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LIMITS OF INVERSE SYSTEMS OF MEASURES

by Donald J. MALLORY and Maurice SION

Introduction.

Inverse (or projective) systems of measure spaces (see defini-
tion 1.1. Sec. I) are used in many areas of mathematics, for example
in problems connected with stochastic processes, martingales, etc.
One of the first (implicit) uses was made by Kolmogoroff [9], to
obtain probabilities on infinite Cartesian product spaces. The concept
was later studied explicitly by Bochner, who called such systems
stochastic families (see [3]). Since then, inverse systems of measure
spaces have been the subject of a number of inbestigations (see e.g.
Choksi [5], Metivier [12], Meyer [13], Raoult [16], Scheffer [17],
[18]).

The fundamental problem in all of these investigations is that of
finding a “limit” for an inverse system of measure spaces (X, p, u, D).
All previous workers in this field have concentrated on getting an
appropriate ‘limit’ measure on the inverse limit set L.

Such an approach presents some serious difficulties, e.g. L may
be empty. In this paper, we avoid dependence on L, and hence
many of these difficulties, by constructing on the Cartesian product
X of the X,’s, a ‘limit’ measure ¥ which retains essential features
of the usual limit measure. As a result, we are able to get existence
theorems with considerably fewer conditions on the systems. (in a
recent paper [18], C.L. Scheffer also gets away from dependence
on L by working on an abstract representation space. His methods,
however, seem to be very different from ours).

Since LC i, we investigate the more standard inverse limit
measure from the point of view of restricting & to L. This enables
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us not only to extend known results but also to give a better indication
of the reasons for some of the difficulties connected with the standard
inverse limit measures. For example, when the index set I is uncoun-
table, L is never -measurable (theorem 2.7, Sec. III).

The topological properties of the limit measures are not discussed
in detail (see however 3. Sec. II). They will be examined in a later
paper.

Sec. O consists of preliminaries in set theory and measure theory.
In Sec. I we present our concepts of inverse limits, and in Sec. II we
construct our basic limit measure &, and develop some of its proper-
ties. In Sec. III we apply our results in Sec. II to the standard limit
measure problems and show that substantial results can be obtained
by using this approach.

0. Preliminaries.

In this section we give such definitions and notation as are
of a routine nature.

1. Set Theory.

Most of our set theoretic work will use standard notation :
@ will represent the empty set, w the set of non-negative integers,
A~B and A AB the difference and symmetric differences of the
sets A and B. Card (A) denotes the cardinality of the set A. For a
family of sets d€, ¥, and ¥, will represent the families generated
from 3€ by taking countable unions and countable intersections
respectively.

For a system of spaces {X;};, T{ X; will denote the Cartesian
ie

product and m; will be used for projection onto the space X;. If,
for such a system of spaces, we are given for every i €1 a family 4¢;
of subsets of X;, we will say

1.1. g€ is a system of set families for {X;},,;.

For such a system of set families €, we will wish to deal with

the “rectangles” in r! X;, with a finite number of bases from the
1€

families 3¢, ; we thus define.



LIMITS OF INVERSE SYSTEMS OF MEASURES 27

1.2. Rect@e) = {a : a =TT A;, A;=X; for all but a finite

iel
number of jE€I, and A,eze, otherwise; .

Also, for any a C i X; we define.
iel

1.3. J,={jel: m(x) # X;}.

(If a is a “rectangle” J, is the set of indices of its base).

2. Measure Theory.
We use Carathéodory measures throughout and will use the fol-
lowing definitions (See e.g. Sion [19], [20]).

2.1. p is a Carathéodory measure on X iff u is a real valued
function on the family of subsets of X such that u(®) = 0 and

0<pA)< ) u@B, <=

new

whenever AC U B, .

new
For such a Caratheodory measure 4 on X :
2.2. A C X is p-measurable iff for every T C X,

WM =pu(TNA)+ (T~ A).

2.3. M, = {A ; A is u-measurable}.
2.4. p is carried by A CX iff u(X~A) = 0.

2.5. up is pseudo-carried by A C X iff u(B) = 0 whenever B € m“
and BC X ~A.

2.6. The restriction of u to A C X, u|A, is the measure » on X
defined by »(B) = u(B N A) for all B C X.

2.7. u is an outer measure on X iff for every A C X there exists
B C X such that B € I,, ACB and u(A) = u(B).

2.8. u is a semifinite outer measure on X iff u is an outer measure
on X and for every ACX

K(A) = sup {u(B) : BCA, pu(B)<o}.

2.9. p is the set function on X generated by g and ¥e iff J€ is
a family of subsets of X, g(H) = 0 for every HEHC, and for every
ACX,
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u(A) =int ] Y, g(H):¥e'C¥, Card(¥')<R,, and AC U H'

He x' He 2’

(We will show later that this set function is always a Carathéodory
measure).

I. Inverse systems of measures.

In this section we give our definitions of inverse (or projective)
systems of measures and define several limits of such systems. We also
discuss briefly the reasons for the definitions and the relationships
between the limits.

1. Principal Definitions.

1.1. X,p, u,1) is an inverse system of outer measures (a sys-
tem) iff

1.1.1. I is a directed set (by—).

1.1.2. X =1{X,},.;, where for each i €1, X; is a space.

1.1.3. u={y; };.;, where for each i €1, u, is an outer measure on
X;. (The p-measurable sets will be denoted by I, instead of 'JI'C“'_).

1.1.4. p;; is a measurable function from X; to X; (i.e. for every
A€Wy, p;;'[A] € M) whenever i, jET and i <.

1.1.5. for i, jEI with i< j, and A €I,

(o' [AD = 1 (A)

and if iRj=k,

(a) ﬂk(p;;cl [A]lA (pij ° pik)_l [AD=0.

We will usually refer to any (X, p, u,I) satisfying 1.1 as a system.

1.2. v is an inverse limit outer measure for (X,p,pn,I) iff
X,p, un,I)isa system and

1.2.1. » is an outer measure on [| X;.
iel

1.2.2. v is carried by
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L={(€MX, : p,(x)=x; foral i jjELi=j}
(the “inverse limit set™).
1.2.3. n;'[A] €I, for every i€I and A € I,.
1.2.4. v(x ' [AD) = 1 (A).
for every i€ and A €I,;.

1.3. v is a m-limit outer measure for X ,p, n,Diff X,p, n,I)
is a measure system and

1.3.1. v is an outer measure on [ ] X, :
iel

1.3.2. nf'[A]GO'IZ, for every i€1 and A € I,.
1.3.3. v(a ' [A]) = p;(A)

and
(b) »(II; ' [A] A (p,; o L)' [AD = 0

whenever i, jEI, i<j and AGO]‘Zi.

2. Remarks.

2.1. (The definitions) The usual definition of an inverse system
of measures (see e.g.) Choksi [5], Metivier [12]) has in place of
condition (a) in 1.1.5,

(c) for i=j=k,
Dix = Pij ° Py -

One advantage of using (c) and the “inverse limit set”, is that
if functions on different spaces X; of the system are transferred to
the inverse limit set L, and if an inverse limit measure exists on L,
it is relatively a straightforward task to deal with the limits, inte-
grals etc. of the functions. However further strong conditions on the
system are required to assure that L is large enough for this to be
successful.

In this paper we are able to avoid strong requirements on the
system by placing a “limit” measure on the entire product space

];Tl X; rather than on L. This creates some difficulty in dealing with
€

functions defined on different spaces x; since the straightforward
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way of transferring them to T X; (by using projection mappings)
iel

results in values which may be inappropriate. Specifically, even if
for i = j we have

fi=fi°py,

the functions induced on I‘E X; by
ie

Jx =feom

are quite different. Condition (b) is sufficient to assure us that the
set of points on which any two such functions differ will have #-limit
measure Zzero.

Since we are weakening the sense in which we obtain a “limit”
measure (i.e. w-limit measure) we also weaken the requirements on
the system by using condition (a) instead of (c¢) in our definition.

2.2. (Relations between the limits). It is clear from the defini-
tions that an inverse limit outer measure is a #-limit outer measure.
However there exist systems for which w-limit outer measures exist
but no inverse limit outer measure exists (Mallory [10]).

m-limit outer measures are not in general closely related to the
inverse limit set L. A special type of w-limit outer measure which is
more closely related to L and inverse limit measures is the following(*).

v is a generalized inverse limit outer measure iff v is a m-limit
outer measure and if for every i, i €I with i<j, v is carried by

{xegl X, :p,.,(xi) =xi; .

It is not difficult to show that for systems satisfying sequential
maximality the existence of a generalized inverse limit outer measure
implies the existence of an inverse limit outer measure. The example
referred to above satisfies sequential maximality (see definition 1.3
Sec. III) thus a system may have a w-limit measure without having
a generalized inverse limit outer measure.

(1) We are indebted to the referee for suggesting this possibility.
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II. Construction of the largest II-limit outer measure, &

In this section we first construct, for a given system (X ,p, u, 1),

a set function g on the ““measurable” rectangles of T X; in such a
iel

way that g has, on these sets, the values that would be required of
a 7-limit outer measure. From g we then generate the outer measure i
which is our ‘“candidate” for a w-limit outer measure and show that
if a m-limit outer measure for (X, p, u,I) exists, then W is the largest
such measure. We then prove that it is sufficient to have only a weak
“compactness” condition on the measures p; in order to guarantee
that @ s a w-limit outer measure, and we show that i then has subs-
tantial approximation properties.

1. Generation of the measure 1.

We begin with the following lemma concerning the values
taken by m-limit outer measures on measurable rectangles.

1.1. LEMMA. — Let (X,p, un,I) be a system and let v be an

outer measure on || X;. Then v satisfies condition 1.3.3 Sec. 1 iff
iel

for every a€Rect(IN) and jEI1 with i Xj for every i€J, we
have :

*) v(@) = u,-(ig Py [m[a]) .

Proof of 1.1. — Let A; = w;[a],J =], so that

Then
v(z ' [BD=w(B),

m ' BICa vy (p; o 1) [A] AT A

aCn [BlOU (1 (A~ (py o 1) A -
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Since for each i €],

v(r (A A (py e 1) AN =0,
we conclude

(@) = v(r; "' [B]) = ;(B) .

Conversely suppose for each a € Rect(I), v(a) = u,(B) where j
and B are as above. Then for any i €I and A € N, letting o =m; 11A]
and j = i, we have B = A and therefore

v(m ' [A]) = p(A) .
Moreover, for any j =i, letting A; = A,
A;=X; ~p;'[A],
and
a = [AdN 7 A
= ;' [A] ~ (py ° T 7' [A],
we get
B = Aiﬂp';l[Ai] =0
and therefore
p(m[A] ~ (py ° m) ' [A]) = i, (B) = 0.
Similarly, letting A; = X; ~ A and A; = p,.;' [A] we get

v((p; o )T Al ~ m[AD = 0.
Thus
v(r [A] A (py © M) [AD = 0
whenever
k>=i and AEIR,.

We use condition (*) to define a set function g on Rect (N0 with
which we generate a candidate, §, for a n-limit outer measure.

The process we use to generate M is motivated by the following
theorem due to Carathéodory. We will also use it to establish pro-
perties of .

1.2. THEOREM. — For any non-negative set function h and fa-
mily 8€ of subsets of a space X, the set function |, generated by h
and 3@ has the following properties.

1.2.1. p is a Carathéodory measure,
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1.2.2. if ACA' for some A' € ¥, (in particular if p(A) <o),
then for every € > 0 there exists B €4, such that A CB and

k(B) < u(A) + &

and hence there exists B' € 3€_, such that A CB' and p(A) =pu(B’).

1.2.3. if 8@ is a ring and g is finitely additive on € then JEC I ,.
(Hence in view of 1.2.2, u is an outer measure).

1.2.4. if g is countably subadditive on 8€, then u(A) = g(A)
for every A€E3C.

Proof of 1.2. — See Sion [20] for 1.2.1, 1.2.3, 1.2.3.

Since we always have u(H) <g(H) for HE ¥ ; 1.2.4 follows
immediately.

1.3. DEFINITIONS. — Let (X,p, u,I) be a system.
1.3.1. For o € Rect(M),

gl =p (:Q Pyt ne])

where j is any element of I such that j> i for every i€J,. (Note
that J, is finite and that in view of condition 1.1.5 (a) Sec. I of the
definition of a system, g is independent of the choice of j).

1.3.2. ¥ is the Carathéodory measure on ]1—[1 X; generated-by g
€
and Rect(JIN).

With no further conditions we have the following lemma.

1.4. LeMMA. — For any system (X,p, u,D) :

1.4.1. g(1r,'l [A]) = u(A) for every i€1 and AEI,

1.4.2. If J is a finite directed subset of 1, and o € Rect(IR) ;
then g(a) = 0 whenever

an fxeﬂ X; :py(x))=x; for i,jE€J,i=]j ‘= 0.
In part‘icular,

gm ' [AlN (p; o m)7'[X, ~ A]) = 0 whenever
i<j and A€EI,.
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1.4.3. g is finitely additive on Rect(9IT).
1.4.4. & is an outer measure on X.
1.4.5. Rect(d0) C mﬂ

Proof of 1.4.1, 1.4.2. — Similar to proof of 1.1.

To show that g is finitely additive we will use the following
lemma.

LEMMA A. — Let (X,p,un,I) be a system, and let o, B be
disjoint elements of Rect(O). Then for any k such that k =i for
all i€J, Vg,

A= n pmlaln n pillm(Bll=9 .
iely lEJﬂ

Proof. — Since aNpB =@, there exists jEJ, N J,3 such that
mla] N m[B] = @. If, however, there exists x € A, then

pjk(x)e",'[a] N 7’,'[63] =0.

Hence no such x exists.

Proof of 1.4.3. — Let a € Rect(IT) and let B C Rect(dT) be a

finite disjoint family such that a= U B. Let K= U Jj and let
Bed Bed

jE€I be such that j =i for every i€K. Then J, CK so that j>i
for every i€1],.
Also let
A= 0 pitimal]
le]d

and for every BEG® ,
A - n --l B .
BT o) p; [m(B]]

Then {Ag : BE@} is a finite disjoint subfamily of 31'6, (from lemma A).
Since for every i€J, and B€®, m[B] C m,[a] and J, CJ,, then

AgCA, hence U AjCA.
Be®

On the other hand, for every x € A, choosing y € ]—l[X,. SO
1€

that y;, = pi,(x) for every i€K, we see that y Ea and thus y €EB
for some B € @. Then
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{x}c n pj'Im(MICA,,
ielg

hence x € Ag and

AC U A;.
Be®

Thus
8@ = k(&) = X 1 (Ap) = 2 g(B).

Be @

Proof of 1.4.4, 1.4.5. — We first note that we can extend g
to a finitely additive function g* on the ring (R generated by (Rect(91T)
(see e.g. J. Kingman and S. Taylor [8] p. 65). Now, the Carathéodory
measure i generated by g and Rect(9IT) is the same as that generated

by g* and R, hence by theorem 1.2, & is an outer measure and
@Cmﬁ,.

1.5. Remarks. — From the definitions involved and the above
results we have the following facts :

1.5.1. If g agrees with g on Rect(OIL), then M is a 7-limit outer
measure (note that for i€1 and A € 01T,
"i-l [AlA (py; ° 7’1)_1 [A] =
(Wi—l [A]IN (p,'] ° 7’;)—1 [xi ~ADhU (7";_1 [Xi ~AlN (pi] ° 7’))—1 [A]D .
1.5.2. If & does not agree with g on Rect(9T), then no m-limit

outer measure can exist, since g could not be countably subadditive
on Rect(M) and hence no outer measure could agree with g.

1.5.3. If v is a w-limit outer measure then for any
ACTT X, v(A) < H(A),
iel

for otherwise there would exist a countable subfamily $ of Rect(J1T)
which covers A and 2 v(F) < v(A), which is impossible. Thus if

Fes
w-limit outer measures exist, i is the largest one.

2. Conditions for | to be a w-limit outer measure.

The problem of showing that #-limit outer measures exist is
now reduced to that of assuring the countable subadditivity of g*
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on the ring R generated by Rect(T). A condition that will be shown
to be sufficient for this purpose is that the measures y; can be approxi-
mated from below by “N -compact” families. These families were
first used for similar purposes by Marczewski [11] and have been
used by many authors since (Choksi [S], Metivier [12], Meyer [13],
Neveu [14], etc.).

2.1. DEFINITION. — For any family of sets €, € is ¥ compact
if € C and for every countable @' C @ with N C = ( there exists
cee’

a finite sub-family ®C @' such that Tﬂ T=0.
€%

We will need certain properties of N,-compact families which
are given in the following lemmas.

2.2. LemMA. — If @ is ¥ -compact then :
2.2.1. €4 is ¥y-compact.
2.2.2. every subfamily of € is R, -compact.

2.2.3. The family of finite unions of elements of € is ¥, -
compact.

Proof of 2.2.1, 2.2.2. — Immediate from the definitions.
Proof of 2.2.3. — See Meyer [13],

2.3. LEMMA. — Let {X,J;el be a system of spaces, and let C
be a system of families of sets for {X,.}iel such that for each i€l

€, is R -compact. Then Rect(C) is ¥ ,~compact.

Proof of 2.3. — See Neveu [14] p. 85.

We now make precise the sense in which we refer to approxi-
mation from below.

2.4. DEFINITION. — Let h be a non-negative set function on
a family ¥€ of subsets of a space X, and p an outer measure on X.

2.4.1. € is an inner family for h on 3¢ iff @ C 3¢ and when

Heye,
h(H) = sup{h(C) : CEC,CCH}.



LIMITS OF INVERSE SYSTEMS OF MEASURES 37
2.4.2. C is an inner family for p iff € is an inner family for u
on OIZ“.

The next theorem shows the role played by our ¥, -compact
families.

2.5. THEOREM. — Let g be a non-negative finitely additive set
function on a ring 88 of subsets of a space X.

If there exists an ¥ -compact subfamily € €3 which is an inner
family for g on 3@, and if g(C) < o for every CEC, then theouter
measure p on X generated by g and Y€ has the following properties :

2.5.1. pu is an extension of g, i.e. for all HE &, u(H) = g(H) ;
2.5.2. JeI,,
2.5.3. for every A€ I, with u(A) < oo,

n(A) = sup{p(C) : CEE,,CCA}.

Proof of 2.5. — Let H€E ¥ be such that g(H) < oo, and let
¥¢'={Ge ¥ :GCH}.

Then by a result of Marczewski [11]

i) g can be extended to a countably additive set function »
on the o-ring 8 generated by ¢ '.

ii) for every GE S8,
»(G) = sup{u(C) : CCG, CE &;}
From i) we see that for every CE€€ and sequence H,, n€ w in ¥
withCC U H,,
new
gO)< Y gCNH)< Y g(H,)

new new

and since @ is an inner family for ¥€,

if Hed ,H, €&, forall n€w, and HC U H,

new

then
g(H) = sup (C): CCH,Cee}< Y H,

new

i.e. g is countably subadditive on ¥¢. 2.5.1, and 2.5.2 now follow
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from Theorem 1.2. From ii) above it is clear that 2.5.3 holds if A
is in the o-ring G generated by 5e.
If BEJWM,, p(B) <o then as a straightforward consequence
of 1.2.2
p(B) = sup{u(T) : T € B},

so that 2.5.3 holds for B also.

The following condition on our systems will allow us to apply
the above extension theorem to the set function g*.

2.6. DEFINITION. — A system (X ,p, u,1) is inner regular rela-
tive to @ iff @ is a system of families of sets for {xi}iel such that :

2.6.1. for every i€1, & is an R ,-compact family of sets which
is an inner family for p;,

2.6.2. for every j€1 and CE @, and every i %], u; is o-finite
on p;[C].

It is easily shown that if the above conditions are satisfied
then they are also satisfied by the system of families @', where

e, ={CEE,: 1 (C) <o},

Whenever we require the condition in definition 2.7 we shall
assume the families & consists of sets of finite measure, and that they
are also closed with respect to taking finite unions.

2.7. THEOREM. — If (X, p, 1, 1) is a system which is inner regu-
lar relative to © for some & then W is a w-limit outer measure for

X,p.k,Don [T X.
€

Proof of 2.7. — We first check some approximation properties
of g when (X,p, u,I) is inner regular relative to some system of
families of sets @.

LemMa B. — If (X,p, 1, ) is a system which is inner regular
relative to C, then for any o€ Rect(IM), t < g(a) and i €1, there
exists €€ C; such that CC m[a] and

glana ' [Ch >t.
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Proof. — Let k€1 with k> j for all j€J, U {i}, and let

A= N plimlal].
jed pyi [mlall

Then u,(A) = g(@) and there exists C"€ &, C' C A with p, (C') >+t
Now choose B € 1L, B C m; [«] such that p,, [C'] CB and ; is o-finite
on B. Then there exist C,, C,,...E€E; such that for such n€ w,
C,cC,,,,C,CB and

m(B~ U C)=0

new
hence

u,,(C' YU pix % [C, ]) 0
so that for some m€ w
”k(C np [C D>¢t.
Letting C = C,,, we see that C C m,[a] and that
glan ' [C) = u, ( 0 P lmlell O gy [c1)

> 1, (C' N plIC) >t

LemmAa C. — If (X,p, un,I) is a system which is inner regular
relative to @, then Rect(Q) is an inner family for g on Rect( ).

Proof. — Let o« € Rect(d) and J, ={iy, i, ,...,i,}. Given
t<g®,

choose C, € e,o , Co C Ty [a] such that
g(aﬂw,'[C D>t,
and by recursion on m, C,, ee,m, C,.C L [a] such that
7!
g(a o M, [C,])>t.
If
Cc= N m'[C
- 1=0 "il [ 1] )

then C € Rect(@), CCa and g(C) > ¢.
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LEMMA D. — Let g* be the extension of g to a finitely additive
function on the ring R generated by Rect( ), and let K = {finite
unions of elements of Rect(®)}). If (X,p,un,l) is inner regular
relative to @, then I is an inner family for g* on R.

Proof. — Let € R. Then there exists a finite disjoint family
@ C Rect(IM) such that a = BleJmB. If t <g*(a), choose for each

B E€ @B, Cy € Rect(®) so that C;C B and ¢ < 2, g(Cy). Then

Be ®

£ (BLEJ& Co )= Bezag* €)= Beza 8(C) > 1

Theorem 2.7 now follows from theorem 2.5, since JK is Ny-
compact (by lemmas 2.2 and 2.3).

Without the N, -compactness condition a w-limit outer measure
may fail to exist. An example is easily constructed (Mallory [10]
from one used by Halmos ([6], p. 214).

3. Approximation Properties of w-limit Outer Measures.

We now assume (X, p, u, I) to be a system which is inner regular
relative to some fixed family € and indicate some approximation
properties which I then possesses. These properties will be useful
when we consider the restriction of % to L.

3.1. DEFINITIONS.
3.1.1. R = the ring generated by Rect(IN).
3.1.2. &' = {finite unions of elements of Rect(C)}.

3.2. THEOREM. — If A€ IR, and H(A) < oo, then
u(A)=sup{g(C): CeeC.,CA}.

Proof of 3.2. — Let g* be the finitely additive extension of
g to R. Then @' is an inner family for g* on R (from lemma D in
the proof of theorem 2.7), and is ¥,-compact by lemmas 2.2.3 and
2.3. The result then follows from theorem 2.5, by choosing €' for
the family ‘@’ in theorem 2.5.

Clearly the condition that m(A) be finite can be replaced by :
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a) M) =sup{(B): BCA, u(B) <oo}.

Thus the theorem fails to hold essentially only in the pathological
case in which all subsets of A have either infinite measure or measure
zero. The following propositions show that under our assumptions
such cases are limited and that they do not occur in the sets in which
we are primarily interested.

3.3. PROPOSITION. — For any A EOI'C;;, at least one of A, X~A
satisfies conditions a) above.

Proof of 3.3. — If H(X) <o, the result follows from theo-
rem 3.2. Otherwise, for any i €1, there exists a sequence

C,.C,...€¢
such that
#(X;) =sup {4,(C,) : n€Ew}= 0.

Clearly p; is o-finite on nth C,, so that W is infinite but o-finite
on m 1 ng’ C,| (€ mﬁ). Thus, ¥ is infinite and o-finite on
AN [ U C,,] oron x~anm'[ u c]
new new
and hence the result follows easily from theorem 3.2.

3.4. PrROPOSITION. — Every A EQR satisfies condition a) above.

Proof of 3.4. — By lemma C in the proof of theorem 2.7 for
every A € Rect(90)

g(A) = sup{g(C) : CC A, C ERect(Q)} ,
and since Rect(€) C Rect(91T) and H(A) = g(A) for every

A ERect () ,
then
% (A) = sup {H(C) : CERect(€), CC A}

and since such sets C have finite measure (from definition 2.6),
3.4 follows easily.

In view of proposition 3.4 we can adjust our measure so as to
eliminate the pathological cases.
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3.5. THEOREM. — Let, for every A C i,
%'(A) =sup{(B) : BCA and Wu(B) <oo};
then
3.5.1. W' is a semifinite m-limit outer measure,
3.5.2- m‘-‘-’ = m‘-".
3.5.3. for every Aemﬁ,

®'(A) =sup {§'(C) : CE E;,CCA}.

Proof of 3.5. — It is easily seen that %' is an outer measure and
that M, = M (see e.g. Berberian [2]). Furthermore it follows from
3.4 that W'(B) = U (B) for every BER, so that %' is a w-limit outer
measure, 3.5.3 then follows from the fact that every AG:)]Z;‘ satisfies
condition- a) above.

We note that if the spaces X; were topological, and the measures
i; Radon (not restricted to locally compact spaces), then we would take
for €, the closed compact sets. If we then replaced the original topo-
logy §; on X; by the topology §; of complements of closed com-
pact sets, 4, would remain Radén, and the class of sets C; (Def. 3.1)
would be closed and compact in the resulting product topology.
Theorem 3.2 above could then be used to show that under very weak

conditions a Radon sr-limit outer measure exists on | | X; with the
iel

new product topology (Mallory [10]).

III. Limit measures on the inverse limit set.

In this section we try to answer the following question. When
does a w-limit outer measure exist on the inverse limit set, L ?

Our approach is from the point of view of restricting # to L.

The proofs of all lemmas and theorems in this section will be
given in subsection 3 at the end.

1. Definitions and Notation.

Here we collect definitions and notation used in the sequel.
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1.1. Basic Assumptions. — Throughout this section we assume
X,p,u,D is a system and

Pix = Pij ° Pjx

whenever i <j =k, so that (X,p,I) is actually an inverse system
of spaces. We also assume that the inverse limit set, L;, is such that
for every i €1, m[L,] = X, (simple maximality).

1.2. Definitions (Subsystems). — For any directed subset J of I,

1.2.1. X,p, u,J) will denote the subsystem obtained by res-
tricting X and p to J and p to

{(,j):i=j and i,jEI}.
Clearly (X,p, 1, J) is also a system.
122. %, =TT X,.
J B i

(In case J =1 we may write X for )N(I).

1.23. L, = {xei, : m(x) = p;(m;(x)) whenever i <j and
i,jET}.

Thus L; is the inverse limit set of (X,p, u,J).

1.2.4. ry is the function on X to i, such that for every
xeX, nx)=x17J.

In the next two definitions we introduce properties of the system
and of measures which we will use in the theorems to follow.

1.3. DEFINITION. — (X, p, u, ) satisfies sequential maximality
iff, for every countable directed subset J of 1, the range of r; | L, is
all of Ly, i.e. : for every sequence iy, i, ,...in1withi, i, and
sequence y with y,€X; and p; ; = (Vu.1) =y, for every n€ «,
there exists x € L, such that X; = Vn for every n€ w.

1.4. DEFINITION. — An outer measure ¢ on a space S is almost
separable iff there exists a countable family G3C orcw andaset TCS
such that o(T) = 0 and for every x,yES ~ T with x # y there
exists B € @3 with x €B and y ¢B.

The extension process we are using to obtain & is such that §
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may not be semifinite even if the measures w, are semifinite. To
simplify some results we will refer to the semifinite part using the
following definition. (See also theorem 3.5 Sec. II).

1.5. DEFINITION. — If v is an outer measure on a space S, V' is
the semifinite outer measure on S derived from v by taking

V' (A)=sup {¥(B) : BCA and v(B) <o},
for every A CS.

2. Existence of an Inverse Limit Measure.

In this section we consider the problem of the existence of an
inverse limit outer measure. We begin by indicating the relation
between such a measure and the measure J introduced in 1.3
Sec. 1II.

2.1. LEMMA. — An inverse limit outer measure exists iff i | Lis
an inverse limit outer measure.

2.2. LeMMA. — If for each i €1, p, is a semifinite outer measure,
then 1 | L, is an inverse limit outer measure (i.e. such a measure exists)
iff Wis a m-limit outer measure such that the semifinite outer measure
W' derived from i is pseudo-carried by L;.

In view of the above lemmas we devote the rest of this section
to determining conditions under which @ or &' is carried or pseudo-
carried by L;. We have two types of conditions under which this
occurs and we discuss them separately. First we consider “separability”
conditions.

2.3. LEMMA. — Suppose that for every i€l, p; is almost
separable.

2.3.1. If 1 is countable, then | is carried by L,.

2.3.2. If sequential maximality is satisfied and for each i€,
u; is semifinite, then W' is pseudo-carried by L;.

2.4. Remark. — 2.3.1 remains true even if (X,p,u,I) is a
system for which (X, p, I) is not necessarily an inverse system of
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spaces. In effect the rest of the hypotheses force L, to be large enough
to carry M. By combining lemma 2.3 with the fundamental existence
theorem 2.7 of Sec. II we obtain the following theorem.

2.5. THEOREM. — If (X,p,un,1) is inner relative to C for
some C (definition 2.5 Sec. II) and if for each i€, u,; is almost
separable, then an inverse limit outer measure exists whenever one
of the following conditions holds.

2.5.1. 1 is countable,

2.5.2. X,p, n,]) satisfies sequential maximality.

2.6. Remarks. — Previously known existence theorems require
further conditions on the images and inverse images of the functions
p;; than are used in theorem 2.5 (see e.g. Choksi [5], Metivier [12]).

In view of lemma 2.3.1 we can conclude that in 2.5.1 &'is a -
limit outer measure which is carried by L; and not just pseudo-
carried. The following theorem shows that this is not the case for
any nontrivial system when I is uncountable.

2.7. THEOREM. — If 1 is uncountable and X; contains at least
two points for uncountably many i € 1, then for every A € Rect(JN),

EA)=HA~L,

hence W is not carried by L; whenever n#0.

From the above theorem we see that in many significant cases
where an inverse limit outer measure does exist, L, is not J-measurable.
This may explain many of the difficulties encountered by inverse
limit measures. For example, even if & is Radon, its restriction to L
may not be.

We now examine another type of conditions under which an
inverse limit outer measure exists. Here we establish a “‘topological”
relationship between L; and inner families @; for the measures p;.
Conditions similar to ours have been used by previous workers (e.g.
Bochner [3], Choksi [5], Metivier~ [12]) who worked only with L,
(not considering its relation with X).

The following theorem is a basic existence theorem from this
point of view.



46 DONALD J. MALLORY AND MAURICE SION

2.8. THEOREM. — Let (X ,p, i, 1) be inner regular relative to @.
If for every sequence i €1 with i, <i,,, for all n € w, the family

{1|',.'nl [CINL,:CEe, for some n€ w}

is N,compact, then W' is pseudo-carried by L, hence §'|L, isan
inverse limit outer measure.

2.9. Remarks. — The hypotheses of theorem 2.8 are obviously
satisfied if the spaces C; are compact Hausdorff, the measures u;
Radén, and the functions p;; continuous. In this case L; is compact
so that

{zm7'[C]NL,: CEEQ for some i€}

consists of sets which are compact in the product topology, and thus
are certainly N -compact.

Since in other cases it may be difficult to check the hypotheses
of theorem 2.8 directly, we give in the following theorem a condition
on countable subsystems which, if sequential maximality holds,
will ensure the existence of an inverse limit outer measure. We should
note that the following theorem is essentially that of Metivier [12],
though we include the semifinite case.

2.10. THEOREM. — Suppose that (X,p, u,l) is inner regular
w.r.t. @, and that sequential maximality holds. Then ' is pseudo-
carried by L, hence 'l L, is an inverse limit outer measure, whenever
the following conditions hold : if i is a sequence in 1 with i, <i,,,
for every n € w, and

Kpn=1p; ; [Cl: CEC, forsome n€w with m <n},

2.10.1. then K, is N -compact for every m € w, and
2.10.2. {pg}m[ x 1NK : KEXK,} is V,-compact for every
I, m€w with I<m, and xGX,l.

We conclude this section by indicating how one can transfer
an inverse limit outer measure for a system to one for a subsystem,
and vice-versa.

2.11. THEOREM. — Suppose v is an inverse limit outer measure.
Then for any directed subset J of 1, the set function ¥ generated by
the family.
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a={AcCX,;:r'[Ale 0}
and the set function h on @, defined by
h(A) =v(ry'[A]) forall AEX ,

is an inverse limit outer measure for (X,p, u,J).

2.12. THEOREM. — Let J be a confinal subset of 1. Then :
2.12.1. r; | L; is one-to-one and onto L;.

2.12.2. if v is an inverse limit outer measure for (X,p, u,J),
the set function ¥V defined by

Y(A) =v(r;[ANL]

for every A C il, is an inverse limit outer measure for (X ,p, u, D).

From the above theorems we see that a system has an inverse
limit outer measure if it can be imbedded in a system which does
have one, and that theorems 2.5, 2.8 and 2.10 can be somewhat
extended by requiring that their hypotheses be satisfied only for a
cofinal subsystem.

3. Proofs.

Proof of 2.1. — Clearly we need only to show that if u | L, is
not an inverse limit outer measure then no such measure exists.
To do this we first establish the following lemma.

LEMMA A. — Let o€ Rect( M), and k €1 be such that k =j for
allj€l,. If we let
— -1
B = 194 Djk [“j[a]] ,
then,
3.1. BE,.,
32. m'[BINL, =aNnL,,

3.3. g(a) = e (B).

Proof. — Immediate from the definitions.

Suppose that W | L; is not an inverse limit outer measure. We
know from lemma 1.4.5 Sec. II that Rect(91Q) C UTCﬁ hence for every
i€l and AEIT,,
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' [AJEM; L, .
Thus it must be that for some jE€I and B €M,

B | Ly (x; " [B]) # g(m;" [B]) = p(B) .
Since

(' [B]) <g(n'[B])
we must have
H1Ly(m™" [B) = H(m; ' [B] N L) < m(B).

Then by the definition of 7, there exists a countable family
@ C Rect(IN) such that
—1
m [B]ﬂL,CDLeJaD
and
2 gD) <g@'[B]) .

De®

Let @®={D,,D,,...}and for each n€w let i, €I and B, €M,
be such that
D,NL, =m'[B,]NL,
and g(D,) = n,.n(B,,) (this is possible by lemma A).
Then
7 '[BINL C U 7 '[B,]1NL,
and
% (B,) <ml[B].

new

Hence there cannot exist an outer measure » carried by L, for which

l"("fl [B]) = p;(B)
and

v(m; ' [B,]) = u; (B,)
for every n € w, i.e. there cannot exist an inverse limit outer measure.

Proof of 2.2. — Suppose first that % is a m-limit outer measure
and that ' is pseudo-carried by L;.

Let A € 9IT,. Then
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B [AD = 1,(A)
sup {y;(B) : BC A, BE I, , p,(B) <oo}
sup (¥ (n;'[B]) : BC A, BEM,, uy(B) < o}

Thus
p(A) = W' @ ' [AD = B (x ' [AIN LY
= g(m'[AINL) = ¥ |L(a'[A)) ,

and thus 2 | L, is an inverse limit outer measure.

Now suppose that 7 | L, is an inverse limit outer measure. Then
since an inverse limit outer measure is also a #-limit outer measure it
follows from remark 1.5.3 Sec. II that W is a w-limit outer measure.

Suppose also that there exists A €Mz, (= OTC‘-‘) such that
ACX~L, and 0<TW'(A).

Then from the definition of 1’ there exists a set BC A, BE,
(since A earcﬁ) with 0 < (B) < . Then by definition of ¥ there

~

K (B)

exists for 0 < € < a finite family ® C Rect(91X) with

Ky, @~m) <
and
e <xm -c <F(g,D)

Furthermore we can choose ® to be a disjoint family. Then

> AmnL)< L ED~B)< €.

De ® De ®
But, since i | L, is an inverse limit outer measure, lemma A shows
that (D N L,) = #(D) for every D € @, hence
X EDNL)= Y uDd) = M(DLeJ D)> .
De ® De ®

Hence no such sets A, B exist, so ' is pseudo-carried by L,.
Proof of 2.3. — We first establish the following lemma.

LemmAa B. — Let for each i €1, p; be almost separable, and let
I, be a countable directed subset of 1. Then
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-1
I‘(x ~"1 [Ll D=

Proof. — For each i€, let T; CX; and @3, C I; be such that
¥ (T;) = 0,8, is countable, and for every x, y € X; ~ T, with x # y,
there exists B € @3; such that x €B, y € B. For each i, j €1, with
i =j and BEG@,; let

B, = '[BINn =, [p;'[X;, ~B]].
Then,
HEB;)=u(p;'[BIN p;'[X, ~B]) = g(®) =0

for every such i, j. Let

B ={B;:ijEl, i=j and BE®},
then -
x~r;o'[L[]c U B

B'e®’
hence
ﬂ(x ~rn l[Ll D=
Lemma 2.3.1 follows immediately from lemma B.
To prove 2.3.2 we will use the following lemma.
LeEMMA C. — Let p; be almost separable for every i€1 and let
sequential maximality hold. Then for every o € Rect(IT),

H@)=T@nLy).

Proof. — For £ >0 let ¢ C Rect(NY be a countable cover of
aN L, such that

T gH)<F@NL)+e¢,

He %

and let T = U JyUJ, and let KC1 be a countable directed set

with T CK. By sequentlal maximality, for each x Eanr, [L ] there
exists x' € L, such that for every k €K, xk = x,. Then 1r,(x )Em[a]
for every j€1J,, hence

xGaﬁLlC U H,
He 2
so that
-1 ’
T [{x"}]CHLeJacH’

hence x€ U H and
Hez
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-1
anNrg [LK]CHE,J,‘H .
Thus, using lemma B,
F@<T( Y H)+ T~ rg L)
<P@nL)+e+0.
Since € is arbitrary, ¥ (a) = H(aNL)).
Turning now t to the proof of 2.3.2, suppose that A em (—JIZ )

is such that A C X ~ L, and 1'(A) > 0. Then as in the proof of lemma
2.2 there exists BC A, BE arz‘.‘ with 0 < 1 (B) < o, and, for

E(B)

0<eL
2

a finite disjoint ® C Rect(91T) with
W (y,p~B)<e
and
i@ -e<7(u D).

Thus we have again

2 HDNLY)< X KD ~B)< g,

De® De ¢

and from lemma C,

2 EDNL) = Z AD)>W(B) - e> ¢,

De ®
which is a contradiction. Hence no such A exists and ' is pseudo-
carried by L;.

Proof of 2.5. — By theorem 2.7 Sec. II, W is a w-limit outer
measure, and by lemma 2.3, &' is pseudo-carried by L; under condi-
tions 2.5.1 or 2.5.2. Then lemma 2.2 shows that I | L, is an inverse
limit outer measure.

Proof of 2.7. — Let A € Rect(91T), J8C Rect(T) be a countable
cover of A~L;, and let T = Hlélx JuyUJ, and x€ANL,. Then,
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since I is uncountable leti€l~T and y€X, be such that y #x,.
If we define x' €X by letting xi = Xx; for j #i and x; = y, then
x' €A ~L,. Hence x' € H%)xH Thus

—1 — -1 ’
x EIQT o [{x} = ]QT m; [{x,}] C HLEJ“H

Hence ANL;C U H so that AC U H and therefore from
Hex Heae
the definition of W,
EA~L)=THA).

Proof of 2.8. — By theorem 3.5 Sec. II, 1’ is a w-limit outer
measure, and for every A € :m‘.,,

u'(A) = sup {H(C) : CCA,CEC,},
where @' consists of finite unions of elements of Rect(€) (see defini-
nition 3.1 Sec. II).

Suppose B eorc-, #'(B)>0 and BC X~ L;. Then there exists
for t < u'(B) a sequence Co, Cyy...in €' such that C,+, CC, for
each n€ w (since Rect(€) is closed under (finite mtersectlon)

N C,CB, and u(nﬂ C 5>t. For each n € w there exists a

new

finite disjoint family @3, C Rect(91C) such that C, = BeLi B. Further-
n
more we can choose the families @3, so that if m <n, every BEG®,
is a subset of some element of G3,,.
Let i, be such that ij > j for every j € U Jg and choose by
0
recursion i,,, €I so that i,,,> i, and i,,, >.] for allje o Jg.

n+l
For each n € w let
— 1
D= .3, ,8, Pilm Bl

Then for each m, n € w with m <n

Dn c pi_":in [Dm]
and

¥, (D,) =U(C,) >t
since we have
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BEC,)= ) "B =Y g®B

Betam Bewm
— -1 —_
= B§Bm I‘,-m (ifrPB pﬁﬂ["j[B]]) = I‘gm( Dm)

Let

0< e<t/2 and for each n € w choose K, CD,, K, € e,n such
that
€

2n+l :

“in(D" ~ K,,) <

For each n € w let

Then

hence,

Thus, from simple maximality
n'[E,JNL,#0.

Also from lemma A it is clear that

n
m '[E, 0L = O m'[K,]NL

so that
n
N ﬂi":[Km]ﬁL,a&(b )

m=0
for any n € w, hence

. 1r,.‘":[Km] NL,#0 .
But, from lemma A, for every n € w

T [K,]NL CC,NL,
hence
9+ N C,NLCBNL,
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contradicting the fact that B C X ~ L,. Hence no such B exists and '
is pseudo-carried by L.

Proof of 2.10. — We shall check that the hypothesis of theorem
2.8 is satisfied. Let i be a sequence in I with i, < for every
neEw,

n+1

={n'[CINL,: CE e, ,nEwW},

and F be a sequence in & with méo F,, # 0 for every n € w. We have
to show that N F, + 0.
mew
For each m € w, let j(m) be the smallest integer k with
for some C € e,k, and let Cm € e,l be such that
F, =7 C,INL, .
Let for each m € w,

@, = {pfmij(n)[c”] :n€w and j(n)>m}.
and
Kn=,0 A

Since, for each m € w, the family

X, ={p,.m,n[C] :C€e, and n€Ew,n=>m}

is ¥, -compact and, for each n € w

n _ -1
190 p‘o’](l) 1 "io [, A (') [CIn L] 0,

we see that K, # @. Similar considerations show that for any n € w,
K, #0. Let x, €K,. Then

p,‘ol,l[{xo}] NK,#0

otherwise, by condition 2.10.1, there would exist m with

_ m
piolil [{xo}] nlgo Pijijay G1=9,
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hence,

m
xo& N

1=0 [Cl] b

Pigija

so that x, € K,, contradicting the choice of x,. Thus there exists
x, €K, with pio,l(xl)=xo, and by similar arguments we can
choose, by recursion, for each n € w, x, €K, such that

pim i, (xn) = Xm

whenever m < n. Let (by sequential maximality) y € L; be such that
Yi, = Xn for every n € w. Clearly for every n € w

yem[C,INL
thus
-1
Y€ 0 (m'[C,1N Ly
so that
{1r,.'"'[C] NL,:CEC,  n€Ew}
is N -compact.

Thus the conditions of theorem 2.8 are satisfied, hence I | L, is
an inverse limit outer measure.

Proof of 2.11. — 1t is clear that h is countably additive on & and
that & is a ring, hence ¥ is an outer measure on X;, and & C ANT,.
V¥ is supported by L; since

X, ~L)CcX, ~L,,
and since (using 7 for projection in i,)
(' [B]) = h(7 ' [B]) = v(n ' [B]) = p;(B)

iffj€EJand BE Olt,, WV is an inverse limit outer measure for (X,p, u, J).
Proof of 2.12.1. — Immediate from the definitions.

Proof gf 2.12.2. — Let ?r} denote projection onto the j*™* coordi-
nate from X;. Then for every j€J, i <j and BE€ I,

V(' [B) = ¥(x; ' [p;' [BI)) = v(7' [p;;' [BID) ,
hence
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W(m; ' [B]) = w,(p;' [B]) = m,(B) .
Since r; is 1 : 1 on L; and \If()~(~ L)) = 0, ¥ is an outer measure

and with i, j, B as above, w; '[B] € 9L, since ¥(m; '[B]~L)=0
and

~—1

nim BINL] = 7 [p;' BN L,

which is in 9IT,. Hence ¥ is an inverse limit outer measure.
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