We construct a good sequence with uncountable spectrum. The construction also allows us to exhibit a continuous and singular probability measure representable by a good sequence in the sense of the recent work of Lesigne, Quas, Rosenblatt and Wierdl.
Nous construisons une bonne suite à spectre non dénombrable. La construction nous permet également d’exhiber une probabilité continue singulière représentable par une bonne suite au sens du travail récent de Lesigne, Quas, Rosenblatt et Wierdl.
Revised:
Accepted:
Online First:
Keywords: Good sequences, Uncountable spectrum.
Mot clés : Bonnes suites, spectre non dénombrable.
Cuny, Christophe 1; Parreau, François 2
@unpublished{AIF_0__0_0_A117_0, author = {Cuny, Christophe and Parreau, Fran\c{c}ois}, title = {Good sequences with uncountable spectrum and singular asymptotic distribution}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3663}, language = {en}, note = {Online first}, }
TY - UNPB AU - Cuny, Christophe AU - Parreau, François TI - Good sequences with uncountable spectrum and singular asymptotic distribution JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3663 LA - en ID - AIF_0__0_0_A117_0 ER -
Cuny, Christophe; Parreau, François. Good sequences with uncountable spectrum and singular asymptotic distribution. Annales de l'Institut Fourier, Online first, 11 p.
[1] IP-rigidity and eigenvalue groups, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1057-1076 | DOI | MR | Zbl
[2] Rigidity and non-recurrence along sequences, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 5, pp. 1464-1502 | DOI | MR | Zbl
[3] Ergodic averaging sequences, J. Anal. Math., Volume 95 (2005), pp. 63-103 | DOI | MR | Zbl
[4] Wiener’s lemma along primes and other subsequences, Adv. Math., Volume 347 (2019), pp. 340-383 | DOI | MR | Zbl
[5] On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 598-615 | DOI | MR | Zbl
[6] Analyse harmonique des mesures, Astérisque, Société Mathématique de France, 1986 no. 135-136, 261 pages | Numdam | MR | Zbl
[7] Nonsingular transformations and spectral analysis of measures, Bull. Soc. Math. Fr., Volume 119 (1991) no. 1, pp. 33-90 | DOI | MR | Zbl
[8] Sur les coefficients de Fourier–Bohr, Stud. Math., Volume 21 (1961), pp. 103-106 | DOI | MR | Zbl
[9] Random ergodic theorems and real cocycles, Isr. J. Math., Volume 130 (2002), pp. 285-321 | DOI | MR | Zbl
[10] Generation of measures by statistics of rotations along sets of integers (2022) (accepted for publication in Indiana Univ. Math. J., https://arxiv.org/abs/2210.02233)
[11] Ergodicité et pureté des produits de Riesz, Ann. Inst. Fourier, Volume 40 (1990) no. 2, pp. 391-405 | DOI | Numdam | MR | Zbl
[12] Norm convergence in ergodic theory and the behavior of Fourier transforms, Can. J. Math., Volume 46 (1994) no. 1, pp. 184-199 | DOI | MR | Zbl
[13] Pointwise ergodic theorems via harmonic analysis, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993) (London Mathematical Society Lecture Note Series), Volume 205, Cambridge University Press, 1995, pp. 3-151 | DOI | MR | Zbl
Cited by Sources: