Equi-singularity of real families and Lipschitz–Killing curvature densities at infinity
Annales de l'Institut Fourier, Online first, 45 p.

Fix an o-minimal structure expanding the ordered field of real numbers. Let (W y ) y s be a definable family of closed subsets of n whose total space W= y W y ×y is a closed connected C 2 definable sub-manifold of n × s . Let φ:W s be the restriction of the projection to the second factor.

After defining K(φ), the set of generalized critical values of φ, showing that they are closed and definable of positive codimension in s , contain the bifurcation values of φ and are stable under generic plane sections, we prove that all the Lipschitz–Killing curvature densities at infinity yκ i (W y ) are continuous functions over s K(φ). When W is a C 2 definable hypersurface of n × s , we further obtain that the symmetric principal curvature densities at infinity yσ i (W y ) are continuous functions over s K(φ).

On fixe une structure o-minimale qui étend le corps ordonné des nombres réels. Soit (W y ) y s une famille définissable de sous-ensembles fermés de n dont l’espace total W= y W y ×y est une sous-variété définissable connexe et fermée de n × s de classe C 2 . Soit φ:W s la restriction de la projection sur le second facteur.

Après avoir défini K(φ), l’ensemble des valeurs critiques généralisées de φ, montré qu’elles forment un sous-ensemble définissable fermé de codimension non-nulle de s , contiennent les valeurs de bifurcations de φ et sont stables par section plane générique, nous montrons que toutes les densités à l’infini des courbures de Lipschitz–Killing yκ i (W y ) sont des fonctions continues sur s K(φ). Quand W est une hypersurface définissable de n × s de classe C 2 , nous obtenons de plus que les densités à l’infini des courbures symétriques principales yσ i (W y ) sont des fonctions continues sur s K(φ).

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3607
Classification: 14P10, 03C64, 57R70
Keywords: Real equi-singularity, Lipschitz–Killing curvatures, the Malgrange–Rabier condition.
Mot clés : Équisingularité réelle, courbures de Lipschitz–Killing, condition de Malgrange–Rabier.
Dutertre, Nicolas 1; Grandjean, Vincent 2

1 Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers (France)
2 Departamento de Matemática, Universidade Federal de Santa Catarina, 88.040-900 Florianópolis – SC, (Brasil)
@unpublished{AIF_0__0_0_A88_0,
     author = {Dutertre, Nicolas and Grandjean, Vincent},
     title = {Equi-singularity of real families and {Lipschitz{\textendash}Killing} curvature densities at infinity},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3607},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Dutertre, Nicolas
AU  - Grandjean, Vincent
TI  - Equi-singularity of real families and Lipschitz–Killing curvature densities at infinity
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3607
LA  - en
ID  - AIF_0__0_0_A88_0
ER  - 
%0 Unpublished Work
%A Dutertre, Nicolas
%A Grandjean, Vincent
%T Equi-singularity of real families and Lipschitz–Killing curvature densities at infinity
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3607
%G en
%F AIF_0__0_0_A88_0
Dutertre, Nicolas; Grandjean, Vincent. Equi-singularity of real families and Lipschitz–Killing curvature densities at infinity. Annales de l'Institut Fourier, Online first, 45 p.

[1] Bekka, Karim Regular stratification of subanalytic sets, Bull. Lond. Math. Soc., Volume 25 (1993) no. 1, pp. 7-16 | DOI | MR | Zbl

[2] Bröcker, Ludwig; Kuppe, Martin Integral geometry of tame sets, Geom. Dedicata, Volume 82 (2000) no. 1-3, pp. 285-323 | DOI | MR | Zbl

[3] Comte, Georges Équisingularité réelle: nombres de Lelong et images polaires, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 6, pp. 757-788 | DOI | Numdam | MR | Zbl

[4] Comte, Georges; Merle, Michel Équisingularité réelle. II. Invariants locaux et conditions de régularité, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008) no. 2, pp. 221-269 | DOI | Numdam | MR | Zbl

[5] Coste, Michel An introduction to o-minimal geometry, Dottorato di Ricerca in Mathematica, Dip. Mat. Univ. Pisa, Instituti Editoriali e Poligrafici Internazionali, 2000

[6] D’Acunto, Didier Valeurs critiques asymptotiques d’une fonction définissable dans une structure o-minimale, Ann. Pol. Math., Volume 75 (2000) no. 1, pp. 35-45 | DOI | MR | Zbl

[7] D’Acunto, Didier; Grandjean, Vincent A gradient inequality at infinity for tame functions, Rev. Mat. Complut., Volume 18 (2005) no. 2, pp. 493-501 | DOI | MR | Zbl

[8] D’Acunto, Didier; Grandjean, Vincent On gradient at infinity of semialgebraic functions, Ann. Pol. Math., Volume 87 (2005), pp. 39-49 | DOI | MR | Zbl

[9] Denkowska, Zofia; Stasica, Jacek Ensembles sous-analytiques à la polonaise. Avec une introduction aux fonctions et ensembles analytiques, Travaux en Cours, 69, Hermann, 2007 | Zbl

[10] Dias, Luis R. G.; Ruas, Maria A. S.; Tibăr, Mihai Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol., Volume 5 (2012) no. 2, pp. 323-340 | DOI | MR | Zbl

[11] Dinh, Si Tiep; Pham, Tien Son Lipschitz continuity of tangent directions at infinity, Bull. Sci. Math., Volume 182 (2023), 103223, 27 pages | DOI | MR | Zbl

[12] van den Dries, Lou Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998, x+180 pages | DOI | MR | Zbl

[13] van den Dries, Lou; Miller, Chris Geometric categories and o-minimal structures, Duke Math. J., Volume 84 (1996) no. 2, pp. 497-540 | DOI | MR | Zbl

[14] Dutertre, Nicolas Geometrical and topological properties of real polynomial fibres, Geom. Dedicata, Volume 105 (2004), pp. 43-59 | DOI | MR | Zbl

[15] Dutertre, Nicolas A Gauss-Bonnet formula for closed semi-algebraic sets, Adv. Geom., Volume 8 (2008) no. 1, pp. 33-51 | DOI | MR | Zbl

[16] Dutertre, Nicolas Euler characteristic and Lipschitz–Killing curvatures of closed semi-algebraic sets, Geom. Dedicata, Volume 158 (2012), pp. 167-189 | DOI | MR | Zbl

[17] Dutertre, Nicolas; Grandjean, Vincent Gauss–Kronecker curvature and equisingularity at infinity of definable families, Asian J. Math., Volume 25 (2021) no. 6, pp. 815-839 | DOI | MR | Zbl

[18] Ehresmann, Charles Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 29-55 | MR | Zbl

[19] Gaffney, Terence Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compos. Math., Volume 119 (1999) no. 2, pp. 157-167 | DOI | MR | Zbl

[20] Grandjean, Vincent On the total curvatures of a tame function, Bull. Braz. Math. Soc. (N.S.), Volume 39 (2008) no. 4, pp. 515-535 | DOI | MR | Zbl

[21] Hironaka, Heisuke Stratification and flatness, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff, Alphen aan den Rijn (1977), pp. 199-265 | MR | Zbl

[22] Jelonek, Zbigniew On the generalized critical values of a polynomial mapping, Manuscr. Math., Volume 110 (2003) no. 2, pp. 145-157 | DOI | MR | Zbl

[23] Jelonek, Zbigniew On asymptotic critical values and the Rabier theorem, Geometric singularity theory (Banach Center Publications), Volume 65, Polish Academy of Sciences, 2004, pp. 125-133 | DOI | MR | Zbl

[24] Jelonek, Zbigniew; Kurdyka, Krzysztof Quantitative generalized Bertini–Sard theorem for smooth affine varieties, Discrete Comput. Geom., Volume 34 (2005) no. 4, pp. 659-678 | DOI | MR | Zbl

[25] Kurdyka, Krzysztof On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier, Volume 48 (1998) no. 3, pp. 769-783 | DOI | Numdam | MR | Zbl

[26] Kurdyka, Krzysztof; Orro, Patrice; Simon, S. Semialgebraic Sard theorem for generalized critical values, J. Differ. Geom., Volume 56 (2000) no. 1, pp. 67-92 | DOI | MR | Zbl

[27] Kurdyka, Krzysztof; Parusiński, Adam w f -stratification of subanalytic functions and the Łojasiewicz inequality, C. R. Math. Acad. Sci. Paris, Volume 318 (1994) no. 2, pp. 129-133 | MR | Zbl

[28] Kurdyka, Krzysztof; Raby, Gilles Densité des ensembles sous-analytiques, Ann. Inst. Fourier, Volume 39 (1989) no. 3, pp. 753-771 | DOI | Numdam | MR | Zbl

[29] Loi, Ta Lê Whitney stratification of sets definable in the structure exp , Singularities and differential equations. Proceedings of a symposium, Warsaw, Poland, Polish Academy of Sciences, 1996, pp. 401-409 | Zbl

[30] Loi, Ta Lê Thom stratifications for functions definable in o-minimal structures on (R,+,·), C. R. Math. Acad. Sci. Paris, Volume 324 (1997) no. 12, pp. 1391-1394 | DOI | MR | Zbl

[31] Loi, Ta Lê Verdier and strict Thom stratifications in o-minimal structures, Ill. J. Math., Volume 42 (1998) no. 2, pp. 347-356 | MR | Zbl

[32] Loi, Ta Lê; Zaharia, Alexandru Bifurcation sets of functions definable in o-minimal structures, Ill. J. Math., Volume 42 (1998) no. 3, pp. 449-457 | MR | Zbl

[33] Łojasiewicz, S. Ensembles semi-analytiques (1965) (preprint IHÉS, https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf)

[34] Némethi, András; Zaharia, Alexandru On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 4, pp. 681-689 | DOI | MR | Zbl

[35] Nguyen, Nhan; Trivedi, Saurabh; Trotman, David A geometric proof of the existence of definable Whitney stratifications, Ill. J. Math., Volume 58 (2014) no. 2, pp. 381-389 | MR | Zbl

[36] Nguyen, Nhan; Valette, Guillaume Whitney stratifications and the continuity of local Lipschitz–Killing curvatures, Ann. Inst. Fourier, Volume 68 (2018) no. 5, pp. 2253-2276 | DOI | Numdam | MR | Zbl

[37] Parusiński, Adam On the bifurcation set of complex polynomial with isolated singularities at infinity, Compos. Math., Volume 97 (1995) no. 3, pp. 369-384 | Numdam | MR | Zbl

[38] Pham, Frédéric La descente des cols par les onglets de Lefschetz, avec vues sur Gauss–Manin, Differential systems and singularities (Luminy, 1983) (Astérisque), Société Mathématique de France, 1985 no. 130, pp. 11-47 | Numdam | MR | Zbl

[39] Rabier, Patrick J. Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. Math., Volume 146 (1997) no. 3, pp. 647-691 | DOI | MR | Zbl

[40] Siersma, Dirk; Tibăr, Mihai Singularities at infinity and their vanishing cycles, Duke Math. J., Volume 80 (1995) no. 3, pp. 771-783 | DOI | MR | Zbl

[41] Teissier, Bernard Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972) (Astérisque), Volume 7 et 8, Société Mathématique de France, 1973, pp. 285-362 | Numdam | MR | Zbl

[42] Teissier, Bernard Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces, Invent. Math., Volume 40 (1977) no. 3, pp. 267-292 | DOI | MR | Zbl

[43] Teissier, Bernard Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981) (Lecture Notes in Mathematics), Volume 961, Springer, 1982, pp. 314-491 | DOI | MR | Zbl

[44] Thom, René Ensembles et morphismes stratifiés, Bull. Am. Math. Soc., Volume 75 (1969), pp. 240-284 | DOI | MR | Zbl

[45] Tibăr, Mihai Asymptotic equisingularity and topology of complex hypersurfaces, Int. Math. Res. Not. (1998) no. 18, pp. 979-990 | DOI | MR | Zbl

[46] Tibăr, Mihai Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) (London Mathematical Society Lecture Note Series), Volume 263, Cambridge University Press, 1999, pp. xx, 249-264 | DOI | MR | Zbl

[47] Vui, Hà Huy; Lê Dũng Tráng Sur la topologie des polynômes complexes, Acta Math. Vietnam., Volume 9 (1984) no. 1, pp. 21-32 | MR | Zbl

[48] Whitney, Hassler Tangents to an analytic variety, Ann. Math., Volume 81 (1965), pp. 496-549 | DOI | MR | Zbl

Cited by Sources: