We study stability of the sharp spectral gap bounds for metric-measure spaces satisfying a curvature bound. Our main result, new even in the smooth setting, is a sharp quantitative estimate showing that if the spectral gap of an space is almost minimal, then the pushforward of the measure by an eigenfunction associated with the spectral gap is close to a Beta distribution. The proof combines estimates on the eigenfunction obtained via a new -functional inequality for RCD spaces with Stein’s method for distribution approximation. We also derive analogous, almost sharp, estimates for infinite and negative values of the dimension parameter.
Nous étudions la stabilité du trou spectral pour des espaces métriques mesurés vérifiant un critère de courbure dimension. Notre résultat principal, nouveau même dans le cadre d’un espace lisse, est une estimation quantitative montrant que si le trou spectral d’un espace est presque minimal alors l’image par la fonction propre associée au trou spectral de la mesure de référence est proche d’une loi Beta. La preuve combine des estimations de la fonction propre par le biais d’une nouvelle inégalité fonctionnelle de type dans un espace RCD et la méthode de Stein pour comparer des lois. Nous obtenons aussi des bornes presque optimales pour des espaces ayant une dimension intrinsèque infinie ou bien négative.
Revised:
Accepted:
Online First:
Keywords: Spectral gap, Poincaré inequalities, RCD spaces, Curvature-dimension condition, Stein method.
Mot clés : Trou spectral, inégalité de Poincaré, espaces RCD, condition de courbure-dimension, méthode de Stein.
@unpublished{AIF_0__0_0_A89_0, author = {Fathi, Max and Gentil, Ivan and Serres, Jordan}, title = {Stability estimates for the sharp spectral gap bound under a curvature-dimension condition}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3608}, language = {en}, note = {Online first}, }
TY - UNPB AU - Fathi, Max AU - Gentil, Ivan AU - Serres, Jordan TI - Stability estimates for the sharp spectral gap bound under a curvature-dimension condition JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3608 LA - en ID - AIF_0__0_0_A89_0 ER -
%0 Unpublished Work %A Fathi, Max %A Gentil, Ivan %A Serres, Jordan %T Stability estimates for the sharp spectral gap bound under a curvature-dimension condition %J Annales de l'Institut Fourier %D 2024 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3608 %G en %F AIF_0__0_0_A89_0
Fathi, Max; Gentil, Ivan; Serres, Jordan. Stability estimates for the sharp spectral gap bound under a curvature-dimension condition. Annales de l'Institut Fourier, Online first, 35 p.
[1] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Volume 195 (2014) no. 2, pp. 289-391 | DOI | MR | Zbl
[2] Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR | Zbl
[3] Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., Volume 43 (2015) no. 1, pp. 339-404 | DOI | MR | Zbl
[4] Metrics of positive Ricci curvature with large diameter, Manuscr. Math., Volume 68 (1990) no. 4, pp. 405-415 | DOI | MR | Zbl
[5] Pincement sur le spectre et le volume en courbure de Ricci positive, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 3, pp. 387-405 | DOI | Numdam | MR | Zbl
[6] Inégalités de Sobolev pour un semi-groupe symétrique, C. R. Math. Acad. Sci. Paris, Volume 301 (1985) no. 8, pp. 411-413 | MR | Zbl
[7] Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | DOI | MR | Zbl
[8] Sharp Beckner-type inequalities for Cauchy and spherical distributions, Stud. Math., Volume 251 (2020) no. 3, pp. 219-245 | DOI | MR | Zbl
[9] Pincement spectral en courbure de Ricci positive, Comment. Math. Helv., Volume 82 (2007) no. 2, pp. 323-352 | DOI | MR | Zbl
[10] Stability of eigenvalues and observable diameter in spaces, J. Geom. Anal., Volume 32 (2022) no. 11, 270, 38 pages | DOI | MR | Zbl
[11] Stratified spaces and synthetic Ricci curvature bounds, Ann. Inst. Fourier, Volume 71 (2021) no. 1, pp. 123-173 | DOI | Numdam | MR | Zbl
[12] Poincaré inequality and the convergence of semi-groups, Electron. Commun. Probab., Volume 15 (2010), pp. 270-280 | DOI | MR | Zbl
[13] Quantitative Obata’s Theorem (2022) (https://arxiv.org/abs/1910.06637)
[14] A short survey of Stein’s method, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. IV, Kyung Moon Sa, 2014, pp. 1-24 | MR | Zbl
[15] Eigenvalue comparison theorems and its geometric applications, Math. Z., Volume 143 (1975) no. 3, pp. 289-297 | DOI | MR | Zbl
[16] An eigenvalue pinching theorem, Invent. Math., Volume 68 (1982) no. 2, pp. 253-256 | DOI | MR | Zbl
[17] Stein’s method of exchangeable pairs for the beta distribution and generalizations, Electron. J. Probab., Volume 20 (2015), 109, 34 pages | DOI | MR | Zbl
[18] On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl
[19] Rigidity of cones with bounded Ricci curvature, J. Eur. Math. Soc., Volume 23 (2021) no. 1, pp. 219-235 | DOI | MR | Zbl
[20] Sharp growth of the Ornstein–Uhlenbeck operator on Gaussian tail spaces, Isr. J. Math., Volume 253 (2023) no. 1, pp. 469-485 | DOI | MR | Zbl
[21] A family of Beckner inequalities under various curvature-dimension conditions, Bernoulli, Volