The Hodge filtration of a monodromic mixed Hodge module and the irregular Hodge filtration
Annales de l'Institut Fourier, Volume 74 (2024) no. 4, pp. 1603-1670.

For an algebraic vector bundle E over a smooth algebraic variety X, a monodromic D-module on E is decomposed into a direct sum of some O-modules on X. We show that the Hodge filtration of a monodromic mixed Hodge module is decomposed with respect to the decomposition of the underlying D-module. By using this result, we endow the Fourier–Laplace transform M of the underlying D-module M of a monodromic mixed Hodge module with a mixed Hodge module structure. Moreover, we describe the irregular Hodge filtration on M concretely and show that it coincides with the Hodge filtration at all integer indices.

Pour un fibré vectoriel algébrique E sur une variété algébrique lisse X, un D-module monodromique sur E est décomposé en une somme directe de certains O-modules sur X. Nous montrons que la filtration de Hodge d’un module de Hodge mixte monodromique est décomposée par rapport à la décomposition du D-module sous-jacent. En utilisant ce résultat, nous munissons la transformée de Fourier–Laplace M du D-module sous-jacent M à un module de Hodge mixte monodromique d’une structure de module de Hodge mixte. De plus, nous décrivons explicitement la filtration de Hodge irrégulière sur M et montrons qu’elle coïncide avec la filtration de Hodge aux indices entiers.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/aif.3629
Classification: 14F10, 32S35, 32S40
Keywords: $D$-module, Perverse sheaf, Mixed Hodge module, Mixed twistor $D$-module, Irregular Hodge filtration.
Mot clés : $D$-module, faisceau pervers, module de Hodge mixte, $D$-module de twisteur mixte, filtration de Hodge irrégulière.
Saito, Takahiro 1

1 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 (Japan)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2024__74_4_1603_0,
     author = {Saito, Takahiro},
     title = {The {Hodge} filtration of a monodromic mixed {Hodge} module and the irregular {Hodge} filtration},
     journal = {Annales de l'Institut Fourier},
     pages = {1603--1670},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {4},
     year = {2024},
     doi = {10.5802/aif.3629},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3629/}
}
TY  - JOUR
AU  - Saito, Takahiro
TI  - The Hodge filtration of a monodromic mixed Hodge module and the irregular Hodge filtration
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 1603
EP  - 1670
VL  - 74
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3629/
DO  - 10.5802/aif.3629
LA  - en
ID  - AIF_2024__74_4_1603_0
ER  - 
%0 Journal Article
%A Saito, Takahiro
%T The Hodge filtration of a monodromic mixed Hodge module and the irregular Hodge filtration
%J Annales de l'Institut Fourier
%D 2024
%P 1603-1670
%V 74
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3629/
%R 10.5802/aif.3629
%G en
%F AIF_2024__74_4_1603_0
Saito, Takahiro. The Hodge filtration of a monodromic mixed Hodge module and the irregular Hodge filtration. Annales de l'Institut Fourier, Volume 74 (2024) no. 4, pp. 1603-1670. doi : 10.5802/aif.3629. https://aif.centre-mersenne.org/articles/10.5802/aif.3629/

[1] Beĭlinson, Alexander A. How to glue perverse sheaves, K-theory, arithmetic and geometry (Moscow, 1984–1986) (Lecture Notes in Mathematics), Volume 1289, Springer, 1987, pp. 42-51 | DOI | MR | Zbl

[2] Brylinski, Jean-Luc Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Géométrie et analyse microlocales (Astérisque), Société Mathématique de France, 1986 no. 140-141, pp. 3-134 | Numdam | MR | Zbl

[3] Castaño Domínguez, Alberto; Reichelt, Thomas; Sevenheck, Christian Examples of hypergeometric twistor D-modules, Algebra Number Theory, Volume 13 (2019) no. 6, pp. 1415-1442 | DOI | MR | Zbl

[4] Chen, Qianyu; Dirks, Bradley On V-filtration, Hodge filtration and Fourier transform (2021) | arXiv

