Weighted norm inequalities for derivatives on Bergman spaces
Annales de l'Institut Fourier, Volume 74 (2024) no. 4, pp. 1721-1744.

An equivalent norm in the weighted Bergman space A ω p , induced by an ω in a certain large class of non-radial weights, is established in terms of higher order derivatives. Other Littlewood–Paley inequalities are also considered. On the way to the proofs, we characterize the q-Carleson measures for the weighted Bergman space A ω p and the boundedness of a Hörmander-type maximal function. Results obtained are further applied to describe the resolvent set of the integral operators T g (f)(z)= 0 z g (ζ)f(ζ)dζ acting on A ω p .

Nous construisons une norme équivalente, définie à l’aide des dérivées supérieures, dans un espace de Bergman pondéré A ω p ω appartient à une large classe des poids non radiaux. Nous analysons aussi autres inégalités de Littlewood–Paley. Avant de démontrer les résultats principaux nous caractérisons les q-mesures de Carleson sur les espaces A ω p et montrons que la fonction maximale de Hörmander est bornée. En utilisant nos résultats nous pouvons décrire l’ensemble résolvant de l’opérateur intégral T g (f)(z)= 0 z g (ζ)f(ζ)dζ agissant sur A ω p .

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/aif.3632
Classification: 30H20, 47G10
Keywords: Bergman space, Carleson measure, integral operator, Littlewood–Paley inequality, Hörmander-type maximal function, resolvent set.
Mot clés : Espace de Bergman, mesure de Carleson, opérateur intégral, inégalité de Littlewood–Paley, fonction maximale de Hörmander, ensemble résolvant.

Peláez, José Ángel 1; Rättyä, Jouni 2

1 Departamento de Análisis Matemático, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, (Spain)
2 University of Eastern Finland, P.O.Box 111, 80101 Joensuu (Finland)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2024__74_4_1721_0,
     author = {Pel\'aez, Jos\'e \'Angel and R\"atty\"a, Jouni},
     title = {Weighted norm inequalities for derivatives on {Bergman} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1721--1744},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {4},
     year = {2024},
     doi = {10.5802/aif.3632},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3632/}
}
TY  - JOUR
AU  - Peláez, José Ángel
AU  - Rättyä, Jouni
TI  - Weighted norm inequalities for derivatives on Bergman spaces
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 1721
EP  - 1744
VL  - 74
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3632/
DO  - 10.5802/aif.3632
LA  - en
ID  - AIF_2024__74_4_1721_0
ER  - 
%0 Journal Article
%A Peláez, José Ángel
%A Rättyä, Jouni
%T Weighted norm inequalities for derivatives on Bergman spaces
%J Annales de l'Institut Fourier
%D 2024
%P 1721-1744
%V 74
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3632/
%R 10.5802/aif.3632
%G en
%F AIF_2024__74_4_1721_0
Peláez, José Ángel; Rättyä, Jouni. Weighted norm inequalities for derivatives on Bergman spaces. Annales de l'Institut Fourier, Volume 74 (2024) no. 4, pp. 1721-1744. doi : 10.5802/aif.3632. https://aif.centre-mersenne.org/articles/10.5802/aif.3632/

[1] Aleman, Alexandru; Constantin, Olivia Spectra of integration operators on weighted Bergman spaces, J. Anal. Math., Volume 109 (2009), pp. 199-231 | DOI | MR | Zbl

[2] Aleman, Alexandru; Peláez, José Ángel Spectra of integration operators and weighted square functions, Indiana Univ. Math. J., Volume 61 (2012) no. 2, pp. 775-793 | DOI | MR | Zbl

[3] Aleman, Alexandru; Pott, Sandra; Reguera, María Carmen Characterizations of a limiting class B of Békollé–Bonami weights, Rev. Mat. Iberoam., Volume 35 (2019) no. 6, pp. 1677-1692 | DOI | MR | Zbl

[4] Aleman, Alexandru; Siskakis, Aristomenis G. Integration operators on Bergman spaces, Indiana Univ. Math. J., Volume 46 (1997) no. 2, pp. 337-356 | DOI | MR | Zbl

[5] Bao, Guanlong; Wulan, Hasi; Zhu, Kehe A Hardy–Littlewood theorem for Bergman spaces, Ann. Acad. Sci. Fenn., Math., Volume 43 (2018) no. 2, pp. 807-821 | DOI | MR | Zbl

[6] Bekollé, David Inégalité à poids pour le projecteur de Bergman dans la boule unité de n , Stud. Math., Volume 71 (1982) no. 3, pp. 305-323 | DOI | MR | Zbl

[7] Bekollé, David; Bonami, Aline Inégalités à poids pour le noyau de Bergman, C. R. Math. Acad. Sci. Paris, Volume 286 (1978) no. 18, p. A775-A778 | MR | Zbl

[8] Borichev, Alexander On the Bekollé–Bonami condition, Math. Ann., Volume 328 (2004) no. 3, pp. 389-398 | DOI | MR | Zbl

[9] Duoandikoetxea, Javier Fourier analysis, Graduate Studies in Mathematics, 29, American Mathematical Society, 2001, xviii+222 pages | DOI | MR | Zbl

[10] Duoandikoetxea, Javier; Martín-Reyes, Francisco J.; Ombrosi, Sheldy On the A conditions for general bases, Math. Z., Volume 282 (2016) no. 3-4, pp. 955-972 | DOI | MR | Zbl

[11] Hörmander, Lars L p estimates for (pluri-) subharmonic functions, Math. Scand., Volume 20 (1967), pp. 65-78 | DOI | MR | Zbl

[12] Kenfack, Carnot D.; Sehba, Benoît F. Maximal function and Carleson measures in the theory of Békollé–Bonami weights, Colloq. Math., Volume 142 (2016) no. 2, pp. 211-226 | DOI | MR | Zbl

[13] Kerman, R. A.; Torchinsky, Alberto Integral inequalities with weights for the Hardy maximal function, Stud. Math., Volume 71 (1981/82) no. 3, pp. 277-284 | DOI | MR | Zbl

[14] Korhonen, Taneli; Rättyä, Jouni Zero sequences, factorization and sampling measures for weighted Bergman spaces, Math. Z., Volume 291 (2019) no. 3-4, pp. 1145-1173 | DOI | MR | Zbl

[15] Luecking, Daniel H. Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Am. J. Math., Volume 107 (1985) no. 1, pp. 85-111 | DOI | MR | Zbl

[16] Luecking, Daniel H. Trace ideal criteria for Toeplitz operators, J. Funct. Anal., Volume 73 (1987) no. 2, pp. 345-368 | DOI | MR | Zbl

[17] Pavlović, Miroslav; Peláez, José Ángel An equivalence for weighted integrals of an analytic function and its derivative, Math. Nachr., Volume 281 (2008) no. 11, pp. 1612-1623 | DOI | MR | Zbl

[18] Peláez, José Ángel Small weighted Bergman spaces, Proceedings of the Summer School in Complex and Harmonic Analysis, and Related Topics (Publ. Univ. East. Finl. Rep. Stud. For. Nat. Sci.), Volume 22, Univ. East. Finl., Fac. Sci. For., Joensuu, 2016, pp. 29-98 | MR

[19] Peláez, José Ángel; Rättyä, Jouni Generalized Hilbert operators on weighted Bergman spaces, Adv. Math., Volume 240 (2013), pp. 227-267 | DOI | MR | Zbl

[20] Peláez, José Ángel; Rättyä, Jouni Weighted Bergman spaces induced by rapidly increasing weights, Memoirs of the American Mathematical Society, 227, American Mathematical Society, 2014 no. 1066, vi+124 pages | DOI | MR | Zbl

[21] Peláez, José Ángel; Rättyä, Jouni Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann., Volume 362 (2015) no. 1-2, pp. 205-239 | DOI | MR | Zbl

[22] Peláez, José Ángel; Rättyä, Jouni Two weight inequality for Bergman projection, J. Math. Pures Appl., Volume 105 (2016) no. 1, pp. 102-130 | DOI | MR | Zbl

[23] Peláez, José Ángel; Rättyä, Jouni Harmonic conjugates on Bergman spaces induced by doubling weights, Anal. Math. Phys., Volume 10 (2020) no. 2, 18, 22 pages | DOI | MR | Zbl

[24] Peláez, José Ángel; Rättyä, Jouni Bergman projection induced by radial weight, Adv. Math., Volume 391 (2021), 107950, 70 pages | DOI | MR | Zbl

[25] Peláez, José Ángel; Rättyä, Jouni Bergman projection and BMO in hyperbolic metric: improvement of classical result, Math. Z., Volume 305 (2023) no. 2, 19, 9 pages | DOI | MR | Zbl

[26] Peláez, José Ángel; Rättyä, Jouni; Wick, Brett D. Bergman projection induced by kernel with integral representation, J. Anal. Math., Volume 138 (2019) no. 1, pp. 325-360 | DOI | MR | Zbl

[27] Siskakis, Aristomenis G. Weighted integrals of analytic functions, Acta Sci. Math., Volume 66 (2000) no. 3-4, pp. 651-664 | MR | Zbl

[28] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages | MR | Zbl

[29] Zhu, Kehe Operator theory in function spaces, Mathematical Surveys and Monographs, 138, American Mathematical Society, 2007, xvi+348 pages | DOI | MR | Zbl

Cited by Sources: