Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates
Annales de l'Institut Fourier, Online first, 50 p.

We consider the anisotropic Shubin operators (-Δ) m +|x| 2k acting on the space L 2 ( n ), with k,m1 some positive integers. We provide sharp quantitative estimates in Gelfand–Shilov spaces for the eigenfunctions of these selfadjoint differential operators with a strategy based on the classical approach to obtain Agmon estimates in spectral theory. By using a Weyl law for the eigenvalues of the anisotropic Shubin operators, we also describe the smoothing properties of the semigroups generated by the fractional powers of these operators, with precise estimates in short times. This description allows us to prove positive null-controllability results for the associated evolution equations posed on the whole space n , from control supports which are thick with respect to densities and in any positive time. We generalize in particular results known for the evolution equations associated with fractional harmonic oscillators.

On considère les opérateurs de Shubin anisotropes (-Δ) m +|x| 2k agissant sur l’espace L 2 ( n ), avec k,m1 des entiers strictement positifs. On démontre des inégalités quantitatives et précises dans des espaces de Gelfand–Shilov pour les fonctions propres de ces opérateurs différentiels autoadjoints, grâce à une stratégie basée sur l’approche classique pour obtenir des estimées d’Agmon en théorie spectrale. En utilisant une loi de Weyl pour les valeurs propres des opérateurs de Shubin anisotropes, on décrit également les effets régularisants des semi-groupes engendrés par les puissances fractionnaires de ces opérateurs, et on donne des estimations précises en temps courts. Cette description permet de démontrer des résultats positifs de contrôlabilité à zéro pour les équations d’évolution associées posées sur tout l’espace n , depuis des supports de contrôle épais par rapport à des densités, et en tout temps strictement positif. On généralise en particulier des résultats connus pour les équations d’évolution associées aux oscillateurs harmoniques fractionnaires.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3642
Classification: 93B05, 35B65, 35P10
Keywords: Null-controllability, Gelfand–Shilov regularity, Agmon estimates, Pseudodifferential calculus, Anisotropic Shubin operators
Mot clés : Contrôlabilité à zéro, régularité Gelfand–Shilov, estimées d’Agmon, calcul pseudo-différentiel, opérateurs de Shubin anisotropes.
Alphonse, Paul 1

1 Université de Lyon, ENSL, UMPA – UMR 5669, F-69364 Lyon (France)
@unpublished{AIF_0__0_0_A72_0,
     author = {Alphonse, Paul},
     title = {Null-controllability of evolution equations associated with fractional {Shubin} operators through quantitative {Agmon} estimates},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3642},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Alphonse, Paul
TI  - Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3642
LA  - en
ID  - AIF_0__0_0_A72_0
ER  - 
%0 Unpublished Work
%A Alphonse, Paul
%T Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3642
%G en
%F AIF_0__0_0_A72_0
Alphonse, Paul. Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates. Annales de l'Institut Fourier, Online first, 50 p.

[1] Agmon, Shmuel On exponential decay of solutions of second order elliptic equation in unbounded domains, Proc. A. Pleijel Conf., Uppsala, 1979

[2] Agmon, Shmuel Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes, 29, Princeton University Press, 1982, 118 pages | MR | Zbl

[3] Alphonse, Paul Régularité des solutions et contrôlabilité d’équations d’évolution associées à des opérateurs non-autoadjoints, Ph. D. Thesis, Université de Rennes 1 (2020)

[4] Alphonse, Paul; Bernier, Joackim Smoothing properties of fractional Ornstein–Uhlenbeck semigroups and null-controllability, Bull. Sci. Math., Volume 165 (2020), 102914, 52 pages | DOI | MR | Zbl

[5] Alphonse, Paul; Bernier, Joackim Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects, Ann. Sci. Éc. Norm. Supér. (4), Volume 56 (2023) no. 2, pp. 323-382 | DOI | MR | Zbl

[6] Alphonse, Paul; Martin, Jérémy Stabilization and approximate null-controllability for a large class of diffusive equations from thick control supports, ESAIM, Control Optim. Calc. Var., Volume 28 (2022), 16, 30 pages | DOI | MR | Zbl

[7] Beauchard, Karine; Egidi, Michela; Pravda-Starov, Karel Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 6, pp. 651-700 | DOI | Numdam | MR | Zbl

[8] Beauchard, Karine; Jaming, Philippe; Pravda-Starov, Karel Spectral estimates for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations, Stud. Math., Volume 260 (2021) no. 1, pp. 1-43 | DOI | MR | Zbl

[9] Beauchard, Karine; Pravda-Starov, Karel Null-controllability of hypoelliptic quadratic differential equations, J. Éc. Polytech., Math., Volume 5 (2018), pp. 1-43 | DOI | Numdam | MR | Zbl

[10] Bernier, Joackim; Casas, Fernando; Crouseilles, Nicolas A note on some microlocal estimates used to prove the convergence of splitting methods relying on pseudo-spectral discretizations (2020) (preprint, https://hal.archives-ouvertes.fr/hal-02929869)

[11] Boggiatto, Paolo; Buzano, Ernesto; Rodino, Luigi Global hypoellipticity and spectral theory, Mathematical Research, 92, Akademie Verlag, 1996, 187 pages | MR | Zbl

[12] Boulkhemair, Abdesslam L 2 estimates for Weyl quantization, J. Funct. Anal., Volume 165 (1999) no. 1, pp. 173-204 | DOI | MR | Zbl

[13] Cappiello, Marco; Gramchev, Todor; Pilipovic, Stevan; Rodino, Luigi Anisotropic Shubin operators and eigenfunction expansions in Gelfand-Shilov spaces, J. Anal. Math., Volume 138 (2019) no. 2, pp. 857-870 | DOI | MR | Zbl

[14] Cappiello, Marco; Gramchev, Todor; Rodino, Luigi Entire extensions and exponential decay for semilinear elliptic equations, J. Anal. Math., Volume 111 (2010), pp. 339-367 | DOI | MR | Zbl

[15] Chatzakou, Marianna; Delgado, Julio; Ruzhansky, Michael On a class of anharmonic oscillators, J. Math. Pures Appl., Volume 153 (2021), pp. 1-29 | DOI | MR | Zbl

[16] Coron, Jean-Michel Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007, xiv+426 pages | DOI | MR | Zbl

[17] Duyckaerts, Thomas; Miller, Luc Resolvent conditions for the control of parabolic equations, J. Funct. Anal., Volume 263 (2012) no. 11, pp. 3641-3673 | DOI | MR | Zbl

[18] Egidi, Michela; Veselić, Ivan Sharp geometric condition for null-controllability of the heat equation on d and consistent estimates on the control cost, Arch. Math., Volume 111 (2018) no. 1, pp. 85-99 | DOI | MR | Zbl

[19] Helffer, Bernard Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, 112, Société Mathématique de France, 1984, ix+197 pages (with an English summary) | Numdam | MR | Zbl

[20] Helffer, Bernard; Robert, Didier Asymptotique des niveaux d’énergie pour des hamiltoniens à un degré de liberté, Duke Math. J., Volume 49 (1982) no. 4, pp. 853-868 | MR | Zbl

[21] Helffer, Bernard; Robert, Didier Propriétés asymptotiques du spectre d’opérateurs pseudodifférentiels sur n , Commun. Partial Differ. Equations, Volume 7 (1982) no. 7, pp. 795-882 | DOI | MR | Zbl

[22] Hörmander, Lars The analysis of linear partial differential operators. III. Pseudodifferential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985, viii+525 pages | MR | Zbl

[23] Huang, Shanlin; Wang, Gengsheng; Wang, Ming Characterizations of stabilizable sets for some parabolic equations in n , J. Differ. Equations, Volume 272 (2021), pp. 255-288 | DOI | MR | Zbl

[24] Koenig, Armand Contrölabilité de quelques équations aux dérivées partielles paraboliques peu diffusives, Ph. D. Thesis, Université Côte d’Azur (2019)

[25] Koenig, Armand Lack of null-controllability for the fractional heat equation and related equations, SIAM J. Control Optim., Volume 58 (2020) no. 6, pp. 3130-3160 | DOI | MR | Zbl

[26] Kovrijkine, Oleg Some results related to the Logvinenko-Sereda theorem, Proc. Am. Math. Soc., Volume 129 (2001) no. 10, pp. 3037-3047 | DOI | MR | Zbl

[27] Lebeau, Gilles; Robbiano, Luc Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1-2, pp. 335-356 | DOI | MR | Zbl

[28] Lerner, Nicolas Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators. Theory and Applications, 3, Birkhäuser, 2010, xii+397 pages | DOI | MR | Zbl

[29] Lerner, Nicolas; Morimoto, Yoshinori; Pravda-Starov, Karel; Xu, Chao-Jiang Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, Volume 6 (2013) no. 3, pp. 625-648 | DOI | MR | Zbl

[30] Lerner, Nicolas; Morimoto, Yoshinori; Pravda-Starov, Karel; Xu, Chao-Jiang Spectral and phase space analysis of the linearized non-cutoff Kac collision operator, J. Math. Pures Appl., Volume 100 (2013) no. 6, pp. 832-867 | DOI | MR

[31] Lerner, Nicolas; Morimoto, Yoshinori; Pravda-Starov, Karel; Xu, Chao-Jiang Gelfand–Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation, J. Funct. Anal., Volume 269 (2015) no. 2, pp. 459-535 | DOI | MR | Zbl

[32] Martin, Jérémy; Pravda-Starov, Karel Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations, J. Evol. Equ., Volume 21 (2021) no. 1, pp. 1059-1087 | DOI | MR | Zbl

[33] Martin, Jérémy; Pravda-Starov, Karel Spectral inequalities for combinations of Hermite functions and null-controllability for evolution equations enjoying Gelfand–Shilov smoothing effects, J. Inst. Math. Jussieu, Volume 22 (2023) no. 6, pp. 2533-2582 | DOI | MR | Zbl

[34] Miller, Luc Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones (2008) (preprint, https://hal.archives-ouvertes.fr/hal-00411840)

[35] Miller, Luc A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst., Ser. B, Volume 14 (2010) no. 4, pp. 1465-1485 | DOI | MR | Zbl

[36] Nicola, Fabio; Rodino, Luigi Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators. Theory and Applications, 4, Birkhäuser, 2010, x+306 pages | DOI | MR | Zbl

[37] Robert, Didier Autour de l’approximation semi-classique, Progress in Mathematics, 68, Birkhäuser, 1987, x+329 pages | Zbl

[38] Shubin, Mikhail A. Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer, 1987, x+278 pages | DOI | MR | Zbl

[39] Tucsnak, Marius; Weiss, George Observation and control for operator semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2009, xii+483 pages | DOI | MR | Zbl

[40] Voros, André Oscillateur quartique et méthodes semi-classiques, Séminaire Goulaouic–Schwartz, 1979–1980 (French), École Polytech., 1980, 6, 7 | Numdam | MR | Zbl

[41] Wang, Gengsheng; Wang, Ming; Zhang, Can; Zhang, Yubiao Observable set, observability, interpolation inequality and spectral inequality for the heat equation in n , J. Math. Pures Appl., Volume 126 (2019), pp. 144-194 | DOI | MR | Zbl

Cited by Sources: