We consider the anisotropic Shubin operators acting on the space , with some positive integers. We provide sharp quantitative estimates in Gelfand–Shilov spaces for the eigenfunctions of these selfadjoint differential operators with a strategy based on the classical approach to obtain Agmon estimates in spectral theory. By using a Weyl law for the eigenvalues of the anisotropic Shubin operators, we also describe the smoothing properties of the semigroups generated by the fractional powers of these operators, with precise estimates in short times. This description allows us to prove positive null-controllability results for the associated evolution equations posed on the whole space , from control supports which are thick with respect to densities and in any positive time. We generalize in particular results known for the evolution equations associated with fractional harmonic oscillators.
On considère les opérateurs de Shubin anisotropes agissant sur l’espace , avec des entiers strictement positifs. On démontre des inégalités quantitatives et précises dans des espaces de Gelfand–Shilov pour les fonctions propres de ces opérateurs différentiels autoadjoints, grâce à une stratégie basée sur l’approche classique pour obtenir des estimées d’Agmon en théorie spectrale. En utilisant une loi de Weyl pour les valeurs propres des opérateurs de Shubin anisotropes, on décrit également les effets régularisants des semi-groupes engendrés par les puissances fractionnaires de ces opérateurs, et on donne des estimations précises en temps courts. Cette description permet de démontrer des résultats positifs de contrôlabilité à zéro pour les équations d’évolution associées posées sur tout l’espace , depuis des supports de contrôle épais par rapport à des densités, et en tout temps strictement positif. On généralise en particulier des résultats connus pour les équations d’évolution associées aux oscillateurs harmoniques fractionnaires.
Revised:
Accepted:
Online First:
Published online:
Keywords: Null-controllability, Gelfand–Shilov regularity, Agmon estimates, Pseudodifferential calculus, Anisotropic Shubin operators
Mot clés : Contrôlabilité à zéro, régularité Gelfand–Shilov, estimées d’Agmon, calcul pseudo-différentiel, opérateurs de Shubin anisotropes.
@article{AIF_2024__74_4_1671_0, author = {Alphonse, Paul}, title = {Null-controllability of evolution equations associated with fractional {Shubin} operators through quantitative {Agmon} estimates}, journal = {Annales de l'Institut Fourier}, pages = {1671--1720}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {4}, year = {2024}, doi = {10.5802/aif.3642}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3642/} }
TY - JOUR AU - Alphonse, Paul TI - Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates JO - Annales de l'Institut Fourier PY - 2024 SP - 1671 EP - 1720 VL - 74 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3642/ DO - 10.5802/aif.3642 LA - en ID - AIF_2024__74_4_1671_0 ER -
%0 Journal Article %A Alphonse, Paul %T Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates %J Annales de l'Institut Fourier %D 2024 %P 1671-1720 %V 74 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3642/ %R 10.5802/aif.3642 %G en %F AIF_2024__74_4_1671_0
Alphonse, Paul. Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates. Annales de l'Institut Fourier, Volume 74 (2024) no. 4, pp. 1671-1720. doi : 10.5802/aif.3642. https://aif.centre-mersenne.org/articles/10.5802/aif.3642/
[1] On exponential decay of solutions of second order elliptic equation in unbounded domains, Proc. A. Pleijel Conf., Uppsala, 1979
[2] Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of -body Schrödinger operators, Mathematical Notes, 29, Princeton University Press, 1982, 118 pages | MR | Zbl
[3] Régularité des solutions et contrôlabilité d’équations d’évolution associées à des opérateurs non-autoadjoints, Ph. D. Thesis, Université de Rennes 1 (2020)
[4] Smoothing properties of fractional Ornstein–Uhlenbeck semigroups and null-controllability, Bull. Sci. Math., Volume 165 (2020), 102914, 52 pages | DOI | MR | Zbl
[5] Polar decomposition of semigroups generated by non-selfadjoint quadratic differential operators and regularizing effects, Ann. Sci. Éc. Norm. Supér. (4), Volume 56 (2023) no. 2, pp. 323-382 | DOI | MR | Zbl
[6] Stabilization and approximate null-controllability for a large class of diffusive equations from thick control supports, ESAIM, Control Optim. Calc. Var., Volume 28 (2022), 16, 30 pages | DOI | MR | Zbl
[7] Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 6, pp. 651-700 | DOI | Numdam | MR | Zbl
[8] Spectral estimates for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations, Stud. Math., Volume 260 (2021) no. 1, pp. 1-43 | DOI | MR | Zbl
[9] Null-controllability of hypoelliptic quadratic differential equations, J. Éc. Polytech., Math., Volume 5 (2018), pp. 1-43 | DOI | Numdam | MR | Zbl
[10] A note on some microlocal estimates used to prove the convergence of splitting methods relying on pseudo-spectral discretizations (2020) (preprint, https://hal.archives-ouvertes.fr/hal-02929869)
[11] Global hypoellipticity and spectral theory, Mathematical Research, 92, Akademie Verlag, 1996, 187 pages | MR | Zbl
[12] estimates for Weyl quantization, J. Funct. Anal., Volume 165 (1999) no. 1, pp. 173-204 | DOI | MR | Zbl
[13] Anisotropic Shubin operators and eigenfunction expansions in Gelfand-Shilov spaces, J. Anal. Math., Volume 138 (2019) no. 2, pp. 857-870 | DOI | MR | Zbl
[14] Entire extensions and exponential decay for semilinear elliptic equations, J. Anal. Math., Volume 111 (2010), pp. 339-367 | DOI | MR | Zbl
[15] On a class of anharmonic oscillators, J. Math. Pures Appl., Volume 153 (2021), pp. 1-29 | DOI | MR | Zbl
[16] Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007, xiv+426 pages | DOI | MR | Zbl
[17] Resolvent conditions for the control of parabolic equations, J. Funct. Anal., Volume 263 (2012) no. 11, pp. 3641-3673 | DOI | MR | Zbl
[18] Sharp geometric condition for null-controllability of the heat equation on and consistent estimates on the control cost, Arch. Math., Volume 111 (2018) no. 1, pp. 85-99 | DOI | MR | Zbl
[19] Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, 112, Société Mathématique de France, 1984, ix+197 pages (with an English summary) | Numdam | MR | Zbl
[20] Asymptotique des niveaux d’énergie pour des hamiltoniens à un degré de liberté, Duke Math. J., Volume 49 (1982) no. 4, pp. 853-868 | MR | Zbl
[21] Propriétés asymptotiques du spectre d’opérateurs pseudodifférentiels sur , Commun. Partial Differ. Equations, Volume 7 (1982) no. 7, pp. 795-882 | DOI | MR | Zbl
[22] The analysis of linear partial differential operators. III. Pseudodifferential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985, viii+525 pages | MR | Zbl
[23] Characterizations of stabilizable sets for some parabolic equations in , J. Differ. Equations, Volume 272 (2021), pp. 255-288 | DOI | MR | Zbl
[24] Contrölabilité de quelques équations aux dérivées partielles paraboliques peu diffusives, Ph. D. Thesis, Université Côte d’Azur (2019)
[25] Lack of null-controllability for the fractional heat equation and related equations, SIAM J. Control Optim., Volume 58 (2020) no. 6, pp. 3130-3160 | DOI | MR | Zbl
[26] Some results related to the Logvinenko-Sereda theorem, Proc. Am. Math. Soc., Volume 129 (2001) no. 10, pp. 3037-3047 | DOI | MR | Zbl
[27] Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1-2, pp. 335-356 | DOI | MR | Zbl
[28] Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators. Theory and Applications, 3, Birkhäuser, 2010, xii+397 pages | DOI | MR | Zbl
[29] Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, Volume 6 (2013) no. 3, pp. 625-648 | DOI | MR | Zbl
[30] Spectral and phase space analysis of the linearized non-cutoff Kac collision operator, J. Math. Pures Appl., Volume 100 (2013) no. 6, pp. 832-867 | DOI | MR
[31] Gelfand–Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation, J. Funct. Anal., Volume 269 (2015) no. 2, pp. 459-535 | DOI | MR | Zbl
[32] Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations, J. Evol. Equ., Volume 21 (2021) no. 1, pp. 1059-1087 | DOI | MR | Zbl
[33] Spectral inequalities for combinations of Hermite functions and null-controllability for evolution equations enjoying Gelfand–Shilov smoothing effects, J. Inst. Math. Jussieu, Volume 22 (2023) no. 6, pp. 2533-2582 | DOI | MR | Zbl
[34] Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones (2008) (preprint, https://hal.archives-ouvertes.fr/hal-00411840)
[35] A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst., Ser. B, Volume 14 (2010) no. 4, pp. 1465-1485 | DOI | MR | Zbl
[36] Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators. Theory and Applications, 4, Birkhäuser, 2010, x+306 pages | DOI | MR | Zbl
[37] Autour de l’approximation semi-classique, Progress in Mathematics, 68, Birkhäuser, 1987, x+329 pages | Zbl
[38] Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer, 1987, x+278 pages | DOI | MR | Zbl
[39] Observation and control for operator semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2009, xii+483 pages | DOI | MR | Zbl
[40] Oscillateur quartique et méthodes semi-classiques, Séminaire Goulaouic–Schwartz, 1979–1980 (French), École Polytech., 1980, 6, 7 | Numdam | MR | Zbl
[41] Observable set, observability, interpolation inequality and spectral inequality for the heat equation in , J. Math. Pures Appl., Volume 126 (2019), pp. 144-194 | DOI | MR | Zbl
Cited by Sources: