For an algebraic vector bundle over a smooth algebraic variety , a monodromic -module on is decomposed into a direct sum of some -modules on . We show that the Hodge filtration of a monodromic mixed Hodge module is decomposed with respect to the decomposition of the underlying -module. By using this result, we endow the Fourier–Laplace transform of the underlying -module of a monodromic mixed Hodge module with a mixed Hodge module structure. Moreover, we describe the irregular Hodge filtration on concretely and show that it coincides with the Hodge filtration at all integer indices.
Pour un fibré vectoriel algébrique sur une variété algébrique lisse , un -module monodromique sur est décomposé en une somme directe de certains -modules sur . Nous montrons que la filtration de Hodge d’un module de Hodge mixte monodromique est décomposée par rapport à la décomposition du -module sous-jacent. En utilisant ce résultat, nous munissons la transformée de Fourier–Laplace du -module sous-jacent à un module de Hodge mixte monodromique d’une structure de module de Hodge mixte. De plus, nous décrivons explicitement la filtration de Hodge irrégulière sur et montrons qu’elle coïncide avec la filtration de Hodge aux indices entiers.
Revised:
Accepted:
Online First:
Published online:
Keywords: $D$-module, Perverse sheaf, Mixed Hodge module, Mixed twistor $D$-module, Irregular Hodge filtration.
Mot clés : $D$-module, faisceau pervers, module de Hodge mixte, $D$-module de twisteur mixte, filtration de Hodge irrégulière.
@article{AIF_2024__74_4_1603_0, author = {Saito, Takahiro}, title = {The {Hodge} filtration of a monodromic mixed {Hodge} module and the irregular {Hodge} filtration}, journal = {Annales de l'Institut Fourier}, pages = {1603--1670}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {4}, year = {2024}, doi = {10.5802/aif.3629}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3629/} }
TY - JOUR AU - Saito, Takahiro TI - The Hodge filtration of a monodromic mixed Hodge module and the irregular Hodge filtration JO - Annales de l'Institut Fourier PY - 2024 SP - 1603 EP - 1670 VL - 74 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3629/ DO - 10.5802/aif.3629 LA - en ID - AIF_2024__74_4_1603_0 ER -
%0 Journal Article %A Saito, Takahiro %T The Hodge filtration of a monodromic mixed Hodge module and the irregular Hodge filtration %J Annales de l'Institut Fourier %D 2024 %P 1603-1670 %V 74 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3629/ %R 10.5802/aif.3629 %G en %F AIF_2024__74_4_1603_0
Saito, Takahiro. The Hodge filtration of a monodromic mixed Hodge module and the irregular Hodge filtration. Annales de l'Institut Fourier, Volume 74 (2024) no. 4, pp. 1603-1670. doi : 10.5802/aif.3629. https://aif.centre-mersenne.org/articles/10.5802/aif.3629/
[1] How to glue perverse sheaves, -theory, arithmetic and geometry (Moscow, 1984–1986) (Lecture Notes in Mathematics), Volume 1289, Springer, 1987, pp. 42-51 | DOI | MR | Zbl
[2] Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Géométrie et analyse microlocales (Astérisque), Société Mathématique de France, 1986 no. 140-141, pp. 3-134 | Numdam | MR | Zbl
[3] Examples of hypergeometric twistor -modules, Algebra Number Theory, Volume 13 (2019) no. 6, pp. 1415-1442 | DOI | MR | Zbl
[4] On V-filtration, Hodge filtration and Fourier transform (2021) | arXiv
[5] Théorie de Hodge irrégulière (mars 1984 & août 2006), Singularités irrégulières, Correspondance et documents, Documents mathématiques, Volume 5, Société Mathématique de France, 2007, p. 109-114 & 115–-128
[6] -degeneration of the irregular Hodge filtration, J. Reine Angew. Math., Volume 729 (2017), pp. 171-227 (with an appendix by Morihiko Saito) | DOI | MR | Zbl
[7] -, Progress in Mathematics, 236, Birkhäuser, 2008, xii+407 pages | DOI | MR | Zbl
[8] Mixed twistor -modules, Lecture Notes in Mathematics, 2125, Springer, 2015, xx+487 pages | DOI | MR | Zbl
[9] Rescalability of integrable mixed twistor -modules (2021) | arXiv
[10] Beilinson’s construction of nearby cycles and gluing, available at http://perso.ens-lyon.fr/sophie.morel/gluing.pdf
[11] Notes on Beilinson’s “How to glue perverse sheaves”, J. Singul., Volume 1 (2010), pp. 94-115 | DOI | MR | Zbl
[12] Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules, Compos. Math., Volume 150 (2014) no. 6, pp. 911-941 | DOI | MR | Zbl
[13] Weight filtrations on GKZ-systems (2018) | arXiv
[14] The Fourier–Laplace transform of irreducible regular differential systems on the Riemann sphere, Usp. Mat. Nauk, Volume 59 (2004) no. 6(360), pp. 161-176 | DOI | MR
[15] Polarizable twistor -modules, Astérisque, Société Mathématique de France, 2005 no. 300, vi+208 pages | Numdam | MR | Zbl
[16] Monodromy at infinity and Fourier transform. II, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 3, pp. 803-835 | DOI | MR | Zbl
[17] Fourier-Laplace transform of a variation of polarized complex Hodge structure, J. Reine Angew. Math., Volume 621 (2008), pp. 123-158 | DOI | MR | Zbl
[18] Fourier–Laplace transform of a variation of polarized complex Hodge structure, II, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) (Advanced Studies in Pure Mathematics), Volume 59, Mathematical Society of Japan, 2010, pp. 289-347 | DOI | Zbl
[19] Irregular Hodge theory. With the collaboration of Jeng-Daw Yu, Mém. Soc. Math. Fr., Nouv. Sér. (2018) no. 156, pp. 1-126 | DOI | MR | Zbl
[20] The MHM Project, available at http://www.cmls.polytechnique.fr/perso/sabbah/MHMProject/mhm.html
[21] On the irregular Hodge filtration of exponentially twisted mixed Hodge modules, Forum Math. Sigma, Volume 3 (2015), e9, 71 pages | DOI | MR | Zbl
[22] Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 6, pp. 849-995 | DOI | MR | Zbl
[23] Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 2, pp. 221-333 | DOI | MR | Zbl
[24] A description of monodromic mixed Hodge modules, J. Reine Angew. Math., Volume 786 (2022), pp. 107-153 | DOI | MR | Zbl
[25] An overview of Morihiko Saito’s theory of mixed Hodge modules (2014) | arXiv
[26] Mixed twistor structures (1997) | arXiv
[27] Irregular Hodge filtration on twisted de Rham cohomology, Manuscr. Math., Volume 144 (2014) no. 1-2, pp. 99-133 | DOI | MR | Zbl
Cited by Sources: