In this paper the problem of the existence of an inverse (or projective) limit measure of an inverse system of measure spaces is approached by obtaining first a measure on the whole product space .
The measure will have many of the properties of a limit measure provided only that the measures possess mild regularity properties.
It is shown that can only exist when is itself a “limit” measure in a more general sense, and that must then be the restriction of to the projective limit set .
Results stronger than those previously known are obtained by examining restricted to .
Étant donné un système projectif d’espaces mesurés , on étudie le problème d’existence d’une limite projective en considérant d’abord une mesure définie sur le produit . Sous de simples conditions de régularité des , on montre que a presque toutes les propriétés d’une limite. En outre, la limite projective peut exister seulement si est elle-même une “limite” dans un sens plus général et est alors la restriction de à l’ensemble limite des . On obtient des résultats plus forts que ceux connus jusqu’à présent en examinant cette restriction.
@article{AIF_1971__21_1_25_0, author = {Mallory, J. D. and Sion, Maurice}, title = {Limits of inverse systems of measures}, journal = {Annales de l'Institut Fourier}, pages = {25--57}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, number = {1}, year = {1971}, doi = {10.5802/aif.361}, zbl = {0205.07101}, mrnumber = {44 #1782}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.361/} }
TY - JOUR AU - Mallory, J. D. AU - Sion, Maurice TI - Limits of inverse systems of measures JO - Annales de l'Institut Fourier PY - 1971 SP - 25 EP - 57 VL - 21 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.361/ DO - 10.5802/aif.361 LA - en ID - AIF_1971__21_1_25_0 ER -
Mallory, J. D.; Sion, Maurice. Limits of inverse systems of measures. Annales de l'Institut Fourier, Volume 21 (1971) no. 1, pp. 25-57. doi : 10.5802/aif.361. https://aif.centre-mersenne.org/articles/10.5802/aif.361/
[1] Of the introduction of measures in infinite product sets, Danski Vid. Selskab Mat. Fys. Medd. 25 (1948) No. 4. | MR | Zbl
and ,[2] Measure and integration, MacMillan Co. New York (1965). | MR | Zbl
,[3] Harmonic analysis and probability theory Univ. of Cal. Press, Berkeley, 1955. | Zbl
,[4] Théorie des Ensembles Livre I Ch. III, Hermann, Paris.
,[5] inverse limits of measure spaces, Proc. London Math. Soc., 8 (1958) 321-342. | MR | Zbl
,[6] Measure theory, Van Nostrand, New York, (1950). | MR | Zbl
,[7] Conditional probabilities on strictly separable σ-algebra (Russian) Czech. Math. J. 4 (79) (1954) 372-80. | MR | Zbl
,[8] Introduction to measure and probability, Cambridge U.P. London, 1966. | Zbl
and ,[9] Grundebegriff der Wahrscheinlichheit (Berlin, 1933), (English translation: Chelsea, New York 1956).
,[10] Limits of Inverse Systems of Measures, thesis, University of British Columbia 1968.
,[11] On Compact Measures, Fund. Math. 40 (1953) 113-24. | MR | Zbl
,[12] Limites projectives de mesures, Martingales Applications, Ann. di Mathematica 63, (1963) 225-352. | MR | Zbl
,[13] Probabilities and Potentials, Blaisdell (1966). | Zbl
,[14] Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965. | MR | Zbl
,[15] Convergence of random processes and limit theorems of probability theory (in Russian), Teoriya Veroyatnostei i ee Primeneniya 1, 177-237 (1956). English translation: Theory Probab. and Appl. 1, 157-214 (1956). | MR | Zbl
, ,[16] Sur une généralisation d'un théorème d'Ionescu Tulcea, C.R. Acad. Sc. Paris 259 (1964), 2769-2772. | MR | Zbl
,[17] Generalizations of the theory of Lebesgue spaces and of the definition of entropy in ergodic theory, thesis, University of Utrecht 1966.
,[18] Projective limits of directed projective systems of probability spaces, Z. Wahrscheinlichkeitstheorie verw. Geb. 13, 60-80 (1969). | MR | Zbl
,[19] Lecture Notes on Measure Theory, Biennial Seminar of the Canadian Mathematical Congress, (1965).
,[20] Introduction to the Methods of Real Analysis, Holt, Rinehart and Winston, New York (1968). | MR | Zbl
,Cited by Sources: