Fix an o-minimal structure expanding the ordered field of real numbers. Let be a definable family of closed subsets of whose total space is a closed connected definable sub-manifold of . Let be the restriction of the projection to the second factor.
After defining , the set of generalized critical values of , showing that they are closed and definable of positive codimension in , contain the bifurcation values of and are stable under generic plane sections, we prove that all the Lipschitz–Killing curvature densities at infinity are continuous functions over . When is a definable hypersurface of , we further obtain that the symmetric principal curvature densities at infinity are continuous functions over .
On fixe une structure o-minimale qui étend le corps ordonné des nombres réels. Soit une famille définissable de sous-ensembles fermés de dont l’espace total est une sous-variété définissable connexe et fermée de de classe . Soit la restriction de la projection sur le second facteur.
Après avoir défini , l’ensemble des valeurs critiques généralisées de , montré qu’elles forment un sous-ensemble définissable fermé de codimension non-nulle de , contiennent les valeurs de bifurcations de et sont stables par section plane générique, nous montrons que toutes les densités à l’infini des courbures de Lipschitz–Killing sont des fonctions continues sur . Quand est une hypersurface définissable de de classe , nous obtenons de plus que les densités à l’infini des courbures symétriques principales sont des fonctions continues sur .
Revised:
Accepted:
Online First:
Keywords: Real equi-singularity, Lipschitz–Killing curvatures, the Malgrange–Rabier condition.
Mot clés : Équisingularité réelle, courbures de Lipschitz–Killing, condition de Malgrange–Rabier.
@unpublished{AIF_0__0_0_A88_0, author = {Dutertre, Nicolas and Grandjean, Vincent}, title = {Equi-singularity of real families and {Lipschitz{\textendash}Killing} curvature densities at infinity}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3607}, language = {en}, note = {Online first}, }
TY - UNPB AU - Dutertre, Nicolas AU - Grandjean, Vincent TI - Equi-singularity of real families and Lipschitz–Killing curvature densities at infinity JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3607 LA - en ID - AIF_0__0_0_A88_0 ER -
%0 Unpublished Work %A Dutertre, Nicolas %A Grandjean, Vincent %T Equi-singularity of real families and Lipschitz–Killing curvature densities at infinity %J Annales de l'Institut Fourier %D 2024 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3607 %G en %F AIF_0__0_0_A88_0
Dutertre, Nicolas; Grandjean, Vincent. Equi-singularity of real families and Lipschitz–Killing curvature densities at infinity. Annales de l'Institut Fourier, Online first, 45 p.
[1] Regular stratification of subanalytic sets, Bull. Lond. Math. Soc., Volume 25 (1993) no. 1, pp. 7-16 | DOI | MR | Zbl
[2] Integral geometry of tame sets, Geom. Dedicata, Volume 82 (2000) no. 1-3, pp. 285-323 | DOI | MR | Zbl
[3] Équisingularité réelle: nombres de Lelong et images polaires, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 6, pp. 757-788 | DOI | Numdam | MR | Zbl
[4] Équisingularité réelle. II. Invariants locaux et conditions de régularité, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008) no. 2, pp. 221-269 | DOI | Numdam | MR | Zbl
[5] An introduction to o-minimal geometry, Dottorato di Ricerca in Mathematica, Dip. Mat. Univ. Pisa, Instituti Editoriali e Poligrafici Internazionali, 2000
[6] Valeurs critiques asymptotiques d’une fonction définissable dans une structure o-minimale, Ann. Pol. Math., Volume 75 (2000) no. 1, pp. 35-45 | DOI | MR | Zbl
[7] A gradient inequality at infinity for tame functions, Rev. Mat. Complut., Volume 18 (2005) no. 2, pp. 493-501 | DOI | MR | Zbl
[8] On gradient at infinity of semialgebraic functions, Ann. Pol. Math., Volume 87 (2005), pp. 39-49 | DOI | MR | Zbl
[9] Ensembles sous-analytiques à la polonaise. Avec une introduction aux fonctions et ensembles analytiques, Travaux en Cours, 69, Hermann, 2007 | Zbl
[10] Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol., Volume 5 (2012) no. 2, pp. 323-340 | DOI | MR | Zbl
[11] Lipschitz continuity of tangent directions at infinity, Bull. Sci. Math., Volume 182 (2023), 103223, 27 pages | DOI | MR | Zbl
[12] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998, x+180 pages | DOI | MR | Zbl
[13] Geometric categories and o-minimal structures, Duke Math. J., Volume 84 (1996) no. 2, pp. 497-540 | DOI | MR | Zbl
[14] Geometrical and topological properties of real polynomial fibres, Geom. Dedicata, Volume 105 (2004), pp. 43-59 | DOI | MR | Zbl
[15] A Gauss-Bonnet formula for closed semi-algebraic sets, Adv. Geom., Volume 8 (2008) no. 1, pp. 33-51 | DOI | MR | Zbl
[16] Euler characteristic and Lipschitz–Killing curvatures of closed semi-algebraic sets, Geom. Dedicata, Volume 158 (2012), pp. 167-189 | DOI | MR | Zbl
[17] Gauss–Kronecker curvature and equisingularity at infinity of definable families, Asian J. Math., Volume 25 (2021) no. 6, pp. 815-839 | DOI | MR | Zbl
[18] Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 29-55 | MR | Zbl
[19] Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compos. Math., Volume 119 (1999) no. 2, pp. 157-167 | DOI | MR | Zbl
[20] On the total curvatures of a tame function, Bull. Braz. Math. Soc. (N.S.), Volume 39 (2008) no. 4, pp. 515-535 | DOI | MR | Zbl
[21] Stratification and flatness, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff, Alphen aan den Rijn (1977), pp. 199-265 | MR | Zbl
[22] On the generalized critical values of a polynomial mapping, Manuscr. Math., Volume 110 (2003) no. 2, pp. 145-157 | DOI | MR | Zbl
[23] On asymptotic critical values and the Rabier theorem, Geometric singularity theory (Banach Center Publications), Volume 65, Polish Academy of Sciences, 2004, pp. 125-133 | DOI | MR | Zbl
[24] Quantitative generalized Bertini–Sard theorem for smooth affine varieties, Discrete Comput. Geom., Volume 34 (2005) no. 4, pp. 659-678 | DOI | MR | Zbl
[25] On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier, Volume 48 (1998) no. 3, pp. 769-783 | DOI | Numdam | MR | Zbl
[26] Semialgebraic Sard theorem for generalized critical values, J. Differ. Geom., Volume 56 (2000) no. 1, pp. 67-92 | DOI | MR | Zbl
[27] -stratification of subanalytic functions and the Łojasiewicz inequality, C. R. Math. Acad. Sci. Paris, Volume 318 (1994) no. 2, pp. 129-133 | MR | Zbl
[28] Densité des ensembles sous-analytiques, Ann. Inst. Fourier, Volume 39 (1989) no. 3, pp. 753-771 | DOI | Numdam | MR | Zbl
[29] Whitney stratification of sets definable in the structure , Singularities and differential equations. Proceedings of a symposium, Warsaw, Poland, Polish Academy of Sciences, 1996, pp. 401-409 | Zbl
[30] Thom stratifications for functions definable in o-minimal structures on , C. R. Math. Acad. Sci. Paris, Volume 324 (1997) no. 12, pp. 1391-1394 | DOI | MR | Zbl
[31] Verdier and strict Thom stratifications in o-minimal structures, Ill. J. Math., Volume 42 (1998) no. 2, pp. 347-356 | MR | Zbl
[32] Bifurcation sets of functions definable in o-minimal structures, Ill. J. Math., Volume 42 (1998) no. 3, pp. 449-457 | MR | Zbl
[33] Ensembles semi-analytiques (1965) (preprint IHÉS, https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf)
[34] On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 4, pp. 681-689 | DOI | MR | Zbl
[35] A geometric proof of the existence of definable Whitney stratifications, Ill. J. Math., Volume 58 (2014) no. 2, pp. 381-389 | MR | Zbl
[36] Whitney stratifications and the continuity of local Lipschitz–Killing curvatures, Ann. Inst. Fourier, Volume 68 (2018) no. 5, pp. 2253-2276 | DOI | Numdam | MR | Zbl
[37] On the bifurcation set of complex polynomial with isolated singularities at infinity, Compos. Math., Volume 97 (1995) no. 3, pp. 369-384 | Numdam | MR | Zbl
[38] La descente des cols par les onglets de Lefschetz, avec vues sur Gauss–Manin, Differential systems and singularities (Luminy, 1983) (Astérisque), Société Mathématique de France, 1985 no. 130, pp. 11-47 | Numdam | MR | Zbl
[39] Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. Math., Volume 146 (1997) no. 3, pp. 647-691 | DOI | MR | Zbl
[40] Singularities at infinity and their vanishing cycles, Duke Math. J., Volume 80 (1995) no. 3, pp. 771-783 | DOI | MR | Zbl
[41] Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972) (Astérisque), Volume 7 et 8, Société Mathématique de France, 1973, pp. 285-362 | Numdam | MR | Zbl
[42] Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces, Invent. Math., Volume 40 (1977) no. 3, pp. 267-292 | DOI | MR | Zbl
[43] Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981) (Lecture Notes in Mathematics), Volume 961, Springer, 1982, pp. 314-491 | DOI | MR | Zbl
[44] Ensembles et morphismes stratifiés, Bull. Am. Math. Soc., Volume 75 (1969), pp. 240-284 | DOI | MR | Zbl
[45] Asymptotic equisingularity and topology of complex hypersurfaces, Int. Math. Res. Not. (1998) no. 18, pp. 979-990 | DOI | MR | Zbl
[46] Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) (London Mathematical Society Lecture Note Series), Volume 263, Cambridge University Press, 1999, pp. xx, 249-264 | DOI | MR | Zbl
[47] Sur la topologie des polynômes complexes, Acta Math. Vietnam., Volume 9 (1984) no. 1, pp. 21-32 | MR | Zbl
[48] Tangents to an analytic variety, Ann. Math., Volume 81 (1965), pp. 496-549 | DOI | MR | Zbl
Cited by Sources: