN −1∑
j=kN −r

3j−1[2ε + 2 × 2ε] < 3kN ε.

Gathering (1.11) and (1.12), it follows from (1.10) that∣∣∣∣∣
N∑

n=1
e2iπsnθ −NL(θ)

∣∣∣∣∣ < 2 · 3kN ε.

Finally, in view of (1.9),

lim sup
N→+∞

∣∣∣∣∣ 1
N

N∑
n=1

e2iπsnθ −L(θ)

∣∣∣∣∣ ⩽ 12ε ,

and the announced result follows since ε may be chosen arbitrarily
small. □

TOME 0 (0), FASCICULE 0
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It follows from Theorem 1.2 that, in order to produce a good sequence
with uncountable spectrum, it is sufficient to exhibit an increasing sequence
of integers (mj)j⩾1 with mj+1/mj ⩾ 3 for every j ⩾ 1 and such that the
subgroup of S1

(1.13) H2 = H2((mj)j⩾1) :=

e2iπθ : θ ∈ [0, 1),
∑
j⩾1

∥mjθ∥2 < ∞


be uncountable.

It turns out that those type of subgroups have been studied in [7] (see
also [11] and [1]).

A similar subgroup, defined by H1 := {e2iπθ : θ ∈ [0, 1),
∑

j⩾1 ∥mjθ∥ <

∞}, studied in [7] in connection with H2, has also been considered by Erdős
and Taylor [5] and, in connection with IP-rigidity, by Bergelson & al. [2]
and Aaronson & al. [1].

In the above papers, sufficient conditions have been obtained for H2 or
H1 to be uncountable.

To state the results concerning H2 subgroups, we shall need a strength-
ening of the lacunarity condition. We say that (mj)j⩾1 satisfies assump-
tion (A) if one of the conditions (A1) or (A2) below is satisfied:

∑
j⩾1

(
mj

mj+1

)2
< ∞(A1)

∀j ⩾ 1 mj |mj+1 and mj+1/mj −→
j→+∞

∞ .(A2)

Proposition 1.3. — Let (mj)j⩾1 be a sequence of integers satisfying
assumption (A). Then, H2((mj)j⩾1) is uncountable.

The proposition was proved by the second author [11] (see also [7, Sec-
tion 4.2]) under (A1) (notice that the condition infj⩾1 mj+1/mj ⩾ 3 used
in [11] and [7] is not restrictive for the uncountability of H2). Actually, it is
proved in [11] and [7] that H2 supports a continuous (singular) probability
measure given by a symmetric Riesz product. A proof of the uncountabil-
ity of H2 under (A1) can also be derived from the proof of [5, Theorem 5],
which states that H1 is uncountable when

∑
j⩾1 mj/mj+1 < ∞.

Under condition (A2), the proposition follows from [5, Theorem 3] which
states that H1 ⊂ H2 is uncountable. We use their argument below in the
proofs of Proposition 1.5 and Theorem 2.1.

See also [1, Propositions 3 and 4] for more precise versions of Proposi-
tion 1.3.

ANNALES DE L’INSTITUT FOURIER
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We are now able to state our main result, which follows in a straightfor-
ward way from Proposition 1.3 and Theorem 1.2.

Theorem 1.4. — Let (mj)j⩾1 be an increasing sequence of positive
integers such that mj+1/mj ⩾ 3 for every j ⩾ 1, and define S as above. If
assumption (A) is satisfied then S is a good sequence and it has uncountable
spectrum.

We also derive the following proposition which complements Proposi-
tion 1.1. It can be shown as an abstract consequence of the existence of
a good sequence with uncountable spectrum, but we shall give explicit
examples.

Proposition 1.5. — There exist a good sequence (sn)n⩾1 and a contin-
uous measure µ on S1 such that ( 1

N

∑N
n=1 |µ̂(sn)|2)N⩾1 converges to some

positive number.

Proof. — We construct such a measure for each sequence S associated
with a sequence (mj)j⩾1 satisfying (A2) and infj⩾1 mj+1/mj ⩾ 3.

Under this assumption, choose a subsequence (mjk
)k⩾1 such that j1 > 1

and mj/mj−1 > 2k+2 for all j ⩾ jk. For every sequence η = (ηk)k⩾1 ∈
{0, 1}N∗ , let

θ(η) :=
∞∑

k=1

ηk

mjk

.

Given j ⩾ 1, let k be the smallest integer such that jk > j. Since mj/mjℓ

is an integer when ℓ < k, we have

(1.14) ∥mjθ(η)∥ ⩽ mj

∑
ℓ⩾k

1
mjℓ

⩽ 2 mj

mjk

,

and in particular ∥mjθ(η)∥ ⩽ 1/4, which yields that all the terms in the
products (1.7) are positive.

We also have
∑

j<jk
m2

j < 2m2
jk−1, so if we sum up the ∥mjθ(η)∥2 by

blocks from jk−1 to jk − 1 (or from 1 to j1 − 1 for the first one), we get
that each partial sum is less than 8(mjk−1/mjk

)2,
∞∑

j=1
∥mjθ(η)∥2 < 8

∞∑
k=1

m2
jk−1

m2
jk

<

∞∑
k=1

1
4k

< +∞.

and L(θ(η)) > 0 follows.
Now, let ξ = (ξj)j⩾1 be a sequence of i.i.d. random variables with

P(ξ1 = 0) = P(ξ1 = 1) = 1
2 and let µ be the probability distribution of

e2iπθ(ξ). Then, as the mapping η 7→ e2iπθ(η) is one-to-one, µ is a continuous

TOME 0 (0), FASCICULE 0
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probability measure concentrated on ΛS . Moreover µ̂(s) =
∫
S1 λs dµ(λ) =

E(e2iπsθ(ξ)) for every integer s, and thus

1
N

N∑
n=1

µ̂(sn) = E

(
1
N

N∑
n=1

e2iπsnθ(ξ)

)
−→ E

(
L(θ(ξ))

)
> 0 as N −→ +∞.

Finally, Proposition 1.1 ensures the convergence of 1
N

∑N
n=1 |µ̂(sn)|2 and

the positivity of the limit follows the inequality

1
N

N∑
n=1

|µ̂(sn)|2 ⩾

∣∣∣∣∣ 1
N

N∑
n=1

µ̂(sn)

∣∣∣∣∣
2

. □

Remark. — Under assumption (A1) and infj⩾1 mj+1/mj ⩾ 3, the re-
sult holds for the measure µ constructed in [11] or [7]. Indeed then µ

is a generalized Riesz product, weak*-limit of products of trigonometric
polynomials Pj with coefficients in blocks {kmj ; −kj ⩽ k ⩽ kj} and
P̂j(mj) = P̂j(−mj) = cos(π/(mj + 2)). Then for every s =

∑
1⩽j⩽n ωjmj

where |ωj | ⩽ kj for all j, we have µ̂(s) = Π1⩽j⩽n P̂j(ωjmj) (see [7]). From
there, the convergence of 1

N

∑N
n=1 |µ̂(sn)|2 and the positivity of the limit

can be proven as in Theorem 1.2 (we skip the details).

2. Singular asymptotic distribution

We now turn to a matter adressed by Lesigne, Quas, Rosenblatt and
Wierdl in the preprint [10].

Let S = (sn)n⩾1 be a good sequence. Let λ ∈ S1. Since S is good,
the sequence

( 1
N

∑N
n=1 δ̂λsn (m)

)
N∈N =

( 1
N

∑N
n=1 λmsn

)
N∈N converges to-

wards c(λm) for any integer m, that is for any character on S1, so that
( 1

N

∑N
n=1 δλsn )N∈N converges weakly to some probability measure νS,λ.

Given a probability measure ν on S1, if there exist a good sequence S

and λ ∈ S1 such that νS,λ = ν, we say according to [10] that S represents
the measure ν at the point λ.

Lesigne & al. proved several interesting results concerning the measures
that can be represented by a good sequence at some point λ ∈ S1. For
instance, they proved that if λ is not a root of unity then νS,λ is continu-
ous (see their Theorem 1.5). They also proved that if a given probability
measure ν on S1 is not Rajchman (i.e. its Fourier coefficients do not van-
ish at infinity) then, for almost every λ with respect to the Haar measure,
there does not exist any good sequence representing ν at λ (see their The-
orem 1.6). On the opposite, if ν is absolutely continuous with respect to

ANNALES DE L’INSTITUT FOURIER
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the Haar measure, then for every λ ∈ S1 which is not a root of unity there
exists a good sequence S representing ν at λ (see their Theorem 1.8).

The above results raise the following questions. Does there exist a con-
tinuous but singular probability measure ν on S1 that can be represented
by a good sequence? If so, can one take ν to be non Rajchman?

It turns out that Theorem 1.2 allows us to exhibit a good sequence S

and a point λ such that νS,λ is a non Rajchman probability measure.

Theorem 2.1. — Let (mj)j⩾1 be an increasing sequence of integers sat-
isfying (A2) and infj⩾1 mj+1/mj ⩾ 3, and let S be the sequence associated
with it. There are uncountably many λ ∈ ΛS such that the weak*-limit
νS,λ of ( 1

N

∑N
n=1 δλsn )N⩾1 satisfies lim supj→+∞ |ν̂S,λ(mj)| = 1.

Proof. — We proceed as in the proof of Proposition 1.5, except that we
require a stronger condition on the subsequence (mjk

)k⩾1, namely
mj/mj−1 > 2k+2mjk−1 for all j ⩾ jk if k > 1.

For η ∈ {0, 1}N∗ , we still define θ(η) =
∑

k⩾1 ηk/mjk
. By the proof of

Proposition 1.5, this yields an uncountable family of λ = e2iπθ(η) in ΛS .
For each such θ = θ(η) we have ν̂S,λ(m) = c(e2iπmθ) = L(mθ) for all

m ∈ Z. So, it will be sufficient to show that L(mjn
θ) → 1 as n → +∞.

Clearly, from the expression of L(θ) as an infinite product, it is equivalent
to prove that

∑∞
j⩾1 ∥mjn

mjθ∥2 converges to 0 as n → +∞.
Fix n > 1. We may apply the inequality (1.14) either to ∥mjθ∥ or to

∥mjn
θ∥. For j < jn we get ∥mjn

mjθ∥ ⩽ mj∥mjn
θ∥ ⩽ 2 mjn

mj/mjn+1 , and
in the opposite case ∥mjn

mjθ∥ ⩽ mjn
∥mjθ∥ ⩽ 2 mjn

mj/mjk
where k is

the smallest integer such that jk > j. So,
jn−1∑
j=1

∥mjnmjθ∥2 ⩽ 4
m2

jn

m2
jn+1

jn−1∑
j=1

m2
j ⩽ 8

m2
jn

m2
jn+1

m2
jn−1 <

1
4n

.

For j ⩾ jn, summing again by blocks from jk−1 to jk − 1 for k > n, we get
jk−1∑
jk−1

∥mjnmjθ∥2 ⩽ 4
m2

jn

m2
jk

jk−1∑
jk−1

m2
j ⩽ 8

m2
jn

m2
jk

m2
jk−1 <

1
4k

m2
jn

m2
jk−1

⩽
1
4k

and finally
∞∑

j=1
∥mjn

mjθ∥2 <

∞∑
k=n

1
4k

−→ 0 as n −→ +∞. □

Let S and λ ∈ S1 be as in Theorem 2.1 and write ν = νS,λ.
The property lim supj→+∞ |ν̂(mj)| = 1 means precisely that ν is a

Dirichlet measure, see [6] and [7] for properties of Dirichlet measures.

TOME 0 (0), FASCICULE 0



10 Christophe CUNY & François PARREAU

In particular there is then a subsequence (nj)j⩾1 such that λnj converges
towards a constant of modulus 1 in the L1(ν) topology, and it follows that
any measure absolutely continuous with respect to ν is itself a Dirichlet
measure.

On the other hand, any probability measure absolutely continuous with
respect to some Rajchman measure is itself a Rajchman measure.

Hence, we infer that ν is singular with respect to any Rajchman proba-
bility measure on S1.

This result sheds light on the problem posed by Lesigne, Lesigne, Quas,
Rosenblatt and Wierdl in [10], Question 1.7: can all singular continuous
Borel probability measures on S1 be represented by a good sequence at
some λ ∈ S1? Failing to solve it in all generality, the following questions
arise now.

Questions. — In view of Theorem 2.1, one may wonder if it is possible
to find a good sequence S and λ ∈ S1 such that

0 < lim sup
n→+∞

|ν̂S,λ(n)| < 1 .

Another question is whether one can have νS,λ Rajchman and singular with
respect to the Lebesgue measure.
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