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LIMITS OF INVERSE SYSTEMS OF MEASURES

by Donald J. MALLORY and Maurice SION

Introduction.

Inverse (or projective) systems of measure spaces (see defini-
tion 1.1. Sec. I) are used in many areas of mathematics, for example
in problems connected with stochastic processes, martingales, etc.
One of the first (implicit) uses was made by Kolmogoroff [9], to
obtain probabilities on infinite Cartesian product spaces. The concept
was later studied explicitly by Bochner, who called such systems
stochastic families (see [3]). Since then, inverse systems of measure
spaces have been the subject of a number of inbestigations (see e.g.
Choksi [5], Metivier [12], Meyer [13], Raoult [16], Scheffer [17],
[18]).

The fundamental problem in all of these investigations is that of
finding a "limit" for an inverse system of measure spaces (X , p , JLI , I).
All previous workers in this field have concentrated on getting an
appropriate 'limit' measure on the inverse limit set L.

Such an approach presents some serious difficulties, e.g. L may
be empty. In this paper, we avoid dependence on L, and hence
many of these difficulties, by constructing on the Cartesian product
X of the X,'s, a 'limit' measure TJL which retains essential features
of the usual limit measure. As a result, we are able to get existence
theorems with considerably fewer conditions on the systems, (in a
recent paper [18], C.L. Scheffer also gets away from dependence
on L by working on an abstract representation space. His methods,
however, seem to be very different from ours).

Since L C X, we investigate the more standard inverse limit
measure from the point of view of restricting ?f to L. This enables
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us not only to extend known results but also to give a better indication
of the reasons for some of the difficulties connected with the standard
inverse limit measures. For example, when the index set I is uncoun-
table, L is never pf-measurable (theorem 2.7, Sec. III).

The topological properties of the limit measures are not discussed
in detail (see however 3. Sec. II). They will be examined in a later
paper.

Sec. 0 consists of preliminaries in set theory and measure theory.
In Sec. I we present our concepts of inverse limits, and in Sec. II we
construct our basic limit measure ;!, and develop some of its proper-
ties. In Sec. Ill we apply our results in Sec. II to the standard limit
measure problems and show that substantial results can be obtained
by using this approach.

0. Preliminaries.

In this section we give such definitions and notation as are
of a routine nature.

1. Set Theory.

Most of our set theoretic work will use standard notation :
0 will represent the empty set, <x; the set of non-negative integers,
A ̂  B and A A B the difference and symmetric differences of the
sets A and B. Card (A) denotes the cardinality of the set A. For a
family of sets ?e, 9€y and S^g will represent the families generated
from 3€ by taking countable unions and countable intersections
respectively.

For a system of spaces {X,},^» IT X, will denote the Cartesian
ici

product and TT, will be used for projection onto the space X,. If,
for such a system of spaces, we are given for every / G I a family 9 .̂
of subsets of X,., we will say

1.1. 96 is a system of set families for OC,},^p
For such a system of set families 9C, we will wish to deal with

the "rectangles" in FT X,, with a finite number of bases from the
16 I

families S€^ ; we thus define.
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1.2. Rect(9e) = [a : a = FT A,, A, = X, for all but a finite{ iel l '
number of / E I, and A. G 96. otherwise |.

Also, for any a C Y] X, we define.
»ei

1.3. J ^ = { / e i : 7r,(a)^X,}.
(If a is a "rectangle" J^ is the set of indices of its base).

2. Measure Theory.

We use Caratheodory measures throughout and will use the fol-
lowing definitions (See e.g. Sion [19], [20]).

2.1. ^ is a Caratheodory measure on X iff ^ is a real valued
function on the family of subsets of X such that jn(0) = 0 and

0<^(A)< S ^n)<°°
new

whenever A C U B .
new n

For such a Caratheodory measure jn on X :
2.2. A C X is ^n-measurable iff for every T C X,

Ai(T)=^(THA)-h^(T-A) .

2.3. 91̂  = {A ; A is ^-measurable}.
2.4. VL is carried by A C X iff ^(X - A) = 0.
2.5. p. is pseudo-carried by A C X iff ^(B) = 0 whenever B G OTI

and B C X ~ A.
2.6. The restriction of ^ to A C X, ^|A, is the measure v on X

defined by v(B) = ^(B H A) for all B C X.
2.7. ^ is an outer measure on X iff for every A C X there exists

B C X such that B e 3TC^, A C B and ^i(A) = /i(B).
2.8. ft is a semifinite outer measure on X iffju is an outer measure

on X and for every A C X

j^(A) = sup Qi(B) : B C A, ^(B) < oo } .

2.9. /A is the set function on X generated by g and 3€ iff 96 is
a family of subsets of X, g(H) > 0 for every He 36, and for every
A C X ,
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^i(A)=int S ^(H^^C^Card^)^, and A C u H'
( H e x ' Hex'

(We will show later that this set function is always a Caratheodory
measure).

I. Inverse systems of measures.

In this section we give our definitions of inverse (or projective)
systems of measures and define several limits of such systems. We also
discuss briefly the reasons for the definitions and the relationships
between the limits.

1. Principal Definitions.

1.1. (X , p , fJi, I) is an inverse system of outer measures (a sys-
tem) iff

1.1.1. I is a directed set (by-<).
1.1.2. X = {X,.}^p where for each ?€: I, X, is a space.
1.1.3. JLI = {^(},ei, where for each ?G I, ̂  is an outer measure on

X,.. (The ^.-measurable sets will be denoted by 3K, instead of 3TC^.).

1.1.4. p,. is a measurable function from X. to X, (i.e. for every
A E 3TC,, pfji [A] G 91?y) whenever i, j E I and i ̂  /.

1.1.5. for z, / G I with i-< /, and AE3TC,,

^(p7fllM)=^W
and if (^ / -^ k,

(a) ^(Pnc1 [A] A (p,, o p^)-1 [A]) = 0 .

We will usually refer to any (X , p , ̂  , I) satisfying 1.1 as a system.
1.2. ^ is an inverse limit outer measure for ( X , p , ^ i , I ) iff

(X , p , IJL , I) is a system and

1.2.1. v is an outer measure on Y\ X..
<€l

1.2.2. v is carried by
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L = {x G OX/ : p^Xj) = x, for all i, j G I, i -^/ }

(the "inverse limit set").
1.2.3. ^[AlEOl^ for every f G I and AG3TC,.
1.2.4. ^[AD^A).

for every i G I and A € 3TC,.
1.3. ^ is a v-limit outer measure for (X , p , ^ , I) iff (X , p , ^ , I)

is a measure system and
1.3.1. v is an outer measure on V\ X, :

iel

1.3.2. ^[AleOT^ for every id and A E OTT,.
1.3.3. ^[A]) = ^,(A)

and
(b) i/(IV1 [A] A (p,^ o n,)-1 [A]) = 0

k.

whenever z, / € I, i -< j and A G Vtt,.

2. Remarks.

2.1. (The definitions) The usual definition of an inverse system
of measures (see e.g.) Choksi [5], Metivier [12]) has in place of
condition (a) in 1.1.5,

(c) for i^j-^k,
Pik = Pij 0 Pik •

One advantage of using (c) and the "inverse limit set", is that
if functions on different spaces X, of the system are transferred to
the inverse limit set L, and if an inverse limit measure exists on L,
it is relatively a straightforward task to deal with the limits, inte-
grals etc. of the functions. However further strong conditions on the
system are required to assure that L is large enough for this to be
successful.

In this paper we are able to avoid strong requirements on the
system by placing a "limit" measure on the entire product space
T7 X, rather than on L. This creates some difficulty in dealing with
iel
functions defined on different spaces x, since the straightforward
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way of transferring them to FT X, (by using projection mappings)
ici

results in values which may be inappropriate. Specifically, even if
for i -^ j we have

ff = fi ° Pif .

the functions induced on 17 X, byi e i

4=4°^
are quite different. Condition (b) is sufficient to assure us that the
set of points on which any two such functions differ will have Tr-limit
measure zero.

Since we are weakening the sense in which we obtain a "limit"
measure (i.e. TT-limit measure) we also weaken the requirements on
the system by using condition (a) instead of (c) in our definition.

2.2. (Relations between the limits). It is clear from the defini-
tions that an inverse limit outer measure is a Tr-limit outer measure.
However there exist systems for which Tr-limit outer measures exist
but no inverse limit outer measure exists (Mallory [10]).

TT-limit outer measures are not in general closely related to the
inverse limit set L. A special type of TT-limit outer measure which is
more closely related to L and inverse limit measures is the following(1),

v is a generalized inverse limit outer measure iff v is a Tr-limit
outer measure and if for every i, i € I with i -^ /, v is carried by( ^HX, :^ (X , )=X, ) .

16 I

It is not difficult to show that for systems satisfying sequential
maximality the existence of a generalized inverse limit outer measure
implies the existence of an inverse limit outer measure. The example
referred to above satisfies sequential maximality (see definition 1.3
Sec. Ill) thus a system may have a Tr-limit measure without having
a generalized inverse limit outer measure.

(1) We are indebted to the referee for suggesting this possibility.
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II. Construction of the largest II-limit outer measure, TJL

In this section we first construct, for a given system (X , p , p., I),
a set function g on the "measurable" rectangles of TT X, in such a

ie!

way that g has, on these sets, the values that would be required of
a Tr-limit outer measure. From g we then generate the outer measure ?
which is our "candidate" for a Tr-limit outer measure and show that
if a Tr-limit outer measure for (X , p , ^ , I) exists, then TI is the largest
such measure. We then prove that it is sufficient to have only a weak
"compactness" condition on the measures ^ in order to guarantee
that IJL s a Tr-limit outer measure, and we show that ̂  then has subs-
tantial approximation properties.

1. Generation of the measure ]I .

We begin with the following lemma concerning the values
taken by Tr-limit outer measures on measurable rectangles.

1.1. LEMMA. — Let (X , p , ^ , I) be a system and let v be an
outer measure on V] X,.. Then v satisfies condition 1.3.3 Sec. I iff

iel

for every aG.Rect(VK) and /GI with i-<f for every i^l^ we

have :

(*) i/(a)=^,(n p^tTTja]]).
if'a

Proof of 1.1. - Let A, = ^[a], J = J^ so that

a= fPj7^11^1-

Choose / € I so that /' ?- i for all i € J and let

B= n P^IAJ.
(eJ

Then
^-'[BD^CB),

ir,-1 [B] C a ̂ U ((p,/ o ^)-1 [A,] Aff.-1 [A,]) ,

a C v j 1 [B] uU (ir,-1 [AJ ~ (p,, o »r,)-1 [AJ) .
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Since for each i G J,
-l r A i A /•» ^ ^ \—l i^(Tr, [AJ A (p^ o 7rp-1 [AJ) = 0 ,

v(a)=v(^l[B])=^(B).
we conclude

Conversely suppose for each aE Reci(Vlt), v(a) = ^y(B) where /
and B are as above. Then for any i € I and A € 01 ,̂ letting a = 7r,~1 [A]
and / == i, we have B = A and therefore

^-1 [A]) = ^-(A) .

Moreover, for any 7 >- f, letting A, = A,

A^X^p^lA],
and

we get

and therefore

a=^l[A,]n^l[A,]

=7^,- l[A]- /(^o7^,)- l[A],

B==A,np^[A,]=0

i/(7r,[A] - (p^ o ^.)-1 [A]) = ^,(B) = 0 .

Similarly, letting A, = X, ~ A and Ay = p^ [A] we get

^((P^^r'lAl-TrJA])^.
ThusThus

whenever
^[AlA^o^r^A])^

whenever
^ ̂ i and AGOTI, .

We use condition (*) to define a set function g on Rect(3TC) with
which we generate a candidate, ?, for a Tr-limit outer measure.

The process we use to generate juT is motivated by the following
theorem due to Carathtodory. We will also use it to establish pro-
perties of TI.

1.2. THEOREM. — For any non-negative set function h and fa-
mily 9€ of subsets of a space X, the set function ^, generated by h
and S€ has the following properties.

1.2.1. fJi is a Caratheodory measure,
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1.2.2. if AC A' for some A' G 9^ (in particular if ^i(A) < oo),
then for every £ > 0 there exists B ^9€g such that A C B and

^A(B) < ^LI(A) + e

and hence there exists B' G 9€^ such that A C B' and ^i(A) =^i(B').
1.2.3. ifSCisa ring andg is finitely additive on S€ then 96C OTC^.

(Hence in view of 1.2.2, ^ is an outer measure).
1.2.4. if g is countably subadditive on S€, then ^i(A) = g(A)

for every AGffe .

Proof of 7.2. - See Sion [20] for 1.2.1, 1.2.3, 1.2.3.
Since we always have ^(H)<^(H) for HeSC ; 1.2.4 follows

immediately.

1.3. DEFINITIONS. - Let (X , p , fJi, I) be a system.
1.3.1. For aERect(Oir),

g(a) = ̂  ( H p^ [7r,[a]] )
^a

where 7 is any element of I such that / ^- i for every i G J^. (Note
that J^ is finite and that in view of condition 1.1.5 (a) Sec. I of the
definition of a system, g is independent of the choice of /).

1.3.2. /? is the Caratheodory measure on FT X, generated-by g
ie!

and Rect(OTC).
With no further conditions we have the following lemma.

1.4. LEMMA. — For any system (X , p , p., I) :
1.4.1. g^lA]) = ^(A) for every i€l and AC OK,,
1.4.2. // J is a finite directed subset of I, and aG Rect(Oll) ;

then g(a) = 0 whenever

a n ( x E n X , :p,,0c,)=x, for i, / E J, i -^j j = 0 .

In particular,

^(7T/~1 [A] H (p^. o Try)"1 [X, — A]) = 0 whenever
f-^ 7 and A €31^ .
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1.4.3. g is finitely additive on Rect(3TC).
1.4.4. ^ is an outer measure on X.
1.4.5. Rect(3TC)C 3TC.

Proof of 1.4.1, 1.4.2. - Similar to proof of 1.1.
To show that g is finitely additive we will use the following

lemma.

LEMMA A. - Let (X, p , ^ , I) be a system, and let a, fS be
disjoint elements of Rect(VK). Then for any k such that k >- i for
a l l i ^ J ^ U ] ^

A = n ^[Trjalin n p^WP]] = 0 .
ieJ^ i e J p

Proof. - Since a n fS = 0, there exists / G J^ 0 J^ such that
7r.[a] 0 7r.[j3] = 0. If, however, there exists xEA, then

p^00e7r,[a]n7r,[(%]=0 .

Hence no such x exists.

Proof of 1.4.3. - Let aERect(3TC) and let |3C Rect(OTl) be a
finite disjoint family such that a = U B. Let K == U Jg and let

0e(S fte<S>
] C I be such that / ?>- / for every i e K. Then J^ C K so that / ^- i
for every <€J^ .

Also let
A = n ^[Trja]]

'^ri
and for every B G fl3 ,

AB= n P.^ITTJB]].
»'<; J -̂  'feJfi

Then {Ag : B € <B} is a finite disjoint subfamily of 91̂  (from lemma A).
Since for every i ^ J a and B€(8, w,.[B]C7rJa] and J^ C Jg, then
Ao C A, hence U A» C A.B B€^ B

On the other hand, for every x E A, choosing ^ € IT X, so
»ei

that y^ = pi,(x) for every f € K , we see that y E a and thus y ^ B
for some B E d3. Then
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{x}c n ^[TT.OOICAB ,
I'eJg

hence x E Ag and
A C U A» .

BcriB

Thus
^(a) = ^.(A) = S MAg) = Z ^(B) .

' Be<» ' B € «

Proof of 1.4.4, 1.4.5. — We first note that we can extend g
to a finitely additive function g* on the ring (% generated by (Rect(OK)
(see e.g. J. Kingman and S. Taylor [8] p. 65). Now, the Caratheodory
measure ? generated by g and Rect(OK) is the same as that generated
by g* and <%, hence by theorem 1.2, fl is an outer measure and
<%C3K-.,.M

1.5. Remarks. — From the definitions involved and the above
results we have the following facts :

1.5.1. If P agrees with g on Rect(01t), then ^3 is a Tr-limit outer
measure (note that for i E I and A G 31 ,̂

^[AlA^oTrp-^A^

Or,-1 IA] n (P,, ° ̂ )~1 [X, - A]) U (7r,-1 [X, - A] n (p,, o Trp-1 [A]) .

1.5.2. If TJL does not agree with g on Rect(9TC), then no Tr-limit
outer measure can exist, since g could not be countably subadditive
on Rect(3K) and hence no outer measure could agree with g.

1.5.3. If v is a Tr-limit outer measure then for any

A C n X , , ^ ( A ) < ? ( A ) ,
fel

for otherwise there would exist a countable subfamily §? of Rect(OTC)
which covers A and ^ ^(F) < ^(A), which is impossible. Thus if

Fey
w-limit outer measures exist, ^ is the largest one.

2. Conditions for TJL to be a ir-limit outer measure.

The problem of showing that TT-limit outer measures exist is
now reduced to that of assuring the countable subadditivity of g*
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on the ring CH generated by Rect(3TC). A condition that will be shown
to be sufficient for this purpose is that the measures jm, can be approxi-
mated from below by "^-compact" families. These families were
first used for similar purposes by Marczewski [11] and have been
used by many authors since (Choksi [5], Metivier [12], Meyer [13],
Neveu [14], etc.).

2.1. DEFINITION. - For any family of sets <3, Q is ^^-compact
if 0 E <° and for every countable Qf C Q with H C = 0 there exists

eee'
a finite sub-family %ce' such that H T = 0.

Te «

We will need certain properties of So-compact families which
are given in the following lemmas.

2.2. LEMMA. - If Q is ^Q-compact then :
2.2.1. fig is ^-compact.
2.2.2. every subfamily of 6 is ^^-compact.
2.2.3. The family of finite unions of elements of Q is ^Q-

compact.

Proof of 2.2.1, 2.2.2. — Immediate from the definitions.

Proof of 2.2.3. - See Meyer [13],

2.3. LEMMA. — Let {X,.}. be a system of spaces, and let 6
be a system of families of sets for {X,.}. such that for each i G I,
e, is ^Q-compact. Then Rect(e) is ^^-compact.

Proof of 2.3. - See Neveu [14] p, 85.
We now make precise the sense in which we refer to approxi-

mation from below.

2.4. DEFINITION. -- Let h be a non-negative set function on
a family 9€ of subsets of a space X, and ^ an outer measure on X.

2.4.1. © is an inner family for honSCiffQCSQ, and when
HE^e,

h(H) = sup{A(C): cee , C C H } .
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2.4.2. C is an inner family for ^ iff © is an inner family for ^
on 3TC^.

The next theorem shows the role played by our ^-compact
families.

2.5. THEOREM. — Let g be a non-negative finitely additive set
function on a ring 9€ of subsets of a space X.

If there exists an ^-compact subfamily 6 €3=6 which is an inner
family for g on 96, and ifg(C) < o° for every C e © , then the outer
measure ^ on X generated by g and S€ has the following properties :

2.5.1. li is an extension of g, i.e. for all HE9e, ^(H) = g(H) ;
2.5.2. geeoi^,
2.5.3. for every AG 01^ with ^i(A) < oo,

^(A) = supOx(C) : Ce@5 , C C A} .

Proof of 2.5. - Let H G 90 be such that g(H) < oo, and let

^ = {G € S^C : G C H } .

Then by a result of Marczewski [11]
i) g can be extended to a countably additive set function v

on the a-ring S generated by 96'.
ii) for every GGS,

v(G) = sup{^i(C) : C C G, C G 65}

From i) we see that for every C G © and sequence H^, w € c^ in 36
with C C U H^,

necj ••

?(C) < S 8(C n H,,) < ^ sW
new new

and since (3 is an inner family for 96,

if HEa^H.-effe, for all w E c o , and H C U H^
neo?

then
g(H)= sup^(C) : C C H , C e © } < ^ H^

neo?

i.e. g is countably subadditive on S€. 2.5.1, and 2.5.2 now follow
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from Theorem 1.2. From ii) above it is clear that 2.5.3 holds if A
is in the a-ring % generated by 9€.

If B E 3K^, ^LI(B) < oo then as a straightforward consequence
of 1.2.2

M(B)=sup{^(T) : TG^},

so that 2.5.3 holds for B also.
The following condition on our systems will allow us to apply

the above extension theorem to the set function g*.

2.6. DEFINITION. - A system (X , p , ̂  , I) is inner regular rela-
tive to e iff Q is a system of families of sets for {X,},^ such that :

2.6.1. for every ie I, e, is an ^-compact family of sets which
is an inner family for ^,

2.6.2. for every f G I and C E e^ and every i -^7. ^ is a-finite
on p,y[C].

It is easily shown that if the above conditions are satisfied
then they are also satisfied by the system of families e', where

e;={cee/ :^,(C)<oo}.
Whenever we require the condition in definition 2.7 we shall

assume the families Qy consists of sets of finite measure, and that they
are also closed with respect to taking finite unions.

2.7. THEOREM. - // (X , p , ̂  , I) is a system which is inner regu-
lar relative to & for some fi, then ? is a v-limit outer measure for
(X,p^,l)on FT X,.

id '

Proof of 2.7. - We first check some approximation properties
of g when ( X , p , ^ , I) is inner regular relative to some system of
families of sets (3.

LEMMA B. - // (X, p, y i , I) is a system which is inner regular
relative to 6, then for any aeRect(OTC), t<g(a) and i€ I, there
exists fiee, such that CCprJa] and

^(anTr^IC])^.
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Proof. - Let k G I with k >- j for all / E J^ U {;}, and let

^ ^ ^/Ml-
^'cr

Then ^(A) = ^(a) and there exists C'E 6^ C' C A with ^(C') >^.
Now choose B G m,, B C ̂  [a] such that p,jJC'] C B and ^ is a-finite
on B. Then there exist C^, C^ , . . .€©,. such that for such wGco,
t^C^^CBand

(̂B - U C\ = 0
V wet*; /

hence
^(c'~ u p^[cj)=o

v new /

so that for some m G a;

^np^cj)^.
Letting C = C^, we see that C C wja] and that

g(a 0 7r,-1 [C]) = ̂  (̂ H ^1 [7r,[a]] 0 p^ [C])

^^(C'np^tci^r.
LEMMA C. — // (X, p, JLI , I) fo a system which is inner regular

relative to @, rACT Rect(6) is an inner family for g on Rect(OK).

Proof. - Let a E Rect(OTl) and J^ = {i^ , ^ , . . . , ;„}. Given
t<gW,

choose Co E e^ , CQ C iff [a] such that

^(an^Co])^,

and by recursion on w, C^ E ©, , C^ C TT, [a] such that
w in

^(an^ l lc ' l)> f•
if

C=^^[C.],

then C € Rect(e), C C a and ^(C) > t.



40 DONALD J. MALLORY AND MAURICE SION

LEMMA D. — Let g* be the extension ofg to a finitely additive
function on the ring <% generated by Rect(3TC), and let 30 = {finite
unions of elements of Rect(<S)}. // ( X , p , ^ i , I ) is inner regular
relative to 6, then 9C is an inner family for g* on <%.

Proof. — Let a €. (%. Then there exists a finite disjoint family
(BCRect(3TC) such that a = U B. If Kg* (a), choose for each

B€ 03

B e (8, CB E Rect(<2) so that Cg C B and t < S ^?3). Then
B€«

^ (u CB )= S ^(Ce)= S ^(CB) > ̂ .
"Bc^ ' Be ^ BcdB

Theorem 2.7 now follows from theorem 2.5, since 9C is In-
compact (by lemmas 2.2 and 2.3).

Without the ^-compactness condition a w-limit outer measure
may fail to exist. An example is easily constructed (Mallory [10]
from one used by Halmos ([6], p. 214).

3. Approximation Properties of ir-limit Outer Measures.

We now assume (X , p , ̂  , I) to be a system which is inner regular
relative to some fixed family 6 and indicate some approximation
properties which ? then possesses. These properties will be useful
when we consider the restriction of i? to L.

3.1. DEFINITIONS.
3.1.1. <% = the ring generated by Rect(Vit).
3.1.2. 6' = {finite unions of elements of Rect(Q)}.

3.2. THEOREM. - // A E 3TC^, and ?(A) < oo, then

^i(A) = sup {?(<:) : C e e^, C A) .

Proof of 3.2. - Let g* be the finitely additive extension of
g to <%. Then &' is an inner family for g* on <% (from lemma D in
the proof of theorem 2.7), and is t^-compact by lemmas 2.2.3 and
2.3. The result then follows from theorem 2.5, by choosing (or for
the family '©' in theorem 2.5.

Clearly the condition that jiI(A) be finite can be replaced by :
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a) iT(A) = sup{;T(B) : B C A, /T(B) < oo}.

Thus the theorem fails to hold essentially only in the pathological
case in which all subsets of A have either infinite measure or measure
zero. The following propositions show that under our assumptions
such cases are limited and that they do not occur in the sets in which
we are primarily interested.

3.3. PROPOSITION. - For any A G 3TC-, at least one o/A, X ~ A
satisfies conditions a) above.

Proof of 3.3. - If ?(X) < oo, the result follows from theo-
rem 3.2. Otherwise, for any (€1, there exists a sequence

Co,c^..ee,
such that

^(Xf) = sup <^,(C^) : n E cj }= oo .

Clearly ^ is a-finite on U €„, so that ? is infinite but a-finite
on 7T,~1 | U €„ | (G 3TC,). Thus, y is infinite and a-finite on

A H T T . 1 f U d or on (X-A^^^ U cj ,
• \^neu) "J ' i_new "J

and hence the result follows easily from theorem 3.2.

3.4. PROPOSITION. — Every AG<% satisfies condition a) above.

Proof of 3.4. — By lemma C in the proof of theorem 2.7 for
every A E Rect(3TC)

g(A) = sup{g(C) : C C A, C E Rect(e)} ,

and since Rect(6) C Rect(3K) and ?(A) = g(A) for every

AERectOTC) ,
then

?(A) = sup {?(C) : C E Rect(e), C C A}

and since such sets C have finite measure (from definition 2.6),
3.4 follows easily.

In view of proposition 3.4 we can adjust our measure so as to
eliminate the pathological cases.
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3.5. THEOREM. — Let, for every A C X,

V(A) = sup {?(B) : B C A and ?(B) < 00} ;
then

3.5.1. V is a semifinite rr-limit outer measure,

3.5.2. 3TC^ = 3TC^.

3.5.3. for every AeOTC^,

?T(A)=sup{y(C) :ce©5,ccA}.
A-oo/ o/ 3.5. — It is easily seen that V is an outer measure and

that 3TC-. = 3Kj3 (see e.g. Berberian [2]). Furthermore it follows from
3.4 that V(B) = ?(B) for every BG<%, so that pf is a Tr-limit outer
measure, 3.5.3 then follows from the fact that every AG3TC- satisfies
condition* a) above.

We note that if the spaces X, were topological, and the measures
p.j Radon (not restricted to locally compact spaces), then we would take
for 6, the closed compact sets. If we then replaced the original topo-
logy §.,. on X, by the topology %\ of complements of closed com-
pact sets, iij would remain Radon, and the class of sets ©5 (Def. 3.1)
would be closed and compact in the resulting product topology.
Theorem 3.2 above could then be used to show that under very weak
conditions a Rad6n TT-limit outer measure exists on FT X, with the

id

new product topology (Mallory [10]).

m. Limit measures on the inverse limit set.

In this section we try to answer the following question. When
does a Tr-limit outer measure exist on the inverse limit set, L ?

Our approach is from the point of view of restricting jET to L.
The proofs of all lemmas and theorems in this section will be

given in subsection 3 at the end.

1. Definitions and Notation.

Here we collect definitions and notation used in the sequel.
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1.1. Basic Assumptions. — Throughout this section we assume
(X , p , ^ , I) is a system and

Pik = Pij ° Pjk

whenever i -^ / -^ ̂  so that (X , p , I) is actually an inverse system
of spaces. We also assume that the inverse limit set, Lp is such that
for every J'EI, TrJLJ = X, (simple maximality).

1.2. Definitions (Subsystems). — For any directed subset J of I,
1.2.1. ( X , p , A t , J ) will denote the subsystem obtained by res-

tricting X and VL to J and p to

{ 0 \ / ) : i ^ 7 and / , ;GJ} .

Clearly (X , p , ̂ , J) is also a system.

1.2.2. X J = = H X , .
^>/ /^/

(In case J = I we may write X for Xj).
1.2.3. Lj = { x G X j : TiyQc) = p,.(7Ty(Jc)) whenever ?-</ and

< , 7 ^ J } .
Thus Lj is the inverse limit set of (X , p , VL , J).
1.2.4. Aj is the function on X to Xj such that for every

J C G X , rj(x) = j c | J .

In the next two definitions we introduce properties of the system
and of measures which we will use in the theorems to follow.

1.3. DEFINITION. - ( X , p , / A , I ) satisfies sequential maximality
iff. for every countable directed subset J of I, the range of rj | L, is
all of Lj, i.e. : for every sequence IQ . ̂  , . . . in I with <„ -^ in+i ^d
sequence y with ^€X,^ and P^^/^+i) = Yn /or ^^Y ne ̂
there exists x G L( such that jc, = y^ for every n G co.

1.4. DEFINITION. — ^4w OM^er measure ^p on a space S J5 almost
separable iff there exists a countable family (BC STC^, a^rf a set T C S
such that (/?(T) = 0 and for every x , y E S ~ T with x ^ y there
exists B € 63 w7A jc E B awd >/ ^B.

The extension process we are using to obtain ? is such that pf
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may not be semifinite even if the measures ^ are semifinite. To
simplify some results we will refer to the semifinite part using the
following definition. (See also theorem 3.5 Sec. II).

1.5. DEFINITION. — If v is an outer measure on a space S, v* is
the semifinite outer measure on S derived from v by taking

v'(A) = sup fr(B) : B C A and v(B) < oo },

for every ACS.

2. Existence of an Inverse Limit Measure.

In this section we consider the problem of the existence of an
inverse limit outer measure. We begin by indicating the relation
between such a measure and the measure ^ introduced in 1.3
Sec. II.

2.1. LEMMA. — An inverse limit outer measure exists ifffi \L^is
an inverse limit outer measure.

2.2. LEMMA. — If for each j'e I, ̂  is a semifinite outer measure,
then y | Li is an inverse limit outer measure (i.e. such a measure exists)
iff Vis a v-limit outer measure such that the semifinite outer measure
V derived from ̂  is pseudo-carried by Lp

In view of the above lemmas we devote the rest of this section
to determining conditions under which TJL or V is carried or pseudo-
carried by Lp We have two types of conditions under which this
occurs and we discuss them separately. First we consider "separability"
conditions.

2.3. LEMMA. — Suppose that for every f € I , .̂ is almost
separable.

2.3.1. //1 is countable, then TL is carried by Lp
2.3.2. // sequential maximality is satisfied and for each i G I,

^ is semifinite, then V is pseudo-carried by Lp

2.4. Remark. — 2.3.1 remains true even if ( X , p , ^ i , I ) is a
system for which (X, p , I) is not necessarily an inverse system of
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spaces. In effect the rest of the hypotheses force L( to be large enough
to carry ?. By combining lemma 2.3 with the fundamental existence
theorem 2.7 of Sec. II we obtain the following theorem.

2.5. THEOREM. - // (X , p , li, I) is inner relative to & for
some Q (definition 2.5 Sec. II) and if for each ;'€!, ^ is almost
separable, then an inverse limit outer measure exists whenever one
of the following conditions holds.

2.5.1. I is countable,
2.5.2. (X , p , y i , I) satisfies sequential maximality.

2.6. Remarks. — Previously known existence theorems require
further conditions on the images and inverse images of the functions
p,. than are used in theorem 2.5 (see e.g. Choksi [5], Metivier [12]).

In view of lemma 2.3.1 we can conclude that in 2.5.1 ?is a TT-
limit outer measure which is carried by L( and not just pseudo-
carried. The following theorem shows that this is not the case for
any nontrivial system when I is uncountable.

2.7. THEOREM. — If I is uncountable and X, contains at least
two points for uncountably many i G I, then for every A € Rect(OTC),

?(A) = ?(A - L,) ,

hence TJL is not carried by L, whenever V =^= 0.
From the above theorem we see that in many significant cases

where an inverse limit outer measure does exist, L, is not pf-measurable.
This may explain many of the difficulties encountered by inverse
limit measures. For example, even if p^ is Radon, its restriction to 1̂
may not be.

We now examine another type of conditions under which an
inverse limit outer measure exists. Here we establish a "topologicaP
relationship between L, and inner families 6, for the measures ^n,.
Conditions similar to ours have been used by previous workers (e.g.
Bochner [3], Choksi [5], Metivier [12]) who worked only with L,
(not considering its relation with X).

The following theorem is a basic existence theorem from this
point of view.
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2.8. THEOREM. - Let (X, p. i t , 1) be inner regular relative to Q.
If for every sequence »•<= I with »„ ̂  î , for all n € co, /A<? /anufy

{ TT,' [C] n Li : C € e, for some nGw}
" ft

is ^-compact, then V is pseudo-carried by Lp hence V \ L, is an
inverse limit outer measure.

2.9. Remarks. - The hypotheses of theorem 2.8 are obviously
satisfied if the spaces C, are compact Hausdorff, the measures ^
Radon, and the functions p,y continuous. In this case L, is compact
so that

{^[CinLi : CE Of for some /E l}

consists of sets which are compact in the product topology, and thus
are certainly ^o-compact.

Since in other cases it may be difficult to check the hypotheses
of theorem 2.8 directly, we give in the following theorem a condition
on countable subsystems which, if sequential maximality holds,
will ensure the existence of an inverse limit outer measure. We should
note that the following theorem is essentially that of Metivier [12],
though we include the semifinite case.

2.10. THEOREM. -Suppose that ( X , p , ^ , I ) is inner regular
w.r.t. fi, and that sequential maximality holds. Then ^ is pseudo-
carried by Li hence V \ L, is an inverse limit outer measure, whenever
the following conditions hold : if i is a sequence in I with i -^ i
for every n e cj, and

3<:w = ^Wn^ : CEe^ ^or some neG} mth m < n^ >
2.10.1. then 9C^ is ^-compact for every m Gco, and
2.10.2.{p^[x ] H K : Kea<^} is ^-compact for every

/, m G co with Km, and x E X, .

We conclude this section by indicating how one can transfer
an inverse limit outer measure for a system to one for a subsystem,
and vice-versa.

2.11. THEOREM. - Suppose v is an inverse limit outer measure.
Then for any directed subset J of I, the set function ̂  generated by
the family.
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a = { A c x , ^[Aleoii,}
awd the set function h on QL, defined by

h(A) = v(rj1 [A]) for all A € QL ,

z'5 aw inverse limit outer measure for (X , p, ju , J).

2.12. THEOREM. - Let J be a confinal subset of I. Then :
2.12.1. rj | L( is one-to-one and onto Lj.
2.12.2. if v is an inverse limit outer measure for (X, p , p., J),

the set function ^ defined by

^(A)=^(r j [AnLJ)
^^

/or every A C Xp is an inverse limit outer measure for (X , p , ^ , I).
From the above theorems we see that a system has an inverse

limit outer measure if it can be imbedded in a system which does
have one, and that theorems 2.5, 2.8 and 2.10 can be somewhat
extended by requiring that their hypotheses be satisfied only for a
cofinal subsystem.

3. Proofs.

Proof of 2.1. - Clearly we need only to show that if ?| L, is
not an inverse limit outer measure then no such measure exists.
To do this we first establish the following lemma.

LEMMA A. - Let aC Rect(OlZ), and ke I be such that k >-j for
all f G J^. // we let

B=^^ l[7r,[a]],
then,

3.1. BEOTC^
3.2. ^[BinLi = a H L i ,
3.3. g(a) = ^(B).

Proof. - Immediate from the definitions.
Suppose that M I L , is not an inverse limit outer measure. We

know from lemma 1.4.5 Sec. II that Rect ( OH) C 3TC- hence for every
z'EI and AEOK, , "
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^[Ale^iLi.
Thus it must be that for some /G I and B G3TC.

V | L, (TT,-1 [B]) ̂  ̂  [B]) = ^,(B) .
Since

^(^[BIX^TT^IB])

we must have
? | L,(7r,-1 [B]) = Ti(^1 [B] n L,) < ^,(B) .

Then by the definition of pf, there exists a countable family
<i&CRect(3TC) such that

^[Bin^C^D
and

Z ^(DX^^^B]) .
D€(O

Let (D={DQ , D^ , . . .} and for each n E a? let ;„ G I and B^GOTI,
be such that

D^n^=7r^[Bjn^

and g(D^) = ^t, (B^) (this is possible by lemma A).n
Then

^[BinLi C U Tr^^B^lHLi
and

S ^,(BJ<^[B].
nec^

Hence there cannot exist an outer measure v carried by L, for which

^[BD^B)
and

^[BJ)=^(B^)

for every n G co, i.e. there cannot exist an inverse limit outer measure.

Proof of 2.2. — Suppose first that pf is a Tr-limit outer measure
and that V is pseudo-carried by Lp

Let AGOIt, . Then
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MOr^IAD^^A)

= sup{^,(B) : BCA,BeOTl , ,^ (B)<oo}
= SUP^TT^IB]) : BCA,BeOTC^,(B)<oo}

Thus
^,(A) = p"(7r/-1 [A]) = ;T(7r/-1 [A] 0 L()

=?(^ l[A]nLI)=ir|L^(7^,- l[A]) ,

and thus TJL | L, is an inverse limit outer measure.
Now suppose that pf | L, is an inverse limit outer measure. Then

since an inverse limit outer measure is also a Tr-limit outer measure it
follows from remark 1.5.3 Sec. II that pf is a Tr-limit outer measure.

Suppose also that there exists A E 3TC., (= OK^) such that

A C X - L I and 0<^(A).

Then from the definition of V there exists a set B C A, BE3TC-
(since A GOTC^) with 0 < ^(B) < oo. Then by definition of ? there

u(B)
exists for 0 < e < —— a finite family (D C Rect(3TC) with

^(o^0^)^
and

e <;ur(B)-e</r( u n)
\D€(D /

Furthermore we can choose d> to be a disjoint family. Then

E ^(DHLiX S ?(D-B)< e.
D€ (0 DC <0

But, since M I L, is an inverse limit outer measure, lemma A shows
that pf(D 0 L() = TJL(D) for every D G ®, hence

S ?(D H L,) = S ^(D) = M(u D) > £ .
De<0 D c < D De

Hence no such sets A, B exist, so V is pseudo-carried by Lp

Proof of 2.3. - We first establish the following lemma.

LEMMA B. - Let for each i E I, .̂ be almost separable, and let
IQ be a countable directed subset of I. Then
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^(X-^IL^O.

Proof. - For each i € 1̂  let T^ C X, and <B/ C 3TC, be such that
,̂(1,.) = 0, tf3, is countable, and for every x , y G X^ ~ T, with x ^=y,

there exists B € 63, such that x GB, ^ ^£ B. For each ;, / € 1̂  with
i -^7 and BG(B, let

Then,
B,, = ^[B] H ̂ ^p^lX, ~ B]] .

^(B.p^/p^lB] n p^[x/ - B]) = g((D) = o
for every such f, 7. Let

(&' = {B,, : f, 7 € Io, ? -^ 7 and B €(%,.} ,
then

hence
X-r.^LJC U B'

^O L IJ B'€<S'

;r(X-r^[L,J)=0.

Lemma 2.3.1 follows immediately from lemma B.
To prove 2.3.2 we will use the following lemma.
LEMMA C. — Let ^ be almost separable for every i G I and let

sequential maximality hold. Then for every a€Rect(3TC),

?(a)=?(anLi).

proof. - For £ > 0 let 96 C Rect(OK) be a countable cover of
a H Li such that

S gffl) < V(a n L,) + e ,
He 9€

and let T = U J^ u J^ and let K C I be a countable directed set
H € 3f'

with T C K. By sequential maximality, for each x G aHr^1 [LJ there
exists x C Li such that for every k G K, x^ == x^. Then v^x) G 7^[ a ]
for every 7 € J^, hence

jc' e a n Li c u H ,1 Hese
so that

^-WIS^H,

hence x € U H and
Hex
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a 0 r^1 [LJ C U H .K Ki He5C

Thus, using lemma B,

^r(a)<;r(^H)+?(X-rKl[LJ)

< ?(a n Li) + e 4- 0 .

Since S is arbitrary, ?T(a) == p^H Li).
Turning now to the proof of 2.3.2, suppose that Ae3TC«,(=3TC^)

is such that A C X ^ L, and ;T(A) > 0. Then as in the proof of lemma
2.2 there exists B C A, B G 3TC« with 0 < ^(B) < oo, and, for

o<.<1^

a finite disjoint (B C Rect(9TC) with

?( U D ~ B ) < e
^De<B /

and
y(B)-e<?^u D;.

Thus we have again

S ;?(D n Li) < S ?(D ~ B) < e ,
De <0 DC (f

and from lemma C,

S ?(D n Li) = S ^(D) > ?(B) - e> e,
D€(ff De (0

which is a contradiction. Hence no such A exists and V is pseudo-
carried by L(.

Proof of 2.5. -- By theorem 2.7 Sec. II, pf is a Tr-limit outer
measure, and by lemma 2.3, V is pseudo-carried by L( under condi-
tions 2.5.1 or 2.5.2. Then lemma 2.2 shows that ?| L; is an inverse
limit outer measure.

Proof of 2.7. - Let A € Rect(9I£), 3€C Rect(3TC) be a countable
cover of A~L. , and let T = U J» U L and x E A H L , . Then,p Hex H A I '
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since I is uncountable let i € I ^ T and y G X, be such that y ^jc,.
If we define x ' € X by letting x^ = Xj for 7 ¥= z and x\ = ^, then
J^EA-LI . Hence JC'G U H. Thus

1 H€9€

^A ̂ K^I == A ̂ ^i c H^"
Hence A H L, C U H so that A C U H and therefore from

- Hcae Hex
the definition of pf,

V(A - L,) = ?(A) .

Proof of 2.5. - By theorem 3.5 Sec. II, V is a Tr-limit outer
measure, and for every A € JK-»

iT(A)= sup{M(C) : C C A , C e e g } ,

where &' consists of finite unions of elements of Rect(©) (see defini-
nition 3.1 Sec. II).

Suppose B eOTC^ ^(B) > 0 and B C X ~ Lp Then there exists
for t < jiT(B) a sequence C^, C^ , . . . in ©y such that C^ C €„ for
each w G c o (since Rect(<2) is closed under finite intersection),
0 C..CB, and Tl( n C.,)>r. For each w G c o there exists a

new " \new "/
finite disjoint family 0^ C Rect(3TC) such that €„ = U B. Further-

Be<8^

more we can choose the families (B, so that if m < n, every BGdSy,
is a subset of some element of (B^.

Let IQ be such that ^ >- / for every / €: U Jg and choose by
^^o

recursion i^i El so that ^+i>"- !„ and i^ ^-/ for all/E U Jg.BeA»l+l
For each n G a; let

D" = Be^ A P^[T/[B1] •

Then for each m, n €E co with m <n

"n^-P^l^J

and

^(DJ = iI(C^) > ^
since we have
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V(C^)= Z ?(B)= 1: ^(B)
Bc^ Be^

'^^(A^^I"")-^^ •

Let
0< e< t /2 and for each n e a; choose K^ C D^ !€„ G (2, such

that
e

^(D^K^)<-y,TT.

For each n E a; let

En = ^ P,~1, [KJ .n m=0 " 'w'M 1 WJ

Then

E., D D.. ~ C» p,-1 [D^ - KJ
" " w=0 "w'yi1 w w

hence,

(̂E.) > 1 - t —n-> - •n m=0 z L

Thus, from simple maximality

7^,- l[EJnLI^0 .

Also from lemma A it is clear that

^[EjnL^^^iKjnL.
so that

^ ^[KjnLi^ .m=0 'w 1 w j I '

for any n € a?, hence
n Tr r^K] 04=^=0 .

wecj 'w 1 ml I •

But, from lemma A, for every n € a?

7r^[Kjn4cc,,nLi
hence

0¥= n Q . n L i C B n L i
wea; " l 1
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contradicting the fact that B C X ~ Lp Hence no such B exists and V
is pseudo-carried by Lp

Proof of 2.10. - We shall check that the hypothesis of theorem
2.8 is satisfied. Let i be a sequence in I with („ -<in^i for ^^
wGo;,

s^Or^cinLi : cee^ ,weo;},

and F be a sequence in 9 with Q F^ =?^ 0 for every w G co. We have
w—O

to show that 0 F_ ^ 0.
WCtJ w

For each w E c^, let /(w) be the smallest integer k with

^^[CinL,

for some C G & , and let C^ € 6. , be such thatK /(w)
Fm=%l[C„]nLI.

Let for each m € u,

^m = ̂ i^Kn^n} •• " e ̂  and /•(«) > w} .
and

K"=-„A•
Since, for each m £ w, the family

^m = ^-Pi i [c] : C e ̂  and n € w, n > m }fH ft n

is ^-compact and, for each n E a;

,°o ^(0^1 = % [A ̂ o^l n L.] ̂  0 .

we see that Kg ^ 0. Similar considerations show that for any nGw,
K,,^0. Let X(,eKo. Then

^JW]0'^^

otherwise, by condition 2.10.1, there would exist m with

P,^t^o}]n^P.^[C,]=0,



LIMITS OF INVERSE SYSTEMS OF MEASURES 55

hence,

^S^o^'
so that XQ ̂  Kg, contradicting the choice of x^. Thus there exists
J C ^ G K ^ with pf f (X^)=XQ, and by similar arguments we can
choose, by recursion, for each n E co, ;€„ E K^ such that

P^(^)=^n

whenever m <n. Let (by sequential maximality) >/ E L, be such that
y. = ;c for every n E co. Clearly for every w € <<;

yi

j/e^tCjnLi
thus

^^(^[cjnLi)
fie (v n

so that
{^[CinLi : c e e ^ w E c ^ }

is K^0111? -̂
Thus the conditions of theorem 2.8 are satisfied, hence ? | L, is

an inverse limit outer measure.

Proofof2.11. — It is clear that h is countably additive on (SKandt^f
that QL is a ring, hence ^ is an outer measure on Xj, and QL C WL^.
^ is supported by Lj since

^ ( X j - L ^ C X i - L i ,

and since (using Tf for projection in Xj)

^(^[B]) = h^W) == ^[B]) == ^,(B)

i f / G J and B E 3TC., ̂  is an inverse limit outer measure for (X ,p, ̂  , J).

Proof of 2.72.7. — Immediate from the definitions.

Proof of 2.72.2. — Let ^ denote projection onto the/r/j coordi-
nate from Xj. Then for every 7 E J, i -^ / and BE 3TC,,

^(^[BD = ^Or^lP^B]]) = ̂ [p^W]) ,
hence
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^(^1[B])=^(^1[B])=^(B).

Since r, is 1 : 1 on L^ and ^(X^Li) = 0, ^ is an outer measure
and with f, /, B as above, ^[BieOTI^ since ^(^[B] ̂  L() = 0
and

r,[7r;-1 [B] 0 LJ = y [p^ [B]] H Lj

which is in OTCy. Hence ^ is an inverse limit outer measure.
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