In a first part of this paper, we introduce a homology theory for infinity-operads and for dendroidal spaces which extends the usual homology of differential graded operads defined in terms of the bar construction, and we prove some of its basic properties. In a second part, we define general bar and cobar constructions. These constructions send infinity-operads to infinity-cooperads and vice versa, and define a bar-cobar (or “Koszul”) duality. Somewhat surprisingly, this duality is shown to hold much more generally between arbitrary presheaves and copresheaves on the category of trees defining infinity-operads. We emphasize that our methods are completely elementary and explicit.
Dans une première partie, nous introduisons une théorie de l’homologie pour les infini-opérades et les espaces dendroïdaux, qui étend l’homologie usuelle des opérades différentielles graduées définie au moyen de la construction bar, et nous prouvons certaines de ses propriétés de base. Dans une seconde partie, nous définissons des constructions bar et cobar générales. Ces constructions envoient les infini-opérades sur des infini-coopérades et vice versa, et définissent une dualité bar-cobar (ou « de Koszul »). De façon assez surprenante, cette dualité est encore vraie pour des préfaisceaux et copréfaisceaux quelconques sur la catégorie des arbres définissant les infini-opérades. Nous insistons sur le caractère élémentaire et explicite de nos méthodes.
Revised:
Accepted:
Online First:
Keywords: Koszul duality, infinity-operads, dendroidal sets.
Mot clés : Dualité de Koszul, infini-opérades, ensembles dendroidaux.
Hoffbeck, Eric 1; Moerdijk, Ieke 2
@unpublished{AIF_0__0_0_A116_0, author = {Hoffbeck, Eric and Moerdijk, Ieke}, title = {Homology of infinity-operads}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3653}, language = {en}, note = {Online first}, }
Hoffbeck, Eric; Moerdijk, Ieke. Homology of infinity-operads. Annales de l'Institut Fourier, Online first, 37 p.
[1] Dendroidal sets as models for connective spectra, J. -Theory, Volume 14 (2014) no. 3, pp. 387-421 | DOI | MR | Zbl
[2] Homology of dendroidal sets, Homology Homotopy Appl., Volume 19 (2017) no. 1, pp. 111-134 | DOI | Zbl
[3] Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol., Volume 9 (2005), pp. 833-933 | DOI | MR | Zbl
[4] Bar-cobar duality for operads in stable homotopy theory, J. Topol., Volume 5 (2012) no. 1, pp. 39-80 | DOI | MR | Zbl
[5] Dendroidal sets and simplicial operads, J. Topol., Volume 6 (2013) no. 3, pp. 705-756 | DOI | MR | Zbl
[6] Koszul duality of operads and homology of partition posets, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic -theory (Contemporary Mathematics), Volume 346, American Mathematical Society, 2004, pp. 115-215 | DOI | MR | Zbl
[7] On a notion of homotopy Segal -Hopf cooperad (2020) (https://arxiv.org/abs/2011.11333)
[8] Operads, homotopy algebra and iterated integrals for double loop spaces (1994) (https://arxiv.org/abs/hep-th/9403055)
[9] Koszul duality for operads, Duke Math. J., Volume 76 (1994) no. 1, pp. 203-272 | DOI | MR | Zbl
[10] Simplicial and dendroidal homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 3, Springer, 2022 | DOI
[11] Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon) (Mathematical Physics Studies), Volume 21, Kluwer Academic Publishers, 2000, pp. 255-307 | MR | Zbl
[12] Algebraic operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012, xxiv+634 pages | DOI | MR | Zbl
[13] Dendroidal sets, Algebr. Geom. Topol., Volume 7 (2007), pp. 1441-1470 | DOI | MR | Zbl
[14] The tree representation of , J. Pure Appl. Algebra, Volume 111 (1996) no. 1-3, pp. 245-253 | DOI | MR | Zbl
[15] Homology of generalized partition posets, J. Pure Appl. Algebra, Volume 208 (2007) no. 2, pp. 699-725 | DOI | MR | Zbl
Cited by Sources: