Good sequences with uncountable spectrum and singular asymptotic distribution
Annales de l'Institut Fourier, Online first, 11 p.

We construct a good sequence with uncountable spectrum. The construction also allows us to exhibit a continuous and singular probability measure representable by a good sequence in the sense of the recent work of Lesigne, Quas, Rosenblatt and Wierdl.

Nous construisons une bonne suite à spectre non dénombrable. La construction nous permet également d’exhiber une probabilité continue singulière représentable par une bonne suite au sens du travail récent de Lesigne, Quas, Rosenblatt et Wierdl.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3663
Classification: 42A55
Keywords: Good sequences, Uncountable spectrum.
Mot clés : Bonnes suites, spectre non dénombrable.

Cuny, Christophe 1; Parreau, François 2

1 Univ Brest, CNRS, UMR 6205, Laboratoire de Mathematiques de Bretagne Atlantique, 6 avenue Victor Le Gorgeu, 29238 Brest (France)
2 Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430 Villetaneuse (France)
@unpublished{AIF_0__0_0_A117_0,
     author = {Cuny, Christophe and Parreau, Fran\c{c}ois},
     title = {Good sequences with uncountable spectrum and singular asymptotic distribution},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3663},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Cuny, Christophe
AU  - Parreau, François
TI  - Good sequences with uncountable spectrum and singular asymptotic distribution
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3663
LA  - en
ID  - AIF_0__0_0_A117_0
ER  - 
%0 Unpublished Work
%A Cuny, Christophe
%A Parreau, François
%T Good sequences with uncountable spectrum and singular asymptotic distribution
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3663
%G en
%F AIF_0__0_0_A117_0
Cuny, Christophe; Parreau, François. Good sequences with uncountable spectrum and singular asymptotic distribution. Annales de l'Institut Fourier, Online first, 11 p.

[1] Aaronson, Jon; Hosseini, Maryam; Lemańczyk, Mariusz IP-rigidity and eigenvalue groups, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1057-1076 | DOI | MR | Zbl

[2] Bergelson, Vitaly; del Junco, Andres; Lemańczyk, Mariusz; Rosenblatt, Joseph Rigidity and non-recurrence along sequences, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 5, pp. 1464-1502 | DOI | MR | Zbl

[3] Boshernitzan, Michael; Kolesnik, Grigori; Quas, Anthony; Wierdl, Máté Ergodic averaging sequences, J. Anal. Math., Volume 95 (2005), pp. 63-103 | DOI | MR | Zbl

[4] Cuny, Christophe; Eisner, Tanja; Farkas, Bálint Wiener’s lemma along primes and other subsequences, Adv. Math., Volume 347 (2019), pp. 340-383 | DOI | MR | Zbl

[5] Erdös, Pál; Taylor, Samuel J. On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 598-615 | DOI | MR | Zbl

[6] Host, Bernard; Méla, Jean-François; Parreau, François Analyse harmonique des mesures, Astérisque, Société Mathématique de France, 1986 no. 135-136, 261 pages | Numdam | MR | Zbl

[7] Host, Bernard; Méla, Jean-François; Parreau, François Nonsingular transformations and spectral analysis of measures, Bull. Soc. Math. Fr., Volume 119 (1991) no. 1, pp. 33-90 | DOI | MR | Zbl

[8] Kahane, Jean-Pierre Sur les coefficients de Fourier–Bohr, Stud. Math., Volume 21 (1961), pp. 103-106 | DOI | MR | Zbl

[9] Lemańczyk, Mariusz; Lesigne, Emmanuel; Parreau, François; Volný, Dalibor; Wierdl, Máté Random ergodic theorems and real cocycles, Isr. J. Math., Volume 130 (2002), pp. 285-321 | DOI | MR | Zbl

[10] Lesigne, Emmanuel; Quas, Anthony; Rosenblatt, Joseph; Wierdl, Máté Generation of measures by statistics of rotations along sets of integers (2022) (accepted for publication in Indiana Univ. Math. J., https://arxiv.org/abs/2210.02233)

[11] Parreau, François Ergodicité et pureté des produits de Riesz, Ann. Inst. Fourier, Volume 40 (1990) no. 2, pp. 391-405 | DOI | Numdam | MR | Zbl

[12] Rosenblatt, Joseph Norm convergence in ergodic theory and the behavior of Fourier transforms, Can. J. Math., Volume 46 (1994) no. 1, pp. 184-199 | DOI | MR | Zbl

[13] Rosenblatt, Joseph; Wierdl, Máté Pointwise ergodic theorems via harmonic analysis, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993) (London Mathematical Society Lecture Note Series), Volume 205, Cambridge University Press, 1995, pp. 3-151 | DOI | MR | Zbl

Cited by Sources: