In this paper the problem of the existence of an inverse (or projective) limit measure of an inverse system of measure spaces is approached by obtaining first a measure on the whole product space .
The measure will have many of the properties of a limit measure provided only that the measures possess mild regularity properties.
It is shown that can only exist when is itself a “limit” measure in a more general sense, and that must then be the restriction of to the projective limit set .
Results stronger than those previously known are obtained by examining restricted to .
Étant donné un système projectif d’espaces mesurés , on étudie le problème d’existence d’une limite projective en considérant d’abord une mesure définie sur le produit . Sous de simples conditions de régularité des , on montre que a presque toutes les propriétés d’une limite. En outre, la limite projective peut exister seulement si est elle-même une “limite” dans un sens plus général et est alors la restriction de à l’ensemble limite des . On obtient des résultats plus forts que ceux connus jusqu’à présent en examinant cette restriction.
@article{AIF_1971__21_1_25_0,
author = {Mallory, J. D. and Sion, Maurice},
title = {Limits of inverse systems of measures},
journal = {Annales de l'Institut Fourier},
pages = {25--57},
year = {1971},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {21},
number = {1},
doi = {10.5802/aif.361},
zbl = {0205.07101},
mrnumber = {44 #1782},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.361/}
}
TY - JOUR AU - Mallory, J. D. AU - Sion, Maurice TI - Limits of inverse systems of measures JO - Annales de l'Institut Fourier PY - 1971 SP - 25 EP - 57 VL - 21 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.361/ DO - 10.5802/aif.361 LA - en ID - AIF_1971__21_1_25_0 ER -
Mallory, J. D.; Sion, Maurice. Limits of inverse systems of measures. Annales de l'Institut Fourier, Tome 21 (1971) no. 1, pp. 25-57. doi: 10.5802/aif.361
[1] and , Of the introduction of measures in infinite product sets, Danski Vid. Selskab Mat. Fys. Medd. 25 (1948) No. 4. | Zbl | MR
[2] , Measure and integration, MacMillan Co. New York (1965). | Zbl | MR
[3] , Harmonic analysis and probability theory Univ. of Cal. Press, Berkeley, 1955. | Zbl
[4] , Théorie des Ensembles Livre I Ch. III, Hermann, Paris.
[5] , inverse limits of measure spaces, Proc. London Math. Soc., 8 (1958) 321-342. | Zbl | MR
[6] , Measure theory, Van Nostrand, New York, (1950). | Zbl | MR
[7] , Conditional probabilities on strictly separable σ-algebra (Russian) Czech. Math. J. 4 (79) (1954) 372-80. | Zbl | MR
[8] and , Introduction to measure and probability, Cambridge U.P. London, 1966. | Zbl
[9] , Grundebegriff der Wahrscheinlichheit (Berlin, 1933), (English translation: Chelsea, New York 1956).
[10] , Limits of Inverse Systems of Measures, thesis, University of British Columbia 1968.
[11] , On Compact Measures, Fund. Math. 40 (1953) 113-24. | Zbl | MR
[12] , Limites projectives de mesures, Martingales Applications, Ann. di Mathematica 63, (1963) 225-352. | Zbl | MR
[13] , Probabilities and Potentials, Blaisdell (1966). | Zbl
[14] , Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965. | Zbl | MR
[15] , , Convergence of random processes and limit theorems of probability theory (in Russian), Teoriya Veroyatnostei i ee Primeneniya 1, 177-237 (1956). English translation: Theory Probab. and Appl. 1, 157-214 (1956). | Zbl | MR
[16] , Sur une généralisation d'un théorème d'Ionescu Tulcea, C.R. Acad. Sc. Paris 259 (1964), 2769-2772. | Zbl | MR
[17] , Generalizations of the theory of Lebesgue spaces and of the definition of entropy in ergodic theory, thesis, University of Utrecht 1966.
[18] , Projective limits of directed projective systems of probability spaces, Z. Wahrscheinlichkeitstheorie verw. Geb. 13, 60-80 (1969). | Zbl | MR
[19] , Lecture Notes on Measure Theory, Biennial Seminar of the Canadian Mathematical Congress, (1965).
[20] , Introduction to the Methods of Real Analysis, Holt, Rinehart and Winston, New York (1968). | Zbl | MR
Cité par Sources :