[5] Deligne, Pierre Théorie de Hodge irrégulière (mars 1984 & août 2006), Singularités irrégulières, Correspondance et documents, Documents mathématiques, Volume 5, Société Mathématique de France, 2007, p. 109-114 & 115–-128

[6] Esnault, Hélène; Sabbah, Claude; Yu, Jeng-Daw E 1 -degeneration of the irregular Hodge filtration, J. Reine Angew. Math., Volume 729 (2017), pp. 171-227 (with an appendix by Morihiko Saito) | DOI | MR | Zbl

[7] Hotta, Ryoshi; Takeuchi, Kiyoshi; Tanisaki, Toshiyuki D-, Progress in Mathematics, 236, Birkhäuser, 2008, xii+407 pages | DOI | MR | Zbl

[8] Mochizuki, Takuro Mixed twistor D-modules, Lecture Notes in Mathematics, 2125, Springer, 2015, xx+487 pages | DOI | MR | Zbl

[9] Mochizuki, Takuro Rescalability of integrable mixed twistor D-modules (2021) | arXiv

[10] Morel, Sophie Beilinson’s construction of nearby cycles and gluing, available at http://perso.ens-lyon.fr/sophie.morel/gluing.pdf

[11] Reich, Ryan Notes on Beilinson’s “How to glue perverse sheaves”, J. Singul., Volume 1 (2010), pp. 94-115 | DOI | MR | Zbl

[12] Reichelt, Thomas Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules, Compos. Math., Volume 150 (2014) no. 6, pp. 911-941 | DOI | MR | Zbl

[13] Reichelt, Thomas; Walther, Uli Weight filtrations on GKZ-systems (2018) | arXiv

[14] Sabbah, Claude The Fourier–Laplace transform of irreducible regular differential systems on the Riemann sphere, Usp. Mat. Nauk, Volume 59 (2004) no. 6(360), pp. 161-176 | DOI | MR

[15] Sabbah, Claude Polarizable twistor 𝒟-modules, Astérisque, Société Mathématique de France, 2005 no. 300, vi+208 pages | Numdam | MR | Zbl

[16] Sabbah, Claude Monodromy at infinity and Fourier transform. II, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 3, pp. 803-835 | DOI | MR | Zbl

[17] Sabbah, Claude Fourier-Laplace transform of a variation of polarized complex Hodge structure, J. Reine Angew. Math., Volume 621 (2008), pp. 123-158 | DOI | MR | Zbl

[18] Sabbah, Claude Fourier–Laplace transform of a variation of polarized complex Hodge structure, II, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) (Advanced Studies in Pure Mathematics), Volume 59, Mathematical Society of Japan, 2010, pp. 289-347 | DOI | Zbl

[19] Sabbah, Claude Irregular Hodge theory. With the collaboration of Jeng-Daw Yu, Mém. Soc. Math. Fr., Nouv. Sér. (2018) no. 156, pp. 1-126 | DOI | MR | Zbl

[20] Sabbah, Claude; Schnell, Christian The MHM Project, available at http://www.cmls.polytechnique.fr/perso/sabbah/MHMProject/mhm.html

[21] Sabbah, Claude; Yu, Jeng-Daw On the irregular Hodge filtration of exponentially twisted mixed Hodge modules, Forum Math. Sigma, Volume 3 (2015), e9, 71 pages | DOI | MR | Zbl

[22] Saito, Morihiko Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 6, pp. 849-995 | DOI | MR | Zbl

[23] Saito, Morihiko Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 2, pp. 221-333 | DOI | MR | Zbl

[24] Saito, Takahiro A description of monodromic mixed Hodge modules, J. Reine Angew. Math., Volume 786 (2022), pp. 107-153 | DOI | MR | Zbl

[25] Schnell, Christian An overview of Morihiko Saito’s theory of mixed Hodge modules (2014) | arXiv

[26] Simpson, Carlos Mixed twistor structures (1997) | arXiv

[27] Yu, Jeng-Daw Irregular Hodge filtration on twisted de Rham cohomology, Manuscr. Math., Volume 144 (2014) no. 1-2, pp. 99-133 | DOI | MR | Zbl

Cited by Sources: