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NULL-CONTROLLABILITY OF EVOLUTION
EQUATIONS ASSOCIATED WITH FRACTIONAL

SHUBIN OPERATORS THROUGH QUANTITATIVE
AGMON ESTIMATES

by Paul ALPHONSE

Abstract. — We consider the anisotropic Shubin operators (−∆)m + |x|2k act-
ing on the space L2(Rn), with k, m ⩾ 1 some positive integers. We provide sharp
quantitative estimates in Gelfand–Shilov spaces for the eigenfunctions of these self-
adjoint differential operators with a strategy based on the classical approach to ob-
tain Agmon estimates in spectral theory. By using a Weyl law for the eigenvalues of
the anisotropic Shubin operators, we also describe the smoothing properties of the
semigroups generated by the fractional powers of these operators, with precise esti-
mates in short times. This description allows us to prove positive null-controllability
results for the associated evolution equations posed on the whole space Rn, from
control supports which are thick with respect to densities and in any positive time.
We generalize in particular results known for the evolution equations associated
with fractional harmonic oscillators.

Résumé. — On considère les opérateurs de Shubin anisotropes (−∆)m + |x|2k

agissant sur l’espace L2(Rn), avec k, m ⩾ 1 des entiers strictement positifs. On dé-
montre des inégalités quantitatives et précises dans des espaces de Gelfand–Shilov
pour les fonctions propres de ces opérateurs différentiels autoadjoints, grâce à une
stratégie basée sur l’approche classique pour obtenir des estimées d’Agmon en théo-
rie spectrale. En utilisant une loi de Weyl pour les valeurs propres des opérateurs
de Shubin anisotropes, on décrit également les effets régularisants des semi-groupes
engendrés par les puissances fractionnaires de ces opérateurs, et on donne des es-
timations précises en temps courts. Cette description permet de démontrer des
résultats positifs de contrôlabilité à zéro pour les équations d’évolution associées
posées sur tout l’espace Rn, depuis des supports de contrôle épais par rapport à des
densités, et en tout temps strictement positif. On généralise en particulier des résul-
tats connus pour les équations d’évolution associées aux oscillateurs harmoniques
fractionnaires.

Keywords: Null-controllability, Gelfand–Shilov regularity, Agmon estimates, Pseudodif-
ferential calculus, Anisotropic Shubin operators.
2020 Mathematics Subject Classification: 93B05, 35B65, 35P10.
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1. Introduction

This paper is devoted in studying the smoothing properties and the
null-controllability of the evolution equations associated with fractional
anisotropic Shubin operators Hs

k,m and posed on the whole space Rn. These
non-local operators Hs

k,m are defined through the functional calculus as the
fractional powers of the following anisotropic selfadjoint elliptic operators

(1.1) Hk,m = (−∆)m + |x|2k, x ∈ Rn,

which we consider equipped with the domains

(1.2) D(Hk,m) =
{
g ∈ L2(Rn) : Hk,mg ∈ L2(Rn)

}
,

where k,m ⩾ 1 are two positive integers and s > 0 is a positive real
number. These operators naturally arise in physical models. For example,
the fractional harmonic oscillator Hs

1,1 appears in the kinetic theory of
gases [29, 30, 31]. Another example is given by the quantum anharmonic
oscillators H1,k involved in quantum mechanics.

The study of the null-controllability of evolution equations posed on the
whole space Rn, of elliptic type or degenerate of hypoelliptic type, and
also the Schrödinger counterparts of such equations, has been much ad-
dressed in the last years [3, 4, 7, 8, 9, 24, 25, 32, 33]. Although considerable
progress have already been made, the understanding of these equations is
still at an early stage, in opposite to the same models posed on bounded
domains of Rn, for which many behaviors have been highlighted, see e.g.
the introduction of [9]. In this work, we tackle null-controllability issues
for the following evolution equations associated with fractional anisotropic
Shubin operators

(Es,k,m)
{
∂tf(t, x) +Hs

k,mf(t, x) = h(t, x)1ω(x), t > 0, x ∈ Rn,

f(0, ·) = f0 ∈ L2(Rn).

On the one hand, we prove that the equation (Es,k,m) is null-controllable
from thick control supports ω ⊂ Rn in any positive time T > 0, under the
large diffusion assumption 2sm > 1. The notion of thickness has appeared
to be central in the null-controllability theory since the works [18, 41],
where the authors established that this is a necessary and sufficient geo-
metric condition that ensures the null-controllability of the heat equation
posed on Rn. The same phenomena holds true more generally for the evo-
lution equations associated with fractional Laplacians (−∆)s under the
same setting and when s > 1/2, as proven in [4], and also quite surpris-
ingly for the Schrödinger counterpart of this equation in the one dimen-
sional setting and when s ⩾ 1/2, see [32]. It is also known from [24, 25]
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that in the cases 0 < s ⩽ 1/2, the fractional heat equations are not null-
controllable from thick control supports anymore. In the recent work [6],
the notion of thickness has appeared to be a necessary and sufficient con-
dition to ensure the stabilization or the approximate null-controllability
with uniform cost (which are notions weaker than the null-controllability)
of a very large class of diffusive equations posed on Rn, including in par-
ticular the half heat equation associated with the operator (−∆)1/2. Fi-
nally, let us mention that other classes of degenerate parabolic equations
of hypoelliptic type, as evolution equations associated with accretive qua-
dratic operators or (non-autonomous) Ornstein–Uhlenbeck operators, were
proven to be null-controllable from thick control supports, see [3, 7, 8].
On the other hand, we establish that in the isotropic case where k =
m = l, the equation (Es,l,l) is null-controllable in any positive time T > 0
from control supports which are thick with respect to densities. This no-
tion, which is an extension of the thickness property, was introduced in
the work [33] in order to tackle null-controllability issues for evolution
equations enjoying strong smoothing properties in symmetric Gelfand–
Shilov spaces. In particular, we generalize a result from [33] concerning
the null-controllability of fractional heat harmonic equations. Finally, we
prove that in the more specific case k = m = 1 and s > 1, the equa-
tion (Es,1,1) is always null-controllable in any positive time T > 0 from
any support control ω ⊂ Rn which is measurable with positive Lebesgue
measure.

These null-controllability issues motivate the study of the smoothing
properties of semigroups generated by selfadjoint or non-seladjoint accre-
tive operators, which is also natural and interesting in itself [3, 4, 5, 7]. The
major part of the present work consists in fact in describing the regular-
izing effects of the semigroups generated by fractional anisotropic Shubin
operators Hs

k,m on L2(Rn). Precisely, we prove that the evolution operators
generated by these operators enjoy smoothing properties in Gelfand–Shilov
spaces in any positive time t > 0,

∀t > 0,∀g ∈ L2(Rn), e−tHs
k,m g ∈ Sµs,k,m

νs,k,m (Rn),

with the regularity exponents νs,k,m > 0 and µs,k,m > 0 given by

νs,k,m = max
(

1
2sk ,

m

k +m

)
and µs,k,m = max

(
1

2sm,
k

k +m

)
,
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4 Paul ALPHONSE

by providing the following quantitative estimates for the associated semi-
norms in short times 0 < t≪ 1,∥∥xα∂β

x (e−tHs
k,m g)

∥∥
L2(Rn)

⩽
C |α|+|β|

tνs,k,m|α|+µs,k,m|β|+ n(k+m)
2skm

(α!)νs,k,m (β!)µs,k,m ∥g∥L2(Rn).

The strategy consists in first obtaining the following sharp quantitative
Agmon estimates for the eigenfunctions associated with the anisotropic
Shubin operators as follows∥∥ec1t⟨x⟩σ(1+ k

m
)
ψ
∥∥

L2(Rn) +
∥∥ec1t⟨Dx⟩σ(1+ m

k
)
ψ
∥∥

L2(Rn)

⩽ c2 ec2tλ
σ( 1

2k
+ 1

2m
)
∥ψ∥L2(Rn),

where λ > 0 is eigenvalue associated with the eigenfunction ψ of the oper-
ators Hk,m and 0 ⩽ t ⩽ T , 0 ⩽ σ ⩽ 1 are some parameters. These Agmon
estimates combined with a Weyl law from [11] then allows to obtain the
above smoothing properties of the semigroups generated by the fractional
anisotropic Shubin operators. From a spectral point of view, the anisotropic
Shubin operators have been widely studied in the last decades, from the
work [40] on the quartic oscillator H1,4 and the works [20, 21] on a class of
anharmonic oscillators containing the quantum harmonic oscillators H1,k,
or the papers [19, 37] considering the symmetric case k = l. The regularity
of the eigenfunctions of general anisotropic Shubin operators has already
been studied qualitatively in the work [14]. Let us also mention the pa-
per [15] in which a general class of anisotropic Shubin operators is studied
within the framework of the Weyl-Hörmander calculus and where spec-
tral properties in terms of Schatten-von Neumann classes for the negative
powers of these operators are obtained.

Outline of the work

In Section 2, we present in details the main results contained in this work.
Section 3 is devoted to the proofs of the positive null-controllability results
for the evolution equations associated with fractional anisotropic Shubin
operators. Quantitative Agmon estimates for the eigenfunctions of these
operators are obtained in Section 4, which allow to describe the smooth-
ing properties of the semigroups generated by their fractional powers in
Section 5. The proof of these Agmon estimates require a technical Gård-
ing type inequality obtained in Section 6. Finally, basics of Gelfand–Shilov
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spaces are presented in Section 7, which is an Appendix also containing
a microlocal result dealing with the density of the Schwartz space in the
graph of the differential operators.

Notations

The following notations and conventions will be used all over the work:
(1) The canonical Euclidean scalar product of Rn is denoted by · and |·|

stands for the associated canonical Euclidean norm. The Japanese
bracket ⟨·⟩ is defined for all x ∈ Rn by ⟨x⟩ =

√
1 + |x|2.

(2) For all measurable subset ω ⊂ Rn, the inner product of L2(ω) is
defined by

⟨u, v⟩L2(ω) =
∫

ω

u(x)v(x) dx, u, v ∈ L2(ω),

while ∥ · ∥L2(ω) stands for the associated norm.
(3) For all function u ∈ S(Rn), the Fourier transform of u is defined

by

û(ξ) =
∫
Rn

e−ix·ξ u(x) dx.

With this convention, Plancherel’s theorem states that

∀u ∈ L2(Rn), ∥û∥L2(Rn) = (2π)n/2∥u∥L2(Rn).

(4) We denote the gradient by ∇x and the Laplacian operator by ∆.
Moreover, we set Dx = −i∇x and for all q > 0, we define by ⟨Dx⟩q
the Fourier multiplier associated with the symbol ⟨ξ⟩q.

(5) We use the notation Hq(Rn) for the Sobolev spaces, with q ⩾ 0
non-negative real numbers, and we denote by Ḣq(Rn) their homo-
geneous counterparts.

(6) The space C∞
b (Rn) stands for the set of smooth functions g ∈

C∞(Rn) with bounded derivatives.
(7) For all measurable subset ω ⊂ Rn, 1ω stands for the characteristic

function of ω.

2. Statement of the main results

This section is devoted in presenting in details the main results contained
in this work. Let us begin by quickly recalling the definition of the fractional

TOME 0 (0), FASCICULE 0



6 Paul ALPHONSE

powers of the operator Hk,m, defined in (1.1) and equipped with the do-
main (1.2), that we will consider in the following. Since the operator Hk,m

is a positive anisotropic elliptic operator, there exists a Hilbert basis (ψj)j

of L2(Rn) composed of eigenfunctions of the operator Hk,m, see e.g. [38].
Moreover, denoting λj > 0 the eigenvalue associated with the eigenfunc-
tion ψj ∈ L2(Rn), the family (λj)j satisfies limj λj = +∞. Given s > 0
a positive real number, one can define the operator Hs

k,m in the following
way

(2.1) ∀g ∈ D(Hs
k,m), Hs

k,mg =
+∞∑
j=0

λs
j⟨g, ψj⟩L2(Rn)ψj ,

equipped with the domain

(2.2) D(Hs
k,m) =

g ∈ L2(Rn) :
+∞∑
j=0

λ2s
j

∣∣⟨g, ψj⟩L2(Rn)
∣∣2 < +∞

 .

Notice that the above domain coincides with (1.2) in the case where s = 1,
from Parseval’s formula. The fractional anisotropic Shubin operator Hs

k,m is
then a selfadjoint operator that generates a strongly continuous semigroup
on L2(Rn) explicitly given by

∀t ⩾ 0,∀g ∈ L2(Rn), e−tHs
k,m g =

+∞∑
j=0

e−tλs
j ⟨g, ψj⟩L2(Rn)ψj ,

see e.g. [39, Propositions 2.6.2 and 2.6.5].

2.1. Quantitative Agmon estimates and smoothing properties

First of all, we aim at understanding the smoothing properties enjoyed
by the semigroup generated by the fractional anisotropic Shubin operator
Hs

k,m. In order to carry out this study, we begin by establishing Agmon
estimates for the eigenfunctions associated with the operator Hk,m. Gen-
erally, Agmon estimates, which originate in the pioneer works [1, 2], aim
at quantifying the exponential decaying properties of eigenfunctions asso-
ciated with some large classes of selfadjoint operators.

Theorem 2.1. — Let k,m ⩾ 1 be positive integers and Hk,m be the
associated anisotropic Shubin operator defined in (1.1) and equipped with
the domain (1.2). We also consider 0 ⩽ σ ⩽ 1 a non-negative real number.

ANNALES DE L’INSTITUT FOURIER
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There exist some positive constants c1, c2 > 0 and T > 0 such that for all
eigenfunction ψ ∈ L2(Rn) of the operator Hk,m and 0 ⩽ t ⩽ T ,

∥∥ec1t⟨x⟩σ(1+ k
m

)
ψ
∥∥

L2(Rn) +
∥∥ec1t⟨Dx⟩σ(1+ m

k
)
ψ
∥∥

L2(Rn)

⩽ c2 ec2tλ
σ( 1

2k
+ 1

2m
)
∥ψ∥L2(Rn),

with λ > 0 the eigenvalue associated with the eigenfunction ψ.

This result allows to recover the Gelfand–Shilov regularity of the eigen-
functions of the operator Hk,m, which is a consequence of Theorem 1.1
in [14]. We refer to Subsection 7.1 in Appendix for a definition of the
Gelfand–Shilov spaces Sµ

ν (Rn) and their basic properties, with µ, ν > 0
some positive real numbers satisfying µ+ ν ⩾ 1. The merit of Theorem 2.1
is to provide a quantitative description of the regularity of those eigen-
functions. Its proof is based on the classical strategy employed to obtain
Agmon estimates in spectral theory, which requires in our context to ob-
tain a quite technical Gårding type inequality. Combined to a Weyl law for
the eigenvalues of the anisotropic Shubin operators, Theorem 2.1 allows to
describe the smoothing properties of the evolution operators generated by
the fractional operator Hs

k,m.

Corollary 2.2. — Let k,m ⩾ 1 be positive integers, s > 0 be a posi-
tive real number, and Hs

k,m be the associated fractional anisotropic Shubin
operator defined in (2.1) and equipped with the domain (2.2). There exist
some positive constants c1, c2 > 0 and 0 < T < 1 such that for all 0 < t < T

and g ∈ L2(Rn),

∥∥∥∥ec1t⟨x⟩
1

νs,k,m (e−tHs
k,m g)

∥∥∥∥
L2(Rn)

+
∥∥∥∥ec1t⟨Dx⟩

1
µs,k,m (e−tHs

k,m g)
∥∥∥∥

L2(Rn)

⩽
c2

t
n(k+m)

2skm

∥g∥L2(Rn),

the exponents νs,k,m > 0 and µs,k,m > 0 being given by

νs,k,m = max
(

1
2sk ,

m

k +m

)
and µs,k,m = max

(
1

2sm,
k

k +m

)
.

Notice that Corollary 2.2 and Lemma 7.2 also imply that there exists
a positive constant C > 0 such that for all 0 < t < T , (α, β) ∈ N2n and
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g ∈ L2(Rn),

(2.3)
∥∥xα∂β

x (e−tHs
k,m g)

∥∥
L2(Rn)

⩽
C |α|+|β|

tνs,k,m|α|+µs,k,m|β|+ n(k+m)
2skm

(α!)νs,k,m (β!)µs,k,m ∥g∥L2(Rn).

This result highlights the existence of a critical diffusion index 0 < scr ⩽ 1,
given by

(2.4) scr = 1
2k + 1

2m,

for which the semigroup generated by the operator Hs
k,m enjoys different

smoothing properties, depending on whether s ⩽ scr or s > scr. The ex-
istence of this critical index is in fact a consequence of an uncertainty
principle. Indeed, when s ⩽ scr, according to (2.3), the evolution operators
generated by the operator Hs

k,m enjoy the following smoothing properties

(2.5) ∀t > 0,∀g ∈ L2(Rn), e−tHs
k,m g ∈ S1/2sm

1/2sk (Rn).

Moreover, Theorem 7.1 stated in Appendix, which can be read as a version
of the Heisenberg’s uncertainty principle, shows that the Gelfand–Shilov
space involved in (2.5) is not reduced to zero provided 1/2sk+ 1/2sm ⩾ 1,
that is, s ⩽ scr. As a consequence, when s > scr, the property (2.5) cannot
hold anymore and the estimates (2.3) imply that

(2.6) ∀t > 0,∀g ∈ L2(Rn), e−tHs
k,m g ∈ Sk/(k+m)

m/(k+m)(R
n).

Roughly speaking, the Gelfand–Shilov smoothing properties of the evo-
lution operators generated by the operator Hs

k,m “are stationary from
s = scr”.

As established in [13, Theorem 1.4] and presented in Subsection 7.1 in
Appendix (more precisely in (7.9)), the Gelfand–Shilov spaces Sµ

ν (Rn), with
µ/ν ∈ Q, can be characterized through the decomposition into the basis of
eigenfunctions of anisotropic Shubin operators. By using this property, one
could check that the qualitative properties (2.5) and (2.6) hold. However, we
absolutely need to use the Agmon quantitative estimates provided by The-
orem 2.1 to obtain the quantitative Gelfand–Shilov smoothing properties
stated in Corollary 2.2, which are requested to prove the null-controllability
results stated in the Subsection 2.2.

The presence of the term t−n(k+m)/2skm in the right-hand side of the
inequalities presented in Corollary 2.2 was not expected and we conjecture

ANNALES DE L’INSTITUT FOURIER
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that estimates of the following form hold

(2.7)
∥∥∥∥ec1t⟨x⟩

1
νs,k,m (e−tHs

k,m g)
∥∥∥∥

L2(Rn)
+
∥∥∥∥ec1t⟨Dx⟩

1
µs,k,m (e−tHs

k,m g)
∥∥∥∥

L2(Rn)

⩽ c2∥g∥L2(Rn).

In fact, by adapting arguments used in the proof of Theorem 2.1, we can
prove this conjecture in the special case s = 1.

Theorem 2.3. — Let m, k ⩾ 1 be positive integers and Hk,m be the
associated anisotropic Shubin operator defined in (1.1) and equipped with
the domain (1.2). There exist some positive constants c1, c2 > 0 and 0 <
T < 1 such that for all 0 ⩽ t ⩽ T and g ∈ L2(Rn),∥∥ec1t⟨x⟩1+ k

m (e−tHk,m g)
∥∥

L2(Rn) +
∥∥ec1t⟨Dx⟩1+ m

k (e−tHk,m g)
∥∥

L2(Rn)

⩽ c2∥g∥L2(Rn).

We also expect that the strategy employed to prove Theorem 2.3 can be
adapted to obtain the estimates (2.7). However, this would a priori require
to obtain a Gårding type inequality far more technical than one obtained
while proving Theorem 2.1. Since the result given by Corollary 2.2 will
be sufficient to obtain null-controllability results, we will not tackle such a
generalization in this work.

2.2. Null-controllability

As an application of Corollary 2.2, we therefore study the
null-controllability of the evolution equations associated with fractional
anisotropic Shubin operators and posed on the whole space Rn. More pre-
cisely, for all positive integers k,m ⩾ 1 and all positive real number s > 0,
we consider the equation

(Es,k,m)
{
∂tf(t, x) +Hs

k,mf(t, x) = h(t, x)1ω(x), t > 0, x ∈ Rn,

f(0, ·) = f0 ∈ L2(Rn),

where Hs
k,m is the fractional anisotropic Shubin operator defined in (2.1)

and equipped with the domain (2.2), and ω ⊂ Rn is a Borel set with a
positive Lebesgue measure.

Definition 2.4. — The equation (Es,k,m) is said to be null-controllable
from the support control ω in time T > 0 if, for all initial datum f0 ∈
L2(Rn), there exists a control h ∈ L2((0, T )×ω) such that the mild solution
of (Es,k,m) satisfies f(T, ·) = 0.

TOME 0 (0), FASCICULE 0



10 Paul ALPHONSE

The precise knowledge of the smoothing properties of the semigroup
generated by the fractional anisotropic operator Hs

k,m plays a key in the
study of the null-controllability of the evolution equation (Es,k,m). This
link, made by the Hilbert Uniqueness Method and the Lebeau–Robbiano
strategy, will be presented in details in Section 3. For now, we only present
the null-controllability results contained in this work.

We begin by studying the null-controllability of the evolution equa-
tion (Es,k,m) from thick control supports ω ⊂ Rn.

Definition 2.5. — A set ω ⊂ Rn is called γ-thick at scale L > 0, with
γ ∈ (0, 1], if it is measurable and satisfies

∀x ∈ Rn, Leb(ω ∩ (x+ [0, L]n)) ⩾ γLn,

where Leb stands for the Lebesgue measure on Rn. A set ω ⊂ Rn is then
called thick when there exist γ ∈ (0, 1] and L > 0 such that ω is γ-thick at
scale L.

First of all, we prove that the evolution equations (Es,k,m) are null-
controllable from thick control supports ω ⊂ Rn in any positive time T > 0,
under an assumption of large diffusion.

Theorem 2.6. — Let k,m ⩾ 1 be positive integers and s > 0 be a
positive real number satisfying 2sm > 1. When the control support ω ⊂ Rn

is a thick set, the evolution equation (Es,k,m) is null-controllable from ω in
any positive time T > 0.

The assumption 2ms > 1 in Theorem 2.6 has to be related to the as-
sumption s > 1/2 mentioned above that ensures the null-controllability of
fractional heat equations from thick control supports in any positive time,
which formally correspond to the equations (Es,0,1). However, in opposite
to the fractional heat equations, it is still an open and interesting equation
to investigate if the equations (Es,k,m) are null-controllable from thick sets
in the low diffusion regime 0 < 2sm ⩽ 1.

Let us mention that we will obtain a more quantitative result than the
one stated in Theorem 2.6. Precisely, considering a thick set ω ⊂ Rn, we will
prove the following observability estimate: there exists a positive constant
C > 1 such that for all T > 0 and g ∈ L2(Rn),

(2.8)
∥∥e−T Hs

k,mg
∥∥2

L2(Rn) ⩽ C exp
(

C

T βs,k,m

)∫ T

0

∥∥e−tHs
k,mg

∥∥2
L2(ω) dt,

with
βs,k,m = max

(
1

2sm− 1 ,
k

m

)
.

ANNALES DE L’INSTITUT FOURIER



EVOLUTION EQUATIONS ASSOCIATED WITH SHUBIN OPERATORS 11

The notions of null-controllability and observability are equivalent in our
context by the Hilbert Uniqueness Method, as explained in the beginning
of Section 3. Such observability estimates have already been obtained in
the works [17, 34, 35] in the particular case where m = 1, k ⩾ 2 and s = 1.
Precisely, [17, Theorem 1.10] states that when k ⩾ 2 and Γ ⊂ Rn is a cone
of the form

(2.9) Γ =
{
x ∈ Rn : |x| > r0, x/|x| ∈ Ω0

}
,

where r0 > 0 and Ω0 is an open subset of the unit sphere of Rn, there exists
a positive constant C0 > 0 such that for all T > 0 and g ∈ L2(Rn),

∥∥e−T Hk,1g
∥∥2

L2(Rn) ⩽ exp
(

C0

T 1+ 2
k−1

)∫ T

0

∥∥e−tHk,1g
∥∥2

L2(Γ) dt.

Since the notions of null-controllability and observability are equivalent for
the equations we are dealing with, as already mentioned, the above estimate
implies that when k ⩾ 2, the equation (E1,k,1) is null-controllable in any
positive times T > 0 from any cone of the form (2.9). Notice that under
the same setting, for comparison, the observability estimate (2.8) writes

∥∥e−T Hk,1g
∥∥2

L2(Rn) ⩽ C exp
(
C

T k

)∫ T

0

∥∥e−tHk,1g
∥∥2

L2(ω) dt,

and also that 1 + 2/(k − 1) ⩽ k provided k ⩾ 3. We will come back to the
result [17, Theorem 1.10] a little further.

As it will appear in Subsection 3.1, the proof of Theorem 2.6 only uses the
Gevrey smoothing properties given by Corollary 2.2, that is, the estimate

∥∥ec1t|Dx|
1

µs,k,m (e−tHs
k,m g)

∥∥
L2(Rn) ⩽

c2

t
n(k+m)

2skm

∥g∥L2(Rn),

and not the full Gelfand–Shilov smoothing properties provided by the same
result. In the general case where k,m ⩾ 1 are arbitrary, it is an open and
very interesting problem to know how obtaining positive null-controllability
results for the equation (Es,k,m) by also using the exponentiel decay prop-
erties of the semigroup generated by the operator Hs

k,m. However, the result
given by Theorem 2.6 can be extended in the isotropic case where k = m,
by considering a more general class of control supports, those which are
thick with respect to densities, introduced in the work [33].

Definition 2.7. — Let ω ⊂ Rn and ρ : Rn → (0,+∞) be a positive
continuous function. The set ω is said to be thick with respect to the density
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ρ if it is measurable and satisfies

∃γ ∈ (0, 1],∀x ∈ Rn, Leb(ω ∩B(x, ρ(x))) ⩾ γ Leb(B(x, ρ(x))),

where Leb stands for the Lebesgue measure on Rn.

The authors of the same paper obtained a positive null-controllability
result from control supports which are thick with respect to Lipschitz den-
sities, for evolution equations enjoying smoothing properties in symmetric
Gelfand–Shilov spaces S1/2γ

1/2γ (Rn), with 1/2 ⩽ γ ⩽ 1. This is Theorem 2.5
in [33], stated in Theorem 3.4 in the present work. An example of such an
equation is given by the equation (Es,l,l) with l ⩾ 1 according to Corol-
lary 2.2, with γ = min(sl, 1). As a consequence, we obtain the following

Theorem 2.8. — Let l ⩾ 1 be a positive integer and s > 0 be a positive
real number satisfying 1/2 < min(sl, 1) ⩽ 1. We consider a 1/2-Lipschitz
function ρ : Rn → (0,+∞), the space Rn being equipped with the canonical
Euclidean norm, satisfying that there exist some positive constants 0 ⩽ δ <

min(2sl − 1, 1) and c,R > 0 such that

∀x ∈ Rn, c ⩽ ρ(x) ⩽ R⟨x⟩δ.

When ω ⊂ Rn is a thick set with respect to the density ρ, the evolution
equation (Es,l,l) is null-controllable from the control support ω in any pos-
itive time T > 0.

This result has already be proven in [33, Corollary 2.6] in the case where
l = 1 and 1/2 < s ⩽ 1. Moreover, since a thick subset of Rn is thick with
respect to a constant density, Theorem 2.8 is the exact generalization of
Theorem 2.6 when k = m = l.

Since the following inclusion holds

S
µs,k,m
νs,k,m (Rn) ⊂ Smax(µs,k,m,νs,k,m)

max(µs,k,m,νs,k,m)(Rn),

we get that generically, the semigroups generated by fractional anisotropic
Shubin operators Hs

k,m enjoy smoothing properties in symmetric Gelfand–
Shilov spaces from Corollary 2.2. Therefore, by still using Theorem 3.4, one
could state a result for any positive integers k,m ⩾ 1, more general than
Theorem 2.8. However, such a theorem would not be an extension of Theo-
rem 2.6 since it would require an assumption like 2smin(k,m) > 1, instead
of 2ms > 1. That is the reason why such a general null-controllability re-
sult is not stated in the present work. This forced symmetrization seems
not to be the good approach to tackle null-controllability issues for the
equation (Es,k,m) in a general setting.
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About that, it would be very interesting to unify Theorem 2.6 and The-
orem 2.8, that is, extending Theorem 2.8 in the case where the positive
integers k,m ⩾ 1 can be different. We have already mentioned [17, The-
orem 1.10] which states that when k ⩾ 2, the equation (Ek,1,1) is null-
controllable (since observable) in any positive time T > 0 from cones of
the form (2.9). Yet, it follows from a straightforward computation that
those cones are sets which are thick with respect to the densities R⟨x⟩ with
R > 1. Theorem 1.10 in [17] therefore turns out to be a first generalization
of Theorem 2.8 in this particular non-symmetric case.

Directly extending [33, Theorem 2.5], of which Theorem 2.8 is an appli-
cation (by using Corollary 2.2), for evolution equations enjoying smooth-
ing properties in general Gelfand–Shilov spaces seems quite difficult. In-
deed, the proof of this result is based on characterization of the symmetric
Gelfand–Shilov spaces Sµ

µ(Rn) through the decomposition into the Hermite
basis of L2(Rn), and requires to use Bernstein type estimates for the Her-
mite functions, see [33, Section 3 and Theorem 5.2]. As we have already
mentioned, concerning the possibly non-symmetric Gelfand–Shilov spaces
Sµ

ν (Rn) with µ/ν ∈ Q, a similar characterization exists through the decom-
position into the basis of eigenfunctions of the anisotropic Shubin operators
Hk,m, as explained in Subsection 7.1 in the Appendix. However, Bernstein
type estimates for the eigenfunctions of the operator Hk,m have not been es-
tablished in general yet, and seem to be more difficult to obtain than for the
Hermite functions, for which we have an explicit formula. That is why the
proof of [33, Theorem 2.5] therefore cannot be directly adapted. Neverthe-
less, we expect that the estimates given by Corollary 2.2 will allow to obtain
a generalization of Theorem 2.8 when k ⩾ 1 and m ⩾ 1 may be different.

Let us now consider the situation where l = 1 and s > 1. Theorem 2.8
states in this case that the equation (Es,1,1) is null-controllable in any
positive time T > 0 from control supports which are thick with respect to
sublinear densities. It fact this result can be considerable sharpen, since
we can prove that the equation (Es,1,1) is null-controllable in any positive
time T > 0 from any measurable control support with positive Lebesgue
measure.

Theorem 2.9. — Let s > 1 be a positive real number. When ω ⊂ Rn is
any measurable set with positive Lebesgue measure, the evolution equation
(Es,1,1) is null-controllable from the control support ω in any positive time
T > 0.

The statement and the proof of Theorem 2.9 have been kindly commu-
nicated to the author by J. Martin. It is still an open question to know if
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Theorem 2.9 still holds for any positive integer l ⩾ 1 and any sl > 1, and
even more generally for all k,m ⩾ 1 and s > scr, the critical exponent scr

being defined in (2.4).

3. Null-controllability of evolution equations associated
with fractional anisotropic Shubin operators

In this section, we explain how the quantitative smoothing properties
given by Corollary (2.2) (which will be proven later in this work) and the
Lebeau–Robbiano strategy allow to obtain the null-controllability results
Theorem 2.6 and Theorem 2.8 presented in Subsection 2.2 and concerning
the evolution equation

(Es,k,m)
{
∂tf(t, x) +Hs

k,mf(t, x) = h(t, x)1ω(x), t > 0, x ∈ Rn,

f(0, ·) = f0 ∈ L2(Rn),

where k,m ⩾ 1 are positive integers, s > 0 is a positive real number
and Hs

k,m is the associated fractional anisotropic Shubin operator defined
in (2.1) and equipped with the domain (2.2). We will also present a proof
of Theorem 2.9 communicated to the author by J. Martin, which does not
require any result proven in the present paper. Since the operator Hs

k,m

is selfadjoint, the Hilbert Uniqueness Method, see e.g. [16, Theorem 2.44],
shows that the null-controllability of the equation (Es,k,m) is equivalent to
the observability of the adjoint system

(Es,k,m
∗)

{
∂tg(t, x) +Hs

k,mg(t, x) = 0, t > 0, x ∈ Rn,

g(0, ·) = g0 ∈ L2(Rn).

Definition 3.1. — Given a positive time T > 0 and a Borel set ω ⊂ Rn

with a positive Lebesgue measure, the equation (Es,k,m
∗) is said to be

observable from ω in time T if there exists a positive constant C(T, ω) > 0
such that for all g ∈ L2(Rn),

(3.1)
∥∥e−T Hs

k,mg
∥∥2

L2(Rn) ⩽ C(T, ω)
∫ T

0

∥∥g(t, ·)
∥∥2

L2(ω) dt.

A classical method in observability theory is the Lebeau–Robbiano strat-
egy, introduced in the work [27] in order to study the null-controllability of
the heat equation posed on bounded domains of Rn. Essentially, this ap-
proach states that to obtain observability estimates like (3.1), it sufficient
to obtain a spectral inequality for the control support ω and a dissipation
estimate for the semigroup solution of the equation (Es,k,m

∗). In this work,
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we will use a recently revised version of this method (directly or through
results also proven by the following result), due to K. Beauchard M. Egidi
and K. Pravda-Starov in [7], which is essentially a reformulation of a pre-
vious result due to L. Miller [34] (involving a telescopic series), following
the seminal ideas in [27].

Theorem 3.2 ([7, Theorem 2.1]). — Let Ω ⊂ Rn be an open set,
ω ⊂ Ω be a measurable subset, (πk)k⩾1 be a family of orthogonal pro-
jections defined on L2(Ω) and (e−tA)t⩾0 be a strongly continuous con-
traction semigroup on L2(Ω). Assume that there exist some constants
c1, c

′
1, c2, c

′
2, a, b, t0,m1 > 0 and m2 ⩾ 0, with a < b, such that the fol-

lowing spectral inequality

(3.2) ∀g ∈ L2(Rn),∀k ⩾ 1, ∥πkg∥L2(Ω) ⩽ c′
1 ec1ka

∥πkg∥L2(ω),

and the following dissipation estimate

(3.3) ∀g ∈ L2(Rn),∀k ⩾ 1,∀t ∈ (0, t0),∥∥(1− πk)(e−tA g)
∥∥

L2(Ω) ⩽
e−c2tm1 kb

c′
2t

m2
∥g∥L2(Ω),

hold. Then, there exists a positive constant C > 1 such that the following
observability estimate holds

∀T > 0,∀g ∈ L2(Rn),∥∥e−T Ag
∥∥2

L2(Rn) ⩽ C exp
(

C

T
am1
b−a

)∫ T

0

∥∥e−tAg
∥∥2

L2(ω) dt.

Notice that the spectral inequality (3.2) is an intrinsic geometric property
of the control support ω, while the dissipation estimate (3.3) only depends
on the semigroup generated by the operator A. In our context, the latter
will be a consequence of Corollary 2.2. Moreover, we will use spectral in-
equalities already existing in the literature for frequency cutoff projections
and projections over the first modes of the Hermite basis of L2(Rn).

3.1. Anisotropic case

Let us begin by proving Theorem 2.6. Assume that 2sm > 1 and that
the control support ω is a thick set. We consider the sequence (πk)k⩾1 of
orthogonal frequency cutoff projections defined by

(3.4) πk : L2(Rn)→
{
g ∈ L2(Rn) : Supp ĝ ⊂ [−k, k]n

}
,
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where ĝ ∈ L2(Rn) denotes the Fourier transform of the function g ∈
L2(Rn). In order to apply Theorem 3.2, we need to use a spectral esti-
mate of form (3.2) and to establish a dissipation estimate like (3.3). Let us
start with the latter. We deduce from Corollary 2.2 that there exist some
positive constants c1, c2 > 0 and 0 < T < 1 such that for all 0 < t < T and
g ∈ L2(Rn),∥∥ec1t|Dx|

1
µs,k,m (e−tHs

k,m g)
∥∥

L2(Rn) ⩽
c2

t
n(k+m)

2skm

∥g∥L2(Rn),

the exponent µs,k,m > 0 being given by

µs,k,m = max
(

1
2sm,

k

k +m

)
.

It therefore follows from the definition (3.4) of the cutoff projections πk

and Plancherel’s theorem that for all k ⩾ 1, 0 < t < T and g ∈ L2(Rn),∥∥(1− πk) e−tHs
k,m g

∥∥
L2(Rn)

=
∥∥(1− πk) e−c1t|Dx|

1
µs,k,m ec1t|Dx|

1
µs,k,m (e−tHs

k,m g)
∥∥

L2(Rn)

⩽
c2

t
n(k+m)

2skm

e−c1tk
1

µs,k,m ∥g∥L2(Rn).

Notice that this is a dissipation estimate of the form (3.3) with m1 = 1,
m2 = n(k+m)

2skm and b = 1/µs,k,m. On the other hand, concerning the spectral
estimate, we use O. Kovrijkine’s following result which is taken from the
work [26]:

Theorem 3.3 ([26, Theorem 3]). — There exists a universal positive
constant Cn > 0 depending only on the dimension n ⩾ 1 such that for all
set ω ⊂ Rn being γ-thick at scale L > 0,

∀k ⩾ 1,∀g ∈ L2(Rn), ∥πkg∥L2(Rn) ⩽

(
Cn

γ

)Cn(1+Lk)
∥πkg∥L2(ω),

the orthogonal frequency cutoff projections πk being defined in (3.4).

In view of the definition of the orthogonal cutoff projections πk, and the
control support ω ⊂ Rn being thick by assumption, we deduce from the
above theorem that there exists a positive constant c > 0 such that

(3.5) ∀k ⩾ 1,∀g ∈ L2(Rn), ∥πku∥L2(Rn) ⩽ eck ∥πku∥L2(ω).

This is the spectral estimate (3.2) with a = 1. Moreover, since we assumed
2sm > 1, we get that 1/µs,k,m > 1, that is, b > a. We therefore deduce
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from Theorem 3.2 that there exists a positive constant C > 1 such that for
all T > 0 and g ∈ L2(Rn), the following observability estimate holds∥∥e−T Hs

k,mg
∥∥2

L2(Rn) ⩽ C exp
(

C

T βs,k,m

)∫ T

0

∥∥e−tHs
k,mg

∥∥2
L2(ω) dt,

with

βs,k,m = max
(

1
2sm− 1 ,

k

m

)
.

This ends the proof of Theorem 2.6.

3.2. Isotropic case

In this second subsection, we prove Theorem 2.8. We therefore assume
that k = m = l. In fact, Theorem 2.8 is a direct consequence of a result from
the paper [33] by J. Martin and K. Pravda-Starov. One of the purposes of
this work, see Subsection 2.3, is to study the null-controllability of linear
evolution equations posed on the whole space Rn and enjoying smooth-
ing properties in symmetric Gelfand–Shilov spaces. More specifically, these
authors consider strongly contraction semigroups (e−tA)t⩾0 satisfying that
there exist some positive constants 1/2 < γ ⩽ 1, Cγ > 1, 0 < t0 < 1 and
m1,m2 ∈ R with m1 > 0,m2 ⩾ 0 such that for all 0 < t < t0, (α, β) ∈ N2n

and g ∈ L2(Rn),

(3.6)
∥∥xα∂β

x (e−tA g)
∥∥

L2(Rn) ⩽
C

1+|α+β|
γ

tm1|α+β|+m2
(α!)

1
2γ (β!)

1
2γ ∥g∥L2(Rn).

By exploiting the Lebeau–Robbiano strategy, and more precisely Theo-
rem 3.2 applied with spectral inequalities for finite combinations of Hermite
functions obtained in the same work [33, Theorem 2.1], J. Martin and K.
Pravda–Starov established the following positive null-controllability result:

Theorem 3.4 ([33, Theorem 2.5]). — Let A be a closed operator on
L2(Rn) which is the infinitesimal generator of a strongly continuous con-
traction semigroup (e−tA)t⩾0 on L2(Rn) that satisfies the quantitative
smoothing estimates (3.6) for some 1/2 < γ ⩽ 1. We consider a 1/2-
Lipschitz function ρ : Rn → (0,+∞), the space Rn being equipped with
the canonical Euclidean norm, satisfying that there exist some positive
constants 0 ⩽ δ < 2γ − 1, and c1, c2 > 0 such that

∀x ∈ Rn, c1 ⩽ ρ(x) ⩽ c2⟨x⟩δ.
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If ω ⊂ Rn is a measurable set which is thick with respect to the density ρ,
then the evolution equation associated with the L2(Rn)-adjoint A∗ of the
operator A{

∂tf(t, x) +A∗f(t, x) = h(t, x)1ω(x), t > 0, x ∈ Rn,

f(0, ·) = f0 ∈ L2(Rn),

is null-controllable from the set ω in any positive time T > 0.

Let us recall that the operator Hs
l,l we are considering in this subsection

is selfadjoint. Moreover, we deduce from (2.3) that there exists a positive
constant C > 0 such that for all 0 < t < T , (α, β) ∈ N2n and g ∈ L2(Rn),∥∥xα∂β

x (e−tHs
l,l g)

∥∥
L2(Rn) ⩽

C |α+β|

t
|α+β|

min(2sl,2) + n
sl

(α!)
1

min(2sl,2) (β!)
1

min(2sl,2) ∥g∥L2(Rn).

The proof of Theorem 2.8 is therefore ended after using Theorem 3.4.

3.3. Fractional harmonic oscillator

To end this section, let us present the proof of Proposition 2.9. As an-
nounced, the following proof was communicated to the author by J. Martin.
It does not directly use resuts obtained in the present work but is based
on Theorem 3.2 again. We assume that s > 1 and k = m = 1, that is, we
consider the evolution equation associated with large fractional powers of
the standard harmonic oscillator. Let us consider this time a measurable
set ω ⊂ Rn with a positive Lebesgue measure and the sequence (pk)k⩾1 of
orthogonal cutoff projections with respect to the Hermite basis of L2(Rn)
defined by

(3.7) pk : L2(Rn)→ VectC{Φα}|α|⩽k,

where (Φα)α∈Nn denotes the Hermite basis of L2(Rn). On the one hand,
since the eigenvalues of the harmonic oscillator H1,1 associated with the
eigenfunction Φα is given by 2|α|+ n, we get from Parseval’s formula that
for all t ⩾ 0,∥∥(1− pk) e−tHs

1,1 g
∥∥2

L2(Rn) =
∑

|α|⩾k+1

∣∣⟨g,Φα⟩L2(Rn)
∣∣2 e−2t(2|α|+n)s

(3.8)

⩽ e−2t(2(k+1)+n)s

∥g∥2
L2(Rn).

On the other hand, we use the following spectral inequalities for finite
combinaisons of Hermite functions proven by K. Beauchard, P. Jaming
and K. Pravda-Starov:
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Theorem 3.5 ([8, Theorem 2.1]). — If ω ⊂ Rn is a measurable set
with a positive Lebesgue measure, then there exists a positive constant
C = C(ω) > 1 such that

∀k ⩾ 1,∀g ∈ L2(Rn), ∥pkg∥L2(Rn) ⩽ C e 1
2 k log(k+1)+Ck ∥pkg∥L2(ω),

the orthogonal cutoff projections pk being the ones defined in (3.7).

Actually, this spectral inequality was originally stated for non-empty
open sets ω ⊂ Rn in [8] and then extended to Borel sets with positive
measures in the work [23, Lemma 3.2] by borrowing some ideas from the
proof of [8, Theorem 2.1]. Since s > 1 by assumption, we can consider
1 < s′ < s a positive real number. It follows from the above theorem that
there exists a positive constant c > 0 such that

∀k ⩾ 1,∀g ∈ L2(Rn), ∥pkg∥L2(Rn) ⩽ c ecks′

∥pkg∥L2(ω).

This spectral inequality and the dissipation estimate (3.8) end the proof of
Proposition 2.9 thanks to Theorem 3.2 (recall that s′ < s).

4. Agmon estimates for anisotropic Shubin operators

This section is devoted to the proof of Theorem 2.1. In the following, we
will not use any results existing in the literature concerning the Schwartz
regularity of the eigenfunctions of anisotropic Shubin operators, since we
want to recover the Gelfand–Shilov regularity of those eigenfunctions, with
new precise estimates of the associated seminorms. Let 0 ⩽ σ ⩽ 1 be
a non-negative real number, k,m ⩾ 1 be positive integers and Hk,m be
the associated anisotropic Shubin operator defined in (1.1) and equipped
with domain (1.2). It is sufficient to prove that there exist some positive
constants c1, c2 > 0 and T > 0 such that for all eigenfunction ψ ∈ L2(Rn)
of the operator Hk,m and 0 ⩽ t ⩽ T ,

(4.1)
∥∥ec1t⟨x⟩σ(1+ k

m
)
ψ
∥∥

L2(Rn) ⩽ c2 ec2tλ
σ( 1

2k
+ 1

2m
)
∥ψ∥L2(Rn),

with λ > 0 the eigenvalue associated with the eigenfunction ψ. Indeed,
notice that ψ ∈ L2(Rn) is an eigenfunction of the operator Hk,m if and
only if its Fourier transform ψ̂ is an eigenfunction of the operator Hm,k

associated with the same eigenvalue. As a consequence, once (4.1) is estab-
lished, we deduce by exchanging the roles of the integers k and m that for
all eigenfunction ψ ∈ L2(Rn) of the operator Hk,m and 0 ⩽ t ⩽ T ,∥∥ec1t⟨x⟩σ(1+ m

k
)
ψ̂
∥∥

L2(Rn) ⩽ c2 ec2tλ
σ( 1

2m
+ 1

2k
)
∥ψ̂∥L2(Rn),
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with λ > 0 the eigenvalue associated with the eigenfunction ψ. Plancherel’s
theorem then implies that∥∥ec1t⟨Dx⟩σ(1+ m

k
)
ψ
∥∥

L2(Rn) ⩽ c2 ec2tλ
σ( 1

2k
+ 1

2m
)
∥ψ∥L2(Rn),

which ends the proof of Theorem 2.1. We therefore focus on proving the
estimate (4.1). Let ψ ∈ L2(Rn) be an eigenfunction of the operator Hk,m

associated with the eigenvalue λ > 0. We consider the smooth function
ϕ ∈ C∞(Rn,R) defined for all x ∈ Rn by

(4.2) ϕ(x) = ⟨x⟩σ(1+ k
m ).

In the following, we will need to deal with a compactly supported approxi-
mation of the function ψ. To that end, let us consider a cut-off odd function
χ ∈ C∞

0 (R,R) satisfying that χ(x) = x for all 0 ⩽ x ⩽ 1, χ(x) = 0 when
x ⩾ 2 and χ(x) ⩾ 0 for all x ⩾ 0. For all ε > 0, we consider the compactly
supported functions χε and ϕε respectively defined for all x ∈ Rn by

(4.3) χε(x) = 1
ε
χ(εx) and ϕε(x) = (χε ◦ ϕ)(x).

Notice that by construction, the family (χε)ε>0 is an approximation of the
identity function. We also need to deal with a Schwartz approximation
of the eigenfunction ψ. We therefore consider (ψj)j a sequence in S(Rn),
given by Proposition 7.3 in Appendix, and satisfying

(4.4) lim
j→+∞

ψj = ψ and lim
j→+∞

Hk,mψj = Hk,mψ in L2(Rn).

We can now tackle the proof of the estimate (4.1). Our approach is based
on a classical Agmon strategy. The first step consists in noticing that for
all j ⩾ 0, ε > 0 and t ⩾ 0, the term ⟨Hk,mψj , e2tϕε ψj⟩L2 can be written in
the two following ways〈

Hk,mψj , e2tϕε ψj

〉
L2(Rn)

= λ
∥∥etϕεψj

∥∥2
L2(Rn) +

〈
Hk,mψj − λψj , e2tϕε ψj

〉
L2(Rn),

and〈
Hk,mψj , e2tϕε ψj

〉
L2(Rn)

=
〈
(−∆)mψj , e2tϕε ψj

〉
L2(Rn) +

〈
|x|2kψj , e2tϕε ψj

〉
L2(Rn).

The second step consists in controlling the term involving (−∆)m. After
making the change of function vj = etϕε ψj ∈ S(Rn), this term writes in
the most useful following form

(4.5) ⟨(−∆)mψj , e2tϕε ψj⟩L2(Rn) =
〈
etϕε(−∆)m(e−tϕε vj), vj

〉
L2(Rn).
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In order to manage it, we use the estimate given by the following proposition
which provides a Gårding type inequality and whose proof is postponed in
Section 6:

Proposition 4.1. — There exists a positive constant c0 > 0 depending
on the function ϕ such that for all 0 < ε ⩽ 1, 0 ⩽ t ⩽ 1 and v ∈ S(Rn),〈

etϕε(−∆)m(e−tϕε v), v
〉

L2(Rn) + c0

(
∥v∥2

L2(Rn) + t
∥∥⟨x⟩σkv

∥∥2
L2(Rn)

)
⩾ 0.

We deduce from (4.5), the above proposition and Cauchy–Schwarz’ in-
equality that for all j ⩾ 0, 0 < ε ⩽ 1 and 0 ⩽ t ⩽ 1,〈
|x|2kψj , e2tϕε ψj

〉
L2(Rn) − c0

∥∥etϕεψj

∥∥2
L2(Rn) − c0t

∥∥⟨x⟩σk etϕε ψj

∥∥2
L2(Rn)

⩽ λ
∥∥etϕεψj

∥∥2
L2(Rn) +

∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tϕεψj

∥∥
L2(Rn).

This estimate also takes the following integral form∫
Rn

(
|x|2k − c0t⟨x⟩2σk − c0 − λ

)
e2tϕε(x) |ψj(x)|2 dx

⩽
∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tϕεψj

∥∥
L2(Rn).

The third step of the proof consists in managing the above integral. To
that end, we will distinguish the two regions in Rn where |x|2k > Mλ and
|x|2k ⩽ Mλ respectively, with M ≫ 1 a large constant independent of
the Schwartz functions ψj and the eigenvalue λ whose value will be chosen
later, by writing

(4.6)
∫

|x|2k>Mλ

(
|x|2k − c0t⟨x⟩2σk − c0 − λ

)
e2tϕε(x) |ψj(x)|2 dx

⩽
∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tϕεψj

∥∥
L2(Rn)

+
∫

|x|2k⩽Mλ

(
λ+ c0t⟨x⟩2σk + c0 − |x|2k

)
e2tϕε(x) |ψj(x)|2 dx.

On the one hand, since 0 ⩽ σ ⩽ 1, there exist some positive constants
0 < t0 ⩽ 1 and c1 > 0 such that

∀t ∈ [0, t0],∀x ∈ Rn, c0t⟨x⟩2σk + c0 − |x|2k ⩽ c1,

and we obtain the following upper bound

(4.7)
∫

|x|2k⩽Mλ

(
λ+ c0t⟨x⟩2σk + c0 − |x|2k

)
e2tϕε(x) |ψj(x)|2 dx.

⩽ (λ+ c1)
∫

|x|2k⩽Mλ

e2tϕε(x) |ψj(x)|2 dx.
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On the other hand, since 0 ⩽ σ ⩽ 1 anew, we notice that there exist
other positive constants 0 < t1 ⩽ t0, r0 ≫ 1 and c2 > 0 such that for all
0 ⩽ t ⩽ t1 and x ∈ Rn satisfying |x|2k ⩾ r0,

|x|2k − c0t⟨x⟩2σk − c0 ⩾ c2|x|2k.

As a consequence, if the large positive constant M ≫ 1 satisfies Mλ0 ⩾ r0,
with λ0 > 0 the smallest eigenvalue of the operator Hk,m, we have Mλ ⩾
Mλ0 ⩾ r0, and therefore,

(4.8)
∫

|x|2k>Mλ

(
|x|2k − c0t⟨x⟩2σk − c0 − λ

)
e2tϕε(x) |ψj(x)|2 dx

⩾
∫

|x|2k>Mλ

(
c2|x|2k − λ

)
e2tϕε(x) |ψj(x)|2 dx

⩾ (c2M − 1)λ
∫

|x|2k>Mλ

e2tϕε(x) |ψj(x)|2 dx.

The constant M ≫ 1 can be chosen large enough so that c3 > 0, where we
set c3 = c2M − 1, and its value is now fixed. We deduce from (4.6), (4.7)
and (4.8) that for all j ⩾ 0, 0 < ε ⩽ 1 and 0 ⩽ t ⩽ t1,∫

|x|2k>Mλ

e2tϕε(x) |ψj(x)|2 dx

⩽
1
c3λ

∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tϕεψj

∥∥
L2(Rn)

+ 1
c3

(
1 + c1

λ

)∫
|x|2k⩽Mλ

e2tϕε(x) |ψj(x)|2 dx.

Given that∥∥etϕεψj

∥∥2
L2(Rn)

=
∫

|x|2k>Mλ

e2tϕε(x) |ψj(x)|2 dx+
∫

|x|2k⩽Mλ

e2tϕε(x) |ψj(x)|2 dx,

the above estimate implies that for all j ⩾ 0, 0 < ε ⩽ 1 and 0 ⩽ t ⩽ t1,

(4.9)
∥∥etϕεψj

∥∥2
L2(Rn) ⩽

1
c3λ

∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tϕεψj

∥∥
L2(Rn)

+
(

1
c3

(
1 + c1

λ

)
+ 1
)∫

|x|2k⩽Mλ

e2tϕε(x) |ψj(x)|2 dx.

We need to be more precise concerning the second term of the right-hand
side of the above estimate. First, it follows from the definition of the func-
tion χ and the definitions (4.3) of the functions χε and ϕε that there exists
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a positive constant c4 > 0 such that for all ε > 0 and x ∈ Rn,

ϕε(x) = χε(ϕ(x)) = 1
ε
χ(εϕ(x)) ⩽ c4ϕ(x).

Moreover, Minkowski’s inequality and the classical inequality

∀a, b⩾ 0,∀q > 0, (a+ b)q ⩽ 2(q−1)+(aq + bq) with (q−1)+ = max(q−1, 0),

imply that for all x ∈ Rn,

ϕ(x) = ⟨x⟩σ(1+ k
m ) ⩽ (1 + |x|)σ(1+ k

m ) ⩽ 2(σ(1+ k
m )−1)+

(
1 + |x|σ(1+ k

m )).
We deduce that for all 0 < ε ⩽ 1 and x ∈ Rn satisfying |x|2k ⩽Mλ,

ϕε(x) ⩽ 2(σ(1+ k
m )−1)+c4

(
1 + (Mλ) σ

2k + σ
2m

)
.

In addition, still denoting by λ0 > 0 the smallest eigenvalue of the operator
Hk,m, the following estimate holds

1
c3

(
1 + c1

λ

)
⩽

1
c3

(
1 + c1

λ0

)
.

We therefore deduce that there exist some positive constants c5, c6 > 0
such that for all j ⩾ 0, 0 < ε ⩽ 1 and 0 ⩽ t ⩽ t1,(

1
c3

(
1 + c1

λ

)
+ 1
)∫

|x|2k⩽Mλ

e2tϕε(x) |ψj(x)|2 dx

⩽ c5 ec6tλ
σ( 1

2k
+ 1

2m
)
∥ψj∥2

L2(Rn),

and then, using anew that λ ⩾ λ0 > 0, we get∥∥etϕεψj

∥∥2
L2(Rn) ⩽

1
c3λ0

∥∥Hk,mψj − λψj

∥∥
L2(Rn)

∥∥e2tϕεψj

∥∥
L2(Rn)

+ c5 ec6tλ
σ( 1

2k
+ 1

2m
)
∥ψj∥2

L2(Rn).

By passing to the limit j → +∞ in this estimate while using (4.4), and
recalling that Hk,mψ = λψ, we obtain the following inequality for all 0 <
ε ⩽ 1 and 0 ⩽ t ⩽ t1,∥∥etϕεψ

∥∥2
L2(Rn) ⩽ c5 ec6tλ

σ( 1
2k

+ 1
2m

)
∥ψ∥2

L2(Rn).

The estimate (4.1) is then a consequence of Fatou’s lemma, since we get
that for all 0 ⩽ t ⩽ t1,∥∥etϕψ

∥∥2
L2(Rn) =

∥∥lim inf
ε→0

etϕε ψ
∥∥2

L2(Rn) ⩽ lim inf
ε→0

∥∥etϕεψ
∥∥2

L2(Rn)

⩽ c5 ec6tλ
σ( 1

2k
+ 1

2m
)
∥ψ∥2

L2(Rn).
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Notice that both constants c5 > 0 and c6 > 0 do not depend on the
eigenfunction ψ ∈ L2(Rn) nor on the associated eigenvalue λ > 0. This
ends the proof of the estimate (4.1).

5. Smoothing properties of the associated semigroups

Let k,m ⩾ 1 be some positive integers, s > 0 be a positive real number
and Hs

k,m be the associated fractional anisotropic Shubin operator defined
in (2.1) and equipped with the domain (2.2). The aim of this section is to
study the smoothing properties enjoyed by the evolution operators gener-
ated by the operator Hs

k,m on L2(Rn).

5.1. The general case

This subsection is devoted to derive Corollary 2.2 from Theorem 2.1.
Let (ψj)j be a Hilbert basis of L2(Rn) composed of eigenfunctions of the
operator Hk,m and λj > 0 the eigenvalue associated with the eigenfunction
ψj for all j ⩾ 0. Moreover, let c1, c2 > 0 and T > 0 be the positive constants
given by Theorem 2.1. We first prove that there exists a positive constant
c > 0 such that for all 0 < t < T and g ∈ L2(Rn),

(5.1)
∥∥ec1t⟨x⟩

1
νs,k,m (e−(1+c2)tHs

k,m g)
∥∥

L2(Rn) ⩽
c

t
n(k+m)

2skm

∥g∥L2(Rn),

the regularity exponent νs,k,m > 0 being given by

νs,k,m = max
(

1
2sk ,

m

k +m

)
.

In the following, the operator Hs
k,m and the constant νs,k,m will simply

be denoted Hs and νs respectively in order to alleviate the writing. The
strategy to obtain this estimate is to prove that there exists a positive
constant c > 0 such that for all 0 < t < T and g ∈ L2(Rn),

(5.2)
+∞∑
j=0

∥∥⟨e−(1+c2)tHs

g, ψj⟩L2(Rn)ec1t⟨x⟩
1

νs ψj

∥∥
L2(Rn) ⩽

c

t
n(k+m)

2skm

∥g∥L2(Rn).

Since the normed vector space L2(Rn) is a Banach space, the above in-
equality implies that for all 0 < t < T and g ∈ L2(Rn),
+∞∑
j=0
⟨e−(1+c2)tHs

g, ψj⟩L2(Rn) ec1t⟨x⟩
1

νs ψj = ec1t⟨x⟩
1

νs (e−(1+c2)tHs

g)∈L2(Rn),
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and also that the estimate (5.1) holds. We therefore focus on obtain-
ing (5.2). To that end, we begin by noticing that the exponent 1/νs can be
written in the following way

(5.3) 1
νs

= σs

(
1 + k

m

)
with σs = min

(
2skm
k +m

, 1
)
∈ [0, 1].

By using that

σs

(
1
2k + 1

2m

)
= min

(
s,

1
2k + 1

2m

)
⩽ s,

and the fact that lim+∞ λj = +∞, we deduce that

∃j0 ⩾ 1,∀j ⩾ j0, λs
j ⩾ λ

σs( 1
2k + 1

2m )
j .

Cauchy–Schwarz’ inequality and Theorem 2.1 then imply that for all 0 <
t < T and g ∈ L2(Rn),

+∞∑
j=0

∥∥⟨e−(1+c2)tHs

g, ψj⟩L2(Rn) ec1t⟨x⟩
1

νs ψj

∥∥
L2(Rn)

⩽

(+∞∑
j=0

e−(1+c2)tλs
j

∥∥ec1t⟨x⟩
1

νs ψj

∥∥
L2(Rn)

)
∥g∥L2(Rn)

⩽ c2

(+∞∑
j=0

e−(1+c2)tλs
j ec2tλ

σs( 1
2k

+ 1
2m

)
j

)
∥g∥L2(Rn)

⩽ c0c2

(+∞∑
j=0

e−tλs
j

)
∥g∥L2(Rn),

where we set

c0 = max
0⩽j⩽j0−1

sup
0⩽t⩽T

e−c2t(λs
j −λ

σs( 1
2k

+ 1
2m

)
j

) > 0.

Moreover, the result [11, Chapter 2, Corollary 3.1] implies that the asymp-
totic behavior of the eigenvalues λj is the following

λj ∼
j→+∞

ck,mj
2km

n(k+m) ,

where ck,m > 0 is a positive constant only depending on the positive inte-
gers k,m ⩾ 1. Thus, there exists a positive constant c0

′ > 0 such that for
all 0 < t < T ,

+∞∑
j=0

e−tλs
j ⩽

+∞∑
j=0

e−c0
′tj

2skm
n(k+m)

⩽
∫ +∞

−1
e−c0

′tx
2skm

n(k+m) dx.
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We deduce that there exists another positive constant c > 0 such that for
all 0 < t < T and g ∈ L2(Rn),

+∞∑
j=0

∥∥⟨e−(1+c2)tHs

g, ψj⟩L2(Rn) ec1t⟨x⟩
1

νs ψj

∥∥
L2(Rn) ⩽

c

t
n(k+m)

2skm

∥g∥L2(Rn).

This ends the proof of the estimate (5.2) and, therefore, the one of (5.1).
Proceeding in the very same way, we get that for all 0 < t < T and
g ∈ L2(Rn),∥∥ec1t⟨Dx⟩

1
µs,k,m (e−(1+c2)tHs

k,m g)
∥∥

L2(Rn) ⩽
c

t
n(k+m)

2skm

∥g∥L2(Rn),

the regularity exponent µs,k,m > 0 being this time given by

µs,k,m = max
(

1
2sm,

k

k +m

)
.

Indeed, the proof goes the same way as before, since we have
1

µs,k,m
= min

(
2sm, 1 + m

k

)
= σs

(
1 + m

k

)
,

where σs ∈ [0, 1] is the same as in (5.3). The proof of Corollary 2.2 is now
ended.

5.2. The non-fractional case

To end this section, we improve the Gelfand–Shilov estimates given by
Corollary 2.2 in the non-fractional case, that is, when s = 1, by proving
Theorem 2.3. In the following, we will use steps or results already present
in the proof of Theorem 2.1 in Section 4. First, as we have already noticed,
it is sufficient to obtain the existence of some positive constants c1 > 0,
c2 > 0 and T > 0 such that for all 0 ⩽ t ⩽ T and g ∈ L2(Rn),

(5.4)
∥∥ec1t⟨x⟩1+ k

m (e−tHk,m g)
∥∥

L2(Rn) ⩽ c2∥g∥L2(Rn).

To that end, we consider c > 0 a positive constant whose value will be cho-
sen later and the smooth function ϕ ∈ C∞(Rn,R) defined for all x ∈ Rn by

ϕ(x) = c⟨x⟩1+ k
m .

In order to work with a smooth compactly support approximation of the
function ϕ, we consider the family of function (χε)ε>0 defined in (4.3)
anew and we set ϕε = χε◦ϕ. In contrast to Subsection 5.1, where we used a
Hilbert basis composed of eigenfunctions of the operator Hk,m, the strategy
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adopted here consists in directly manipulating the semigroup (e−tHk,m)t⩾0
through the following time-dependent functionals

(5.5) Fε(t) =
〈
e−tHk,mg, e2tϕε e−tHk,m g

〉
L2(Rn), ε> 0, t⩾ 0, g ∈L2(Rn).

However, in oder to justify that the functionals Fε are well-defined on
[0,+∞), we need to call on Corollary 2.2 proven in Subsection 5.1, which
states in particular that

∀t > 0,∀g ∈ L2(Rn), e−tHk,m g ∈ S(Rn).

Moreover, these functionals are differentiable on (0,+∞) and their deriva-
tives are given for all ε > 0, t > 0 and g ∈ L2(Rn) by

F ′
ε(t) = −2

〈
Hk,m e−tHk,m g, e2tϕε e−tHk,m g

〉
L2(Rn)

+ 2
〈
e−tHk,mg, ϕε e2tϕε e−tHk,m g

〉
L2(Rn).

By using the definition of the operator Hk,m, we can expand the above
equality for all ε > 0, t > 0 and g ∈ L2(Rn),

F ′
ε(t) = −2

〈
|x|2k e−tHk,m g, e2tϕε e−tHk,m g

〉
L2(Rn)

− 2
〈
(−∆)m e−tHk,m g, e2tϕε e−tHk,m g

〉
L2(Rn)

+ 2
〈
e−tHk,mg, ϕε e2tϕε e−tHk,m g

〉
L2(Rn).

We recall from Proposition 4.1 (in the particular case where σ = 1) that
there exists a positive constant c0 > 0 depending on the function ϕ such
that for all 0 < ε ⩽ 1, 0 ⩽ t ⩽ 1 and v ∈ S(Rn),〈

etϕε(−∆)m(e−tϕε v), v
〉

L2(Rn) + c0

(
∥v∥2

L2(Rn) + t
∥∥⟨x⟩kv∥∥2

L2(Rn)

)
⩾ 0.

By applying this estimate to the Schwartz functions v = e2tϕε e−tH g, we
deduce that for all 0 < ε ⩽ 1, 0 < t ⩽ 1 and g ∈ L2(Rn),

F ′
ε(t) ⩽ −2

〈
|x|2k e−tHk,m g, e2tϕε e−tHk,m g

〉
L2(Rn)

+ 2c0t
∥∥⟨x⟩k etϕε e−tHk,m g

∥∥2
L2(Rn) + 2c0

∥∥etϕε e−tHk,m g
∥∥2

L2(Rn)

+ 2
〈
e−tHk,mg, ϕε e2tϕε e−tHk,m g

〉
L2(Rn).

This estimate also takes the following integral form

F ′
ε(t) ⩽ 2

∫
Rn

(
c0 + ϕε(x) + c0t⟨x⟩2k − |x|2k

)
e2tϕε(x) ∣∣(e−tHk,m g)(x)

∣∣2 dx.
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We deduce from the definition (4.3) of the functions χε that there exists a
positive constant c1 > 0 such that for all ε > 0 and x ∈ Rn,

χε(x) = 1
ε
χ(εx) ⩽ c1x.

In particular, we get that for all ε > 0 and x ∈ Rn,

(5.6) ϕε(x) = χε(ϕ(x)) ⩽ c1ϕ(x).

This implies that for all 0 < ε ⩽ 1, 0 < t ⩽ 1 and g ∈ L2(Rn),

(5.7) F ′
ε(t)

⩽ 2
∫
Rn

(
c0 + c1ϕ(x) + c0t⟨x⟩2k − |x|2k

)
e2tϕε(x) ∣∣(e−tHk,m g)(x)

∣∣2 dx.

We will now distinguish two regions in Rn, namely in a neighborhood and
far from the origin, in order to control the term

c0 + c1ϕ(x) + c0t⟨x⟩2k − |x|2k.

Let r0 > 0 be a radius whose value will be chosen later. On the one hand,
since the above term is continuous with respect to both variables t and x,
we get that there exists a positive constant Mr0 > 0, depending on r0, such
that for all 0 ⩽ t ⩽ 1 and x ∈ Rn satisfying |x| ⩽ r0,

(5.8) c0 + c1ϕ(x) + c0t⟨x⟩2k − |x|2k ⩽Mr0 .

On the other hand, by choosing c < 1/c1, the value of the constant r0 ≫ 1
can be adjusted large enough so that there exists a positive constant t0 > 0
such that for all 0 ⩽ t ⩽ t0 and x ∈ Rn satisfying |x| ⩾ r0,

(5.9) c0 + c1ϕ(x) + c0t⟨x⟩2k − |x|2k ⩽ 0.

Indeed, notice that with this choice, c1c − 1 < 0, and that the inequality
1 + k/m ⩽ 2k implies that for all 0 ⩽ t ⩽ 1,

c0 + c1ϕ(x) + c0t⟨x⟩2k − |x|2k ⩽ c0 + c1c⟨x⟩2k + c0t⟨x⟩2k − |x|2k

∼
|x|→+∞

(c0t+ c1c− 1)|x|2k.

The value of the radius r0 ≫ 1 is now fixed. We deduce from (5.7), (5.8)
and (5.9) that for all ε > 0, 0 < t ⩽ t0 and g ∈ L2(Rn),

F ′
ε(t) ⩽ 2Mr0

∫
|x|⩽r0

e2tϕε(x) ∣∣(e−tHk,m g)(x)
∣∣2 dx.
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Moreover, by using (5.6) anew and the continuity of the function ϕ, we can
find a positive constant M > 0 such that for all 0 < ε ⩽ 1, 0 < t ⩽ t0 and
g ∈ L2(Rn),

(5.10) F ′
ε(t) ⩽M

∫
|x|⩽r0

∣∣(e−tHk,m g)(x)
∣∣2 dx ⩽M∥g∥2

L2(Rn).

By using the definition (5.5) of the functionals Fε and integrating the above
estimate, we deduce that for all 0 < ε < ε0, 0 ⩽ t ⩽ t0 and g ∈ L2(Rn),

Fε(t) =
∥∥etϕε e−tHk,m g

∥∥2
L2(Rn) ⩽ (1 +Mt)∥g∥2

L2(Rn) ⩽ (1 +Mt0)∥g∥2
L2(Rn).

Using Fatou’s lemma as in the end of Section 4 therefore ends the proof of
the estimate (5.4) and the one of Theorem 2.3.

6. A Gårding type inequality

Let ϕ be the smooth function defined in (4.2) and (ϕε)ε>0 be the family
of C∞

0 (Rn) functions given by (4.3). This section is devoted to the proof of
Proposition 4.1, which states that there exists a positive constant c0 > 0
depending on the function ϕ such that for all 0 < ε ⩽ 1, 0 ⩽ t ⩽ 1 and
v ∈ S(Rn),

(6.1)
〈
etϕε(−∆)m(e−tϕε v), v

〉
L2(Rn)+c0

(
∥v∥2

L2(Rn)+t
∥∥⟨x⟩σkv

∥∥2
L2(Rn)

)
⩾ 0.

We recall that for all ε > 0 and x ∈ Rn.

ϕ(x) = ⟨x⟩σ(1+ k
m ), ϕε(x) = (χε ◦ ϕ)(x) with χε(x) = 1

ε
χ(εx),

where 0 ⩽ σ ⩽ 1 is a non-negative real number, k,m ⩾ 1 are positive
integers and χ ∈ C∞

0 (R,R) is a cut-off odd function satisfying that χ(x) = x

for all 0 ⩽ x ⩽ 1, χ(x) = 0 when x ⩾ 2 and χ(x) ⩾ 0 for all x ⩾ 0. A natural
approach to prove the estimate (6.1) would be to compute explicitly the
scalar product ⟨etϕε(−∆)m(e−tϕε v), v⟩L2(Rn) by using Leibniz’ and Faá di
Bruno’s formulas, and to manage all the terms appearing. However, due to
the form of the general Faá di Bruno’s formula, these terms would not have
a manageable form, and their study would be difficult to tackle, especially
since we have to take into account the parameters 0 ⩽ t ⩽ 1 and 0 < ε ⩽ 1.
This is the reason why we will use technics from symbolic calculus, which is
particularly a well-adapted framework to prove Gårding type inequalities
like (6.1).

The first step consists in providing a more manageable form for the
operators etϕε(−∆)m e−tϕε involved in the above estimate. To that end,
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we need to introduce the following commutator notation for all compactly
supported smooth function χ ∈ C∞

0 (Rn) and all differential operator P ,

[χ, P ] = χP − Pχ.

We also define ad0
χ(−∆)m = (−∆)m and for all j ⩾ 0,

adj+1
χ (−∆)m = [χ, adj

χ(−∆)m].

Lemma 6.1. — For all compactly supported smooth function
χ ∈ C∞

0 (Rn), the following formula between differential operators holds,

(6.2) ∀t ∈ R, etχ(−∆)m e−tχ =
2m∑
j=0

tj

j! adj
χ(−∆)m.

Proof. — Let χ ∈ C∞
0 (Rn) be a fixed compactly supported smooth func-

tion. First notice from a straightforward induction that

(6.3) ∀j ⩾ 0,∀t ∈ R, ∂j
t (etχ(−∆)m e−tχ) = etχ adj

χ(−∆)m e−tχ .

Moreover, the differential operator adj
χ(−∆)m is of order max(2m − j, 0),

which implies that the derivatives (6.3) are equal to zero provided j ⩾
2m+ 1. We therefore deduce from Taylor’s formula applied to the analytic
functions t ∈ R 7→ etχ(−∆)m(e−tχ v)(x), with v ∈ S(Rn) and x ∈ Rn, that
the equality (6.2) actually holds. □

We deduce from Lemma 6.1 that for all ε > 0, t ⩾ 0 and v ∈ S(Rn),

(6.4)
〈
etϕε(−∆)m(e−tϕε v), v

〉
L2(Rn)

= ∥v∥2
Ḣm(Rn) +

2m∑
j=1

tj

j!
〈
adj

ϕε
(−∆)mv, v

〉
L2(Rn).

The objective is now to control each term appearing in the above sum.
Precisely, we will prove that there exists a positive constant c > 0 such
that for all η > 0 there exists another positive constant Cη > 0 such that
for all 1 ⩽ j ⩽ 2m, 0 < ε ⩽ 1 and v ∈ S(Rn),

(6.5)
∣∣〈adj

ϕε
(−∆)mv, v

〉
L2(Rn)

∣∣
⩽ c

(
1
η

∥∥⟨x⟩σkv
∥∥2

L2(Rn) + η∥v∥2
Ḣm(Rn) + Cη∥v∥2

L2(Rn)

)
.

Adjusting the value of 0 < η ≪ 1, we derive the estimate (6.1) from (6.4)
and (6.5).

As announced in the beginning of this section, the strategy to obtain (6.5)
is to use results from the theory of symbolic calculus, of which we now
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recall some basic notions and notations. Given Φ,Ψ ∈ C0(R2n) some sub-
linear and temperate weights, and M ∈ C0(R2n) another temperate weight,
we define the symbol class S(M ; Φ,Ψ) as the set of all smooth functions
a ∈ C∞(R2n) satisfying that for all (α, β) ∈ N2n, there exists a positive
constant cα,β > 0 such that for all (x, ξ) ∈ R2n,

(6.6) |(∂α
x ∂

β
ξ a)(x, ξ)| ⩽ cα,βM(x, ξ)Ψ(x, ξ)−|α|Φ(x, ξ)−|β|.

We refer to [36, page 19] where the notions of sub-linear and temperate
weights are defined. We also recall from the very same reference that ex-
amples of temperate weights are given by ⟨x⟩m or ⟨ξ⟩m, seen as functions
of R2n, with m ∈ R. Associated to any a ∈ S(M ; Φ,Ψ) is the pseudodiffer-
ential operator aw defined by the Weyl quantization of the symbol a, that
is, formally,

(awu)(x) = 1
(2π)n

∫∫
R2n

ei(x−y)·ξ a

(
x+ y

2 , ξ

)
u(y) dy dξ.

We refer to [36, Formula (1.2.3)] for a rigorous definition of the operator aw.
According to [36, Theorem 1.2.17], for all symbols a ∈ S(M1; Φ,Ψ) and b ∈
S(M2; Φ,Ψ), the composition awbw = (a ♯ b)w is also a pseudodifferential
operator, the associated symbol a ♯ b ∈ S(M1M2; Φ,Ψ) being given for all
(x, ξ) ∈ R2n by

(6.7) (a ♯ b)(x, ξ) = e i
2 (Dy·Dη−Dx·Dξ) a(x, η)b(y, ξ)

∣∣∣
(y,η)=(x,ξ)

.

Moreover, we have the following asymptotic expansion

(6.8) (a ♯ b)(x, ξ) ∼
∑
α,β

(−1)|β|

2|α+β|α!β!
(∂α

ξ D
β
xa)(x, ξ)(∂β

ξ D
α
x b)(x, ξ),

which is an equality when a or b is a polynomial as mentioned in [22,
Theorem 18.5.4]. This is also an exact formula when the symbol a only
depends on the space variable x ∈ Rn and the symbol b is a polynomial with
respect to the frequency variable ξ ∈ Rn, see e.g. [28, Formula (2.1.28)] for
an expression of the remainder. This asymptotic expansion will be widely
used in the following (in fact, this will be an exact formula in the futur
applications in this section).

For all 0 ⩽ j ⩽ 2m and ε > 0, we consider σj,ε the Weyl symbol of the
differential operator adj

ϕε
(−∆)m. We now need to determine in which class

the symbols σj,ε belong. This is done thanks to the following two lemmas.
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Lemma 6.2. — The following relation recurrence holds for all ε > 0 and
0 ⩽ j ⩽ 2m− 1,

(6.9) σj+1,ε = −
∑

l

1
2l−1

∑
|α|=l

1
α! (D

α
xϕε)(∂α

ξ σj,ε),

the sum being taken over all the odd integers l satisfying 1 ⩽ l ⩽ 2m− j.

Proof. — Let ε > 0 fixed all along this proof. We establish the rela-
tion (6.9) by induction, also checking that each symbol σj,ε is a polynomial
of degree 2m− j with respect to the ξ variable. Let us begin with the case
j = 0. Since |ξ|2m is a polynomial, the composition formula (6.8) shows
that the Weyl symbol of the operator ϕε(−∆)m is exactly given by

ϕε ♯ |ξ|2m =
2m∑
l=0

1
2l

∑
|α|+|β|=l

(−1)|β|

α!β! (∂α
ξ D

β
xϕε)(∂β

ξ D
α
x |ξ|2m)

=
2m∑
l=0

1
2l

∑
|β|=l

(−1)l

β! (Dβ
xϕε)(∂β

ξ |ξ|
2m).

Similarly, the Weyl symbol of the operator (−∆)mϕε is given by

|ξ|2m ♯ ϕε =
2m∑
l=0

1
2l

∑
|α|=l

1
α! (∂

α
ξ |ξ|2m)(Dα

xϕε).

We therefore deduce the following expression for the symbol σ1,ε,

σ1,ε = ϕε ♯ |ξ|2m − |ξ|2m ♯ ϕε =
2m∑
l=0

1
2l

∑
|α|=l

(−1)l − 1
α! (Dα

xϕε)(∂α
ξ |ξ|2m)

= −
∑

l

1
2l−1

∑
|α|=l

1
α! (D

α
xϕε)(∂α

ξ |ξ|2m),

the last sum being taken over all the odd integers l satisfying 1 ⩽ l ⩽
2m. The above formula shows that the symbol σ1,ε is a polynomial of
degree 2m − 1 with respect to the ξ variable. Since ad0

ϕε
(−∆)m is the

operator (−∆)m by definition, the basic case of the induction is ended.
We now consider j ⩾ 1 and assume that formula (6.9) holds for j − 1.
Since the function ϕε only depends on the space variable x ∈ Rn and
that the symbol σj,ε is a polynomial of degree 2m − j with respect to
the frequency variable ξ ∈ Rn according to the induction hypothesis, we
deduce the composition formula (6.8) anew that the symbol of the operator
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ϕε adj
ϕε

(−∆)m is given by

ϕε ♯ σj,ε =
2m−j∑

l=0

1
2l

∑
|β|=l

(−1)l

β! (Dβ
xϕε)(∂β

ξ σj,ε).

Similarly as in the basic case, we then obtain the following formula for the
symbol σj+1,ε

σj+1,ε = −
∑

l

1
2l−1

∑
|α|=l

1
α! (D

α
xϕε)(∂α

ξ σj,ε),

the sum being taken over all the odd integers l satisfying 1 ⩽ l ⩽ 2m− j,
which is the relation we aimed at obtaining. Notice that it implies that the
symbol σj+1,ε is a polynomial of degree 2m − j − 1 with respect to the
frequency variable ξ ∈ Rn. This ends the proof of Lemma 6.2. □

Lemma 6.3. — For all (α, β) ∈ N2n, there exists a positive constant
cα,β > 0 such that for all 1 ⩽ j ⩽ 2m, 0 < ε ⩽ 1 and (x, ξ) ∈ R2n,

(6.10)
∣∣(Dα

x∂
β
ξ σj,ε)(x, ξ)

∣∣ ⩽ cα,β⟨x⟩
σkj
m ⟨ξ⟩2m−j−|β|.

Proof. — We proceed by induction, beginning with the case j = 1. We
deduce from Lemma 6.2 that for all ε > 0, the derivatives of the symbol
σ1,ε are given by

(6.11) Dα
x∂

β
ξ σ1,ε =−

∑
l

1
2l−1

∑
|γ|=l

1
α! (D

α+γ
x ϕε)(∂β+γ

ξ |ξ|2m), (α, β)∈N2n,

the sum being taken over all the odd integers l satisfying 1 ⩽ l ⩽ 2m. On
the one hand, we need to bound the derivatives of the functions ϕε. By
definition of the function χ and the functions χε in (4.3), we get that for
all 0 < ε ⩽ 1, we have ∥χε∥L∞(Rn) ⩽ 1 and

(6.12) ∀p ⩾ 1,
∥∥χ(p)

ε

∥∥
L∞(Rn) ⩽ εp−1∥∥χ(p)∥∥

L∞(Rn) ⩽
∥∥χ(p)∥∥

L∞(Rn).

Notice in particular that the derivatives of the function χε are uniformly
bounded with respect to the parameter 0 < ε ⩽ 1. Moreover, the function ϕ
is defined in (4.2) as a Japanese bracket, which implies that for all ρ ∈ Nn,
there exists a positive constant cρ > 0 such that for all x ∈ Rn,

(6.13)
∣∣(Dρ

xϕ)(x)
∣∣ ⩽ cρ⟨x⟩σ(1+ k

m )−|ρ|.

Since ϕε = χε ◦ ϕ and 0 ⩽ σ ⩽ 1, we deduce from (6.12), (6.13) and
the chain rule that for all α, γ ∈ Nn with |γ| ⩾ 1, there exists a positive
constant cα,γ > 0 such that for all 0 < ε ⩽ 1 and x ∈ Rn,

(6.14)
∣∣(Dα+γ

x ϕε)(x)
∣∣ ⩽ cα,γ⟨x⟩σ(1+ k

m )−1 ⩽ cα,γ⟨x⟩
σk
m .
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On the other hand, we get that for all β, γ ∈ Nn with |γ| ⩾ 1, there exists
a positive constant cβ,γ > 0 such that for all ξ ∈ Rn,∣∣∂β+γ

ξ |ξ|2m
∣∣ ⩽ cβ,γ⟨ξ⟩2m−|β|−|γ| ⩽ cβ,γ⟨ξ⟩2m−1−|β|.

In view of (6.11) (notice that the first sum starts at l = 1) and the two
above estimates, the induction is ended in the basic case. We now consider
2 ⩽ j ⩽ 2m assume that formula (6.10) holds for j − 1. We deduce from
Lemma 6.2 anew that for all ε > 0, the derivatives of the symbol σj+1,ε are
given by

(6.15) Dα
x∂

β
ξ σj+1,ε =−

∑
l

1
2l−1

∑
|γ|=l

1
α!D

α
x ((Dγ

xϕε)(∂β+γ
ξ σj,ε)), (α, β)∈N2n,

the sum being taken over all the odd integers l satisfying 1 ⩽ l ⩽ 2m− j.
Moreover, Leibniz’ formula implies that

(6.16) Dα
x ((Dγ

xϕε)(∂β+γ
ξ σj,ε)) =

∑
δ⩽α

(
α

δ

)
(Dδ+γ

x ϕε)(Dα−δ
x ∂β+γ

ξ σj,ε).

We deduce from (6.14) and the induction hypothesis that for all (α, β, γ, δ)∈
N4n, with |γ| ⩾ 1 and δ ⩽ γ, there exists a positive constant cα,β,γ,δ > 0
such that for all 0 < ε ⩽ 1 and (x, ξ) ∈ R2n,∣∣(Dδ+γ

x ϕε)(x, ξ)(Dα−δ
x ∂β+γ

ξ σj,ε)(x, ξ)
∣∣⩽ cα,β,γ,δ⟨x⟩

σk
m ⟨x⟩

σkj
m ⟨ξ⟩2m−j−|β|−|γ|

⩽ cα,β,γ,δ⟨x⟩
σk(j+1)

m ⟨ξ⟩2m−(j+1)−|β|,

since |γ| ⩾ 1. In view of this estimate, formula (6.15) (notice that the first
sum starts at l = 1 anew) and (6.16), the induction is now ended. □

By using the notations for symbol classes introduced above, Lemma 6.3
shows that for all 1 ⩽ j ⩽ 2m and 0 < ε ⩽ 1, the symbol σj,ε belongs to
the following class

(6.17) σj,ε ∈ S(⟨x⟩
σkj
m ⟨ξ⟩2m−j ; ⟨ξ⟩, 1),

with uniform estimates of the associated seminorms (6.6) with respect to
the parameter 0 < ε ⩽ 1. This property is the key stone of the proof of
the next lemma, which provides a first bound of the quantities we aim at
controlling.

Lemma 6.4. — There exists a positive constant c > 0 such that for all
1 ⩽ j ⩽ 2m, 0 < ε ⩽ 1 and v ∈ S(Rn),∣∣〈adj

ϕε
(−∆)mv, v

〉
L2(Rn)

∣∣ ⩽ c
∥∥⟨x⟩σkj

2m ⟨Dx⟩m− j
2 v
∥∥2

L2(Rn).
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Proof. — Let 1 ⩽ j ⩽ 2m fixed all along the proof. We deduce from the
property (6.17) and the composition formula (6.8) that

⟨x⟩−
σkj
2m ♯ ⟨ξ⟩−m+ j

2 ♯ σj,ε ♯ ⟨ξ⟩−m+ j
2 ♯ ⟨x⟩−

σkj
2m ∈ S(1; ⟨ξ⟩, 1) ⊂ C∞

b (R2n),

with uniform estimates of the associated seminorms (6.6) with respect to
the parameter 0 < ε ⩽ 1. It therefore follows from a quantitative version of
the Calderón-Vaillancourt’s theorem, see e.g. [12, Theorem 1.2], that the
following operator is bounded on L2(Rn),

⟨x⟩−
σkj
2m ⟨Dx⟩−m+ j

2σw
j,ε⟨Dx⟩−m+ j

2 ⟨x⟩−
σkj
2m : L2(Rn)→ L2(Rn),

and its norm operator can bounded uniformly with respect to 0 < ε ⩽ 1.
As a consequence, there exists a positive constant c > 0 such that for all
0 < ε ⩽ 1 and v ∈ S(Rn),∣∣〈σw

j,ε⟨Dx⟩−m+ j
2 ⟨x⟩−

σkj
2m v, ⟨Dx⟩−m+ j

2 ⟨x⟩−
σkj
2m v

〉
L2(Rn)

∣∣ ⩽ c∥v∥2
L2(Rn).

A straightforward change of variable therefore ends the proof of Lemma 6.4,
since σj,ε is the Weyl symbol of the operator adj

ϕε
(−∆)m by definition. □

Lemma 6.4 implies that now, we only need to prove that there exists a
positive constant c > 0 such that for all η > 0 there exists another positive
constant Cη > 0 such that for all 1 ⩽ j ⩽ 2m and v ∈ S(Rn),∥∥⟨x⟩σkj

2m ⟨Dx⟩m− j
2 v
∥∥2

L2(Rn)

⩽ c

(
1
η

∥∥⟨x⟩σkv
∥∥2

L2(Rn) + η∥v∥2
Ḣm(Rn) + Cη∥v∥2

L2(Rn)

)
,

to derive the estimate (6.5) (we got rid of the parameter 0 < ε ⩽ 1). Notice
that the composition formula (6.7) allows to consider the symbol

(6.18) a0 ∈ S(⟨x⟩
σkj
m ⟨ξ⟩2m−j ; ⟨ξ⟩, ⟨x⟩),

satisfying
aw

0 = ⟨Dx⟩m− j
2 ⟨x⟩

σkj
m ⟨Dx⟩m− j

2 .

The estimate we aim at proving is therefore the following

(6.19)
∣∣〈aw

0 v, v
〉

L2(Rn)

∣∣⩽ c

(
1
η

∥∥⟨x⟩σkv
∥∥2

L2(Rn) +η∥v∥2
Ḣm(Rn) +Cη∥v∥2

L2(Rn)

)
.

Moreover, the symbol ⟨x⟩
σkj
m ⟨ξ⟩2m−j can be written in the following way

(6.20) ⟨x⟩
σkj
m ⟨ξ⟩2m−j = ⟨x⟩

2σk
pj ⟨ξ⟩

2m
qj with pj = 2m

j
, qj = 2m

2m− j .

Notice that pj and qj are Hölder conjugates, that is, 1/pj + 1/qj = 1. This
observation motivates the introduction of the following symbol classes for
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all positive real numbers g, h > 0 and p, q ⩾ 1 (not necessary Hölder
conjugates in general),

Sg,h
p,q = S(⟨x⟩

g
p ⟨ξ⟩

h
q ; ⟨ξ⟩, ⟨x⟩).

Young’s inequality implies that when 1/p+1/q = 1, any symbol a ∈ S2g,2h
p,q

satisfies

∀η > 0,∀(x, ξ) ∈ R2n, |a(x, ξ)| ≲ 1
η
⟨x⟩2g + η⟨ξ⟩2h,

the constant only depending on the real numbers g, h, p, q (and not on
η > 0). Applying a formal Gårding type inequality, we would conjecture
that an estimate of the following form could hold for all η > 0 and v ∈
S(Rn),

(6.21)
∣∣〈awv, v

〉
L2(Rn)

∣∣ ≲ 1
η

∥∥⟨x⟩gv∥∥2
L2(Rn) + η∥v∥2

Hh(Rn) + Cη∥v∥2
L2(Rn).

This is exactly the type of estimate we aim at proving. In order to make
this formal derivation rigorous, we introduce the notion of anti-Wick quan-
tization, following [36, Section 1.7], which has the advantage to preserve
positivity, in contrast to the Weyl quantization. Given a tempered symbol
a ∈ S′(Rn), we define the anti-Wick operator Aa with symbol a as the
map S(Rn)→ S′(Rn) given by

Aau = (2π)−nV ∗(aV u), u ∈ S(Rn),

where V denotes the short-time Fourier transform, see e.g. [36, Defini-
tion 1.7.1]. The idea to use anti-Wick operators in this context was sug-
gested to the author by J. Bernier who (with co-authors) used this notion
in the note [10] to obtain microlocal estimates. In the next two lemmas,
we explicit the relationship that exists between the anti-Wick operators
with symbols in the class Sg,h

p,q and the Weyl quantization of those symbols.
Their proofs are inspired by the one of [10, Lemma 1].

Lemma 6.5. — Let g, h > 0 and p, q ⩾ 1 be positive real numbers. For
all symbol a ∈ Sg,h

p,q , there exists remainders r1 ∈ Sg−p,h
p,q and r2 ∈ Sg,h−q

p,q

such that
Aa = aw + rw

1 + rw
2 ,

where Aa denotes the anti-Wick operator with symbol a.

Proof. — By applying [36, Proposition 1.7.9], we know that the Weyl
symbol of the operator Aa is the symbol b ∈ C∞(R2n) given by

(6.22) b(x, ξ) = 1
πn

∫∫
R2n

a(x̃, ξ̃) e−|x−x̃|2−|ξ−ξ̃|2
dx̃dξ̃, (x, y) ∈ R2n.
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Applying Taylor’s formula with remainder term to the symbol a in (x, ξ) ∈
R2n leads to

a(x̃, ξ̃) = a(x, ξ) +
∫ 1

0
∇xa(x+ t(x̃− x), ξ + t(ξ̃ − ξ)) · (x̃− x) dt

+
∫ 1

0
∇ξa(x+ t(x̃− x), ξ + t(ξ̃ − ξ)) · (ξ̃ − ξ) dt.

Plugging this expansion in the definition (6.22) of the symbol b and making
the change of variables (x̃, ξ̃) ← (x̃ − x, ξ̃ − ξ) motivates to introduce the
two following remainders

r1(x, ξ) = 1
πn

∫∫
R2n

∫ 1

0
∇xa(x+ tx̃, ξ + tξ̃) · x̃ e−|x̃|2−|ξ̃|2

dtdx̃dξ̃,

and

r2(x, ξ) = 1
πn

∫∫
R2n

∫ 1

0
∇ξa(x+ tx̃, ξ + tξ̃) · ξ̃ e−|x̃|2−|ξ̃|2

dtdx̃ dξ̃.

Indeed, with these definitions of r1 and r2, we have

Aa = bw = aw + rw
1 + rw

2 .

Let us check that r1 ∈ Sg−p,h
p,q . By symmetry, we will also have that r2 ∈

Sg,h−q
p,q . We just need to prove that for all (α, β) ∈ N2n, there exists a

positive constant cα,β > 0 such that for all (x, ξ) ∈ R2n,

(6.23)
∣∣(∂α

x ∂
β
ξ r1)(x, ξ)

∣∣ ⩽ cα,β⟨x⟩
g−p

p −|α|⟨ξ⟩
h
q −|β|.

By definition of the symbol class Sg,h
p,q , we get that for all (δ, γ) ∈ N2n, there

exists a positive constant cδ,γ > 0 such that for all (x, ξ) ∈ R2n,∣∣(∂δ
x∂

γ
ξ a)(x, ξ)

∣∣ ⩽ cδ,γ⟨x⟩
g
p −|δ|⟨ξ⟩

h
q −|γ|.

We therefore deduce that for all (α, β) ∈ N2n, (x, ξ), (x̃, ξ̃) ∈ R2n and
0 ⩽ t ⩽ 1,∣∣(∂α

x ∂
β
ξ∇xa)(x+ tx̃, ξ + tξ̃)

∣∣ ⩽ cα,β⟨x+ tx̃⟩
g
p −|α|−1⟨ξ + tξ̃⟩

h
q −|β|.

Recalling Peetre’s inequality, see e.g. [36, Formula (0.1.2)],

(6.24) ∀s ∈ R,∃cs > 0,∀x, y ∈ Rn, ⟨x+ y⟩s ⩽ cs⟨x⟩s⟨y⟩|s|,

we get that for all (α, β) ∈ N2n, (x, ξ), (x̃, ξ̃) ∈ R2n and 0 ⩽ t ⩽ 1,∣∣(∂α
x ∂

β
ξ∇xa)(x+ tx̃, ξ + tξ̃)

∣∣
⩽ cα,βc|α|,|β|⟨x⟩

g−p
p −|α|⟨ξ⟩

h
q −|β|⟨x̃⟩

g
p +|α|+1⟨ξ̃⟩

h
q +|β|.
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Plugging this estimate in the definition of r1 yields to (6.23). This ends the
proof of Lemma 6.5. □

In the following lemma, we perform the very same study for the symbol
1
η ⟨x⟩

g + η⟨ξ⟩h.

Lemma 6.6. — Let g, h > 0 be positive real numbers. We consider the
symbols

Hη(x, ξ) = 1
η
⟨x⟩g + η⟨ξ⟩h, η > 0, (x, ξ) ∈ R2n.

For all η > 0, there exists some remainders r1,η, r2,η ∈ C∞(Rn) satisfying

∀α∈Nn,∃cα > 0,∀η > 0,∀x∈Rn,
∣∣(∂α

x r1,η)(x)
∣∣⩽ cα

η
⟨x⟩g−1−|α|,(6.25)

∀α∈Nn,∃cα > 0,∀η > 0,∀ξ ∈Rn,
∣∣(∂α

ξ r2,η)(ξ)
∣∣⩽ cαη⟨ξ⟩h−1−|α|,(6.26)

and such that
Aη = Hw

η + rw
1,η + rw

2,η,

with Aη the anti-Wick operator with symbol Hη.

Proof. — Mimicking exactly the proof of Lemma 6.5, the two remainder
we need to consider are the following ones

(6.27) r1,η(x, ξ) = 1
πn

∫∫
R2n

∫ 1

0
∇xHη(x+tx̃, ξ+tξ̃)·x̃ e−|x̃|2−|ξ̃|2

dtdx̃dξ̃,

and

r2,η(x, ξ) = 1
πn

∫∫
R2n

∫ 1

0
∇ξHη(x+ tx̃, ξ + tξ̃) · ξ̃ e−|x̃|2−|ξ̃|2

dtdx̃dξ̃.

Let us prove that the estimate (6.25) holds. The inequality (6.26) is then
obtained by symmetry. First, notice that since the symbol ∇xHη does not
depend on the variable ξ ∈ Rn, so does the remainder r1,η and we omit
this variable in the following. By definition of the symbol Hη as the sum
of Japanese brackets, we know that for all α ∈ Nn, there exists a positive
constant cα > 0 such that for all η > 0, x, x̃ ∈ Rn and 0 ⩽ t ⩽ 1,∣∣(∂α

x∇xHη)(x+ tx̃)
∣∣ ⩽ cα

η
⟨x+ tx̃⟩g−1−|α|.

We then deduce from Peetre’s inequality (6.24) that for all α ∈ Nn, η > 0,
x, x̃ ∈ Rn and 0 ⩽ t ⩽ 1,∣∣(∂α

x∇xHλ)(x+ tx̃)
∣∣ ⩽ cαcg,|α|

η
⟨x⟩g−1−|α|⟨x̃⟩g+1+|α|.

Plugging this estimate in the definition (6.27) of the remainder r1,η leads
to the estimate (6.25). This ends the proof of Lemma 6.6. □
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We now have all the ingredients required to tackle the proof of the esti-
mate (6.21).

Proposition 6.7. — Let g, h > 0 and p, q ⩾ 1 be positive real numbers
with 1/p + 1/q = 1. For all symbol a ∈ S2g,2h

p,q , there exists a positive
constant c > 0 such that for all η > 0 and v ∈ S(Rn),

(6.28)
∣∣〈awv, v

〉
L2(Rn)

∣∣ ⩽ c

(
1
η

∥∥⟨x⟩gv∥∥2
L2(Rn) + η∥v∥2

Hh(Rn)

)
.

Proof. — The strategy adopted here follows the one adopted in the proof
of [10, Proposition 1]. Let a ∈ S2g,2h

p,q . Since 1/p+ 1/q = 1, we deduce from
Young’s inequality that there exists a positive constant c0 > 0 such that
for all η > 0 and (x, ξ) ∈ R2n,

∣∣a(x, ξ)
∣∣ ⩽ c0

(
1
η
⟨x⟩2g + η⟨ξ⟩2h

)
.

For all η > 0, we consider the symbol

a±
η (x, ξ) = c0

(
1
η
⟨x⟩2g + η⟨ξ⟩2h

)
± a(x, ξ), (x, ξ) ∈ R2n.

By applying Lemma 6.5 and Lemma 6.6, we get the existence of remainders
r1,η, r2,η ∈ C∞(Rn) satisfying that for all α ∈ Nn, there exists a positive
constant cα > 0 such that for all x, ξ ∈ Rn,

(6.29)
∣∣(∂α

x r1,η)(x)
∣∣ ⩽ cα

η
⟨x⟩2g−1−|α|,

∣∣(∂α
ξ r2,η)(ξ)

∣∣ ⩽ cαη⟨ξ⟩2h−1−|α|,

and also of two more remainders r1 ∈ S2g−p,2h
p,q and r2 ∈ S2g,2h−p

p,q , such
that

Aa±
η

= (a±
η )w + rw

1,η + rw
2,η ± rw

1 ± rw
2 .

Since the symbol a±
η is nonnegative and has a polynomial growth, by apply-

ing [36, Proposition 1.7.6], we obtain that the operator Aa±
η

is nonnegative,
which implies that for all v ∈ S(Rn),

⟨Aa±v, v⟩L2(Rn) = c0

〈(
1
η
⟨x⟩2g + η⟨ξ⟩2h

)w

v, v

〉
L2(Rn)

+
〈
rw

1,ηv, v
〉

L2(Rn) +
〈
rw

2,ηv, v
〉

L2(Rn)

± ⟨awv, v⟩L2(Rn) ±
〈
rw

1 v, v
〉

L2(Rn) ±
〈
rw

2 v, v
〉

L2(Rn) ⩾ 0,
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that is,

(6.30)
∣∣〈awv, v

〉
L2(Rn)

∣∣ ⩽ c0

(
1
η

∥∥⟨x⟩gv∥∥2
L2(Rn) + η∥v∥2

Hh(Rn)

)
+
〈
rw

1,ηv, v
〉

L2(Rn) +
〈
rw

2,ηv, v
〉

L2(Rn)

+
∣∣〈rw

1 v, v
〉

L2(Rn)

∣∣+
∣∣〈rw

2 v, v
〉

L2(Rn)

∣∣.
We now have to control all the remainder terms. First, notice that the
symbol ηr1,η does not depend on the parameter η > 0 by definition (6.27).
Moreover, we deduce from the estimate (6.29) that

ηr1,η ∈ S(⟨x⟩2g−1; 1, ⟨x⟩),

and the associated seminorms are of course independent of the parameter
η > 0. By applying the composition formula (6.7), we get that

⟨x⟩−g+ 1
2 ♯ ηr1,η ♯ ⟨x⟩−g+ 1

2 ∈ S(1; 1, ⟨x⟩) ⊂ C∞
b (R2n).

Consequently, by applying a quantitative version of the Calderón–Vaillan-
court’s theorem, for which we refer to [12, Theorem 1.2], there exists a
positive constant c1,1 > 0 such that for all η > 0 and v ∈ S(Rn),∣∣〈⟨x⟩−g+ 1

2 ηrw
1,η⟨x⟩−g+ 1

2 v, v
〉

L2(Rn)

∣∣ ⩽ c1,1∥v∥2
L2(Rn).

Applying this estimate to the function ⟨x⟩g− 1
2 v, we obtain that for all η > 0

and v ∈ S(Rn),

(6.31)
∣∣〈rw

1,ηv, v
〉

L2(Rn)

∣∣ ⩽ c1,1

η

∥∥⟨x⟩g− 1
2 v
∥∥2

L2(Rn) ⩽
c1,1

η
∥⟨x⟩gv∥2

L2(Rn).

Proceeding similarly, we get that there exists another positive constant
c2,1 > 0 such that for all η > 0 and v ∈ S(Rn),

(6.32)
∣∣〈(r2,η)wv, v

〉
L2(Rn)

∣∣ ⩽ c2,1η∥v∥2
Hh(Rn).

Finally, we have to control the two terms ⟨rw
1 v, v⟩L2(Rn) and ⟨rw

2 v, v⟩L2(Rn).
By symmetry, we only focus on ⟨rw

1 v, v⟩L2(Rn). To that end, we proceed
by induction. When 2g > p, we know by the induction assumption, since
r1 ∈ S2g−p,h

p,q , that there exists a positive constant c1 > 0 such that for all
η > 0 and v ∈ S(Rn),∣∣〈rw

1 v, v
〉

L2(Rn)

∣∣ ⩽ c1

(
1
η

∥∥⟨x⟩g− p
2 v
∥∥2

L2(Rn) + η∥v∥2
Hh(Rn)

)
⩽ c1

(
1
η

∥∥⟨x⟩gv∥∥2
L2(Rn) + η∥v∥2

Hh(Rn)

)
.

In the other case where 2g ⩽ p, we have

r1 ∈ S(⟨ξ⟩
2h
q ; ⟨ξ⟩, 1).
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Proceeding in the very same way as we did to obtain the estimate (6.31), we
get the existence of a positive constant c′

1 > 0 such that for all v ∈ S(Rn),∣∣〈rw
1 v, v

〉
L2(Rn)

∣∣ ⩽ c′
1
∥∥⟨Dx⟩

h
q v
∥∥2

L2(Rn).

Using Plancherel’s theorem and Young’s inequality (1/p + 1/q = 1 by as-
sumption) then provides the existence of a positive constant c′′

1 > 0 such
that for all η > 0 and v ∈ S(Rn),∣∣〈rw

1 v, v
〉

L2(Rn)

∣∣ ⩽ c′′
1

(
1
η
∥v∥2

L2(Rn) + η∥v∥2
Hh(Rn)

)
(6.33)

⩽ c′′
1

(
1
η
∥⟨x⟩gv∥2

L2(Rn) + η∥v∥Hh(Rn)

)
.

Proceeding similarly, we obtain the existence of another positive constant
c2 > 0 such that for all η > 0 and v ∈ S(Rn),

(6.34)
∣∣〈rw

2 v, v
〉

L2(Rn)

∣∣ ⩽ c2

(
1
η
∥⟨x⟩gv∥2

L2(Rn) + η∥v∥Hh(Rn)

)
.

Plugging the estimates (6.31), (6.32), (6.33) and (6.34) in (6.30) provides
the estimate (6.28) we aimed at proving. □

To end this section, let us propely derive the estimate (6.19). Let a0 ∈
C∞(R2n) be the symbol defined in (6.18). According to (6.18), (6.20) and
Proposition 6.7, there exists a positive constant c > 0 such that for all
η > 0 and v ∈ S(Rn),∣∣〈aw

0 v, v
〉

L2(Rn)

∣∣ ⩽ c

(
1
η

∥∥⟨x⟩σkv
∥∥2

L2(Rn) + η∥v∥2
Hm(Rn)

)
.

This proves that the estimate (6.19) actually holds, since

∥v∥2
Hm(Rn) ≲ ∥v∥

2
Ḣm(Rn) + ∥v∥2

L2(Rn).

It also ends the proof of the Gårding type inequality (6.1).

7. Appendix

7.1. Gelfand–Shilov spaces

To begin this appendix, let us define and recall basics about Gelfand–
Shilov regularity. Given µ, ν > 0 some positive real numbers such that
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µ+ ν ⩾ 1, we define the Gelfand–Shilov space Sµ
ν (Rn), following [36, Defi-

nition 6.1.1], as the space of Schwartz functions g ∈ S(Rn) satisfying that
there exist some positive constants ε > 0 and C > 0 such that

∀x ∈ Rn, |g(x)| ⩽ C e−ε|x|
1
ν ,

∀ξ ∈ Rn, |ĝ(ξ)| ⩽ C e−ε|ξ|
1
µ
,

where ĝ ∈ S(Rn) denotes the Fourier transform of the function g ∈ S(Rn).
We recall from [36, Theorem 6.1.6] the basic different equivalent character-
izations of the Gelfand–Shilov spaces:

(i) g ∈ Sµ
ν (Rn).

(ii) There exists a positive constant C > 1 such that

∀x ∈ Rn,∀α ∈ Nn,
∥∥xαg(x)

∥∥
L∞(Rn) ⩽ C1+|α| (α!)ν ,

∀ξ ∈ Rn,∀β ∈ Nn,
∥∥ξβ ĝ(ξ)

∥∥
L∞(Rn) ⩽ C1+|β| (β!)µ.

(iii) There exists a positive constant C > 1 such that

∀x ∈ Rn,∀α ∈ Nn,
∥∥xαg(x)

∥∥
L2(Rn) ⩽ C1+|α| (α!)ν ,

∀x ∈ Rn,∀β ∈ Nn,
∥∥∂β

xg(x)
∥∥

L2(Rn) ⩽ C1+|β| (β!)µ.

(iv) There exists a positive constant C > 1 such that

∀(α, β) ∈ N2n,
∥∥xα∂β

xg(x)
∥∥

L2(Rn) ⩽ C1+|α|+|β| (α!)ν (β!)µ.

(v) There exists a positive constant C > 1 such that

∀(α, β) ∈ N2n,
∥∥xα∂β

xg(x)
∥∥

L∞(Rn) ⩽ C1+|α|+|β| (α!)ν (β!)µ.

The assumption µ+ ν ⩾ 1 is justified by the following result, coming from
the book [36] anew, which can be read as a version of the Heisenberg’s
uncertainty principle. It shows that the Gelfand–Shilov class Sµ

ν (Rn) as
defined above is trivial when µ+ ν < 1.

Theorem 7.1 ([36, Theorem 6.1.10]). — Any Schwartz function g ∈
S(Rn) satisfying that there exist some positive constants µ, ν > 0 with
µ+ ν < 1, ε > 0 and C > 0 such that

(i)
∀x ∈ Rn, |g(x)| ⩽ C e−ε|x|

1
ν ,

∀ξ ∈ Rn, |ĝ(ξ)| ⩽ C e−ε|ξ|
1
µ
,

is identically equal to zero. Moreover, the same holds when the assump-
tion (i) is replaced by any of the above conditions (ii), (iii), (iv) or (v).
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Gelfand–Shilov regularity can also be defined in terms of exponential
decrease in L2(Rn) as shown in the following result whose proof is given in
order to make explicit the various implied constants.

Lemma 7.2. — Let µ, ν > 0 be some positive real numbers satisfying
ν+µ ⩾ 1. There exists a positive constant C > 0 such that for all Schwartz
function g ∈ S(Rn) satisfying that there exist some positive constants
0 < Λ1,Λ2 < 1 and Λ3 > 0 such that

(7.1)
∥∥eΛ1|x|

1
ν g
∥∥

L2(Rn) +
∥∥eΛ2|Dx|

1
µ
g
∥∥

L2(Rn) ⩽ Λ3,

then g ∈ Sµ
ν (Rn), with the following estimates for the associated seminorms

∀(α, β) ∈ N2n,
∥∥xα∂β

xg
∥∥

L2(Rn) ⩽
C |α|+|β|

Λν|α|
1 Λµ|β|

2
(α!)ν (β!)µ Λ3.

Proof. — We refer to [36, Subsection 0.3] for the various factorial es-
timates and estimates involving binomial coefficients used in the follow-
ing. Let g ∈ S(Rn) be a Schwartz function satisfying (7.1) for some
0 < Λ1,Λ2 < 1 and Λ3 > 0. We first deduce from (7.1) and the estimates

∀p, q > 0,∀x ⩾ 0, xp e−xq

⩽

(
p

eq

) p
q

,

coming from a straightforward study of function, and

∀α ∈ Nn, |α||α| ⩽ e|α| |α|! ⩽ (ne)|α|α!,

that for all α ∈ Nn,

(7.2)

∥∥xαg
∥∥

L2(Rn) =
∥∥xα e−Λ1|x|

1
ν eΛ1|x|

1
ν g
∥∥

L2(Rn)

⩽

(
ν|α|
eΛ1

)ν|α|

Λ3 ⩽

(
νn

Λ1

)ν|α|

(α!)ν Λ3.

The very same arguments and Plancherel’s theorem also imply that for all
β ∈ Nn,

(7.3)

∥∥∂β
xg
∥∥

L2(Rn) =
∥∥∂β

x e−Λ2|Dx|
1
µ eΛ2|Dx|

1
µ
g
∥∥

L2(Rn)

⩽

(
µ|β|
eΛ2

)µ|β|

Λ3 ⩽

(
µn

Λ2

)µ|β|

(β!)µ Λ3.

Let (α, β) ∈ N2n fixed. An integration by parts shows that∥∥xα∂β
xg
∥∥2

L2(Rn) =
〈
xα∂β

xg, x
α∂β

xg
〉

L2(Rn) = (−1)β
〈
∂β

x (x2α∂β
xg), g

〉
L2(Rn),
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while Leibniz’ formula provides

∂β
x (x2α∂β

xg) =
∑
γ⩽β

(
β

γ

)
∂γ

x(x2α) ∂β−γ
x (∂β

xg)

=
∑

γ⩽β γ⩽2α

(
β

γ

)
(2α)!

(2α− γ)! x
2α−γ ∂2β−γ

x g

=
∑

γ⩽β γ⩽2α

(
β

γ

)(
2α
γ

)
γ! x2α−γ ∂2β−γ

x g.

We therefore deduce from Cauchy–Schwarz’ inequality that

(7.4)
∥∥xα∂β

xg
∥∥2

L2(Rn)

⩽
∑

γ⩽β γ⩽2α

(
β

γ

)(
2α
γ

)
γ!
∥∥x2α−γg

∥∥
L2(Rn)

∥∥∂2β−γ
x g

∥∥
L2(Rn),

with the following estimates coming from (7.2) and (7.3),

(7.5) γ!
∥∥x2α−γg

∥∥
L2(Rn)

∥∥∂2β−γ
x g

∥∥
L2(Rn)

⩽

(
νn

Λ1

)ν|2α−γ|(
µn

Λ2

)µ|2β−γ|

γ! ((2α− γ)!)ν ((2β − γ)!)µ (Λ3)2.

Since 0 < Λ1,Λ2 < 1, notice that

(7.6)
(
νn

Λ1

)ν|2α−γ|

⩽
max(1, νn)2ν|α|

Λ2ν|α|
1

and
(
µn

Λ2

)µ|2β−γ|

⩽
max(1, µn)2µ|β|

Λ2µ|β|
2

.

Moreover, since ν+µ ⩾ 1, we also get while exploiting the following factorial
estimates,

∀δ, η ∈ Nn, δ!η! ⩽ (δ + η)! ⩽ 2|δ+η|δ!η!,
that

(7.7) γ! ((2α− γ)!)ν ((2β − γ)!)µ

⩽ (γ! (2α− γ)!)ν (γ! (2β − γ)!)µ

⩽ ((2α)!)ν ((2β)!)µ ⩽ 4ν|α|+µ|β| (α!)2ν (β!)2µ.

We also have from classical results concerning binomial coefficients that

(7.8)
∑

γ⩽β γ⩽2α

(
β

γ

)(
2α
γ

)
⩽
∑
γ⩽β

(
β

γ

) ∑
γ⩽2α

(
2α
γ

)
= 22|α|+|β|.
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Finally, we deduce from (7.4), (7.5), (7.6), (7.7) and (7.8) that there exists
a positive constant C > 0 only depending on ν > 0 and ν > 0 (and not on
the function g) such that for all (α, β) ∈ N2n,

∥∥xα∂β
xg
∥∥

L2(Rn) ⩽
C |α|+|β|

Λν|α|
1 Λµ|β|

2
(α!)ν (β!)µ Λ3.

This ends the proof of Lemma 7.2. □

In the case where the ratio µ/ν ∈ Q is a rational number, the Gelfand–
Shilov space Sµ

ν (Rn) can also be nicely characterized through the decompo-
sition into the basis of eigenfunctions of a large class of anisotropic Shubin
operators, whose basic model is the operator Hk,m defined in (1.1), with
k,m ⩾ 1 two positive integers. Let (ψj)j be an orthonormal basis of L2(Rn)
composed of eigenfunctions of the operator Hk,m. Given a positive real
number a ⩾ 1, we can characterize the Gelfand–Shilov space Sµ

ν (Rn), with

µ = ka

k +m
and ν = ma

k +m
,

in the following way, according to the result [13, Theorem 1.4] by M. Cap-
piello, T. Gramchev, S. Pilipović and L. Rodino,

g ∈ S
ka

k+m
ma

k+m
(Rn)⇔ ∃ε > 0,

+∞∑
j=0

∣∣⟨g, ψj⟩L2(Rn)
∣∣2 eελ

k+m
2kma
j < +∞,(7.9)

⇔ ∃ε > 0, sup
j⩾0

∣∣⟨g, ψj⟩L2(Rn)
∣∣2 eελ

k+m
2kma
j < +∞,

⇔ ∃c> 0,∃ε> 0,∀j⩾ 0,
∣∣⟨g, ψj⟩L2(Rn)

∣∣⩽ c e−εj
1

an ,

where λj > 0 denotes the eigenvalue associated with the eigenfunction
ψj ∈ L2(Rn). Notice that such a characterization in the case where µ/ν /∈ Q
has not been found yet, see [13, Section 3].

7.2. Density in the graph

The purpose of this second subsection is to prove that the Schwartz space
S(Rn) is dense in the domain of the maximal realizations on L2(Rn) of the
differential operators equipped with the graph norm. More precisely, by
using results of Weyl calculus introduced in Section 6, we aim at proving
the following
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Proposition 7.3. — Let p : R2n → C be a polynomial and pw be the
associated differential operator equipped with the following domain

D(pw) =
{
u ∈ L2(Rn) : pwu ∈ L2(Rn)

}
.

Then, for all u ∈ D(pw), there exists a sequence (uj)j in S(Rn) such that

lim
j→+∞

uj = u and lim
j→+∞

pwuj = pwu in L2(Rn).

This proof is based on the symbolic calculus and we will need to use
the following approximation result coming from [28, Lemma 1.1.3]. This
proposition is originally stated in the context of standard symbolic calculus,
but can easily be adapted in the context of Weyl calculus. This can be
done by using [28, Proposition 1.1.10] e.g. which makes the link between
the standard and the Weyl quantizations.

Proposition 7.4 ([28, Lemma 1.1.3]). — Let (aj)j be a sequence in
S(R2n) being bounded in the space C∞

b (R2n) and converging in C∞(R2n)
to a function a ∈ C∞(R2n). Then, a belongs to C∞

b (R2n) and for all u ∈
S(Rn),

lim
j→+∞

aw
j u = awu in S(Rn).

Let us now tackle the proof of Proposition 7.3. Let χ ∈ C∞
0 (R2n) be a

smooth function satisfying that 0 ⩽ χ ⩽ 1 and χ = 1 on the unit ball
B(0, 1). For all j ⩾ 1, we consider the compactly supported function χj

defined by χj(x, ξ) = χ(x/j, ξ/j) for all (x, ξ) ∈ R2n. Since the function χ

is compactly supported, we get that

(7.10) ∀j ⩾ 1, χw
j : L2(Rn)→ S(Rn).

Let us begin by checking the following property

(7.11) ∀u ∈ L2(Rn), lim
j→+∞

χw
j u = u in L2(Rn).

Let u ∈ L2(Rn). We consider ε > 0. By density, there exists a Schwartz
function v ∈ S(Rn) such that ∥u− v∥L2(Rn) ⩽ ε. We can write

(7.12) χw
j u− u = χw

j (u− v) + χw
j v − v + v − u.

By construction, the sequence of Schwartz symbols (χj)j is bounded on
C∞

b (R2n) and converges to 1 in C∞(R2n). Proposition 7.4 therefore implies
that

(7.13) lim
j→+∞

χw
j v = v in L2(Rn).
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Moreover, the boundedness of the sequence (χj)j in C∞
b (R2n) and a quan-

titative version of the Calderón-Vaillancourt’s theorem, see e.g. [12, Theo-
rem 1.2], provide the existence of a positive constant c > 0 such that

(7.14) ∀j ⩾ 1,
∥∥χw

j

∥∥
L(L2(Rn)) ⩽ c,

where L(L2(Rn)) denotes the space of bounded operators on L2(Rn). We
therefore deduce from (7.12), (7.13) and (7.14) that

lim sup
j→+∞

∥∥χw
j u− u

∥∥
L2(Rn) ⩽ (c+ 1)ε.

Since ε > 0 is arbitrary, this proves that (7.11) actually holds.
Now, let us consider u ∈ D(pw) and set uj = χw

j u for all j ⩾ 1. Ac-
cording to (7.10) and (7.11), (uj)j is a sequence of Schwartz functions that
converges to u in L2(Rn). Since pwu ∈ L2(Rn) by definition of the domain
D(pw), we can apply once again (7.11) to get that

lim
j→+∞

χw
j p

wu = pwu in L2(Rn).

If the operators χw
j and pw were commutative, Proposition 7.3 would be

proven. It is not the case but to conclude, it is sufficient to check that

(7.15) lim
j→+∞

[
pw, χw

j

]
u = 0 in L2(Rn).

Let j ⩾ 1 and aj be the Weyl symbol of the commutator [pw, χw
j ]. The

strategy to establish (7.15) is to check that the sequence (aj)j is bounded in
C∞

b (R2n) and converges to 0 in C∞(R2n). Once this is done, Proposition 7.4
implies that

∀v ∈ S(Rn), lim
j→+∞

[
pw, χw

j

]
v = 0 in L2(Rn),

and the very same arguments as the ones used to obtain (7.11) show that
this convergence holds for all v ∈ L2(Rn), and in particular for the function
u. To that end, we will derive a formula for the symbol aj . By using the
same strategy as in the beginning of the proof of Lemma 6.2, that is, by
using the fact that the symbol p is a polynomial (of degree d ⩾ 1 say) and
the composition formula (6.8), we get that the symbol aj is explicitly given
by

(7.16) aj = p ♯ χj−χj ♯ p = 2
∑

l

1
(2i)l

∑
|α|+|β|=l

(−1)|β|

α!β! (∂α
ξ ∂

β
xp)(∂

β
ξ ∂

α
xχj),

the sum being taken over all the odd integers l satisfying 1 ⩽ l ⩽ d. Notice
that by definition of the cutoff function χj ,

∀(α, β)∈N2n,∀(x, ξ)∈R2n, (∂α
ξ ∂

β
xχj)(x, ξ) = j−|α+β|(∂α

ξ ∂
β
xχ)(x/j, ξ/j).
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This combined with Leibniz’ formula shows that the sequence (aj)j is
bounded in C∞

b (R2n). Moreover, the function χ is constant equal to 1
in a neighborhood of 0, which implies that for all (α, β) ∈ N2n satisfying
|α+ β| ⩾ 1 and (x, ξ) ∈ R2n,

lim
j→+∞

(∂α
ξ ∂

β
xχj)(x, ξ) = 0.

By using Leibniz’s formula anew, we also deduce that the sequence (aj)j

converges to 0 in C∞(R2n), the integers l involved in (7.16) satisfying
1 ⩽ l ⩽ d. This ends the proof of (7.15) as announced, and therefore the
one of Proposition 7.3.
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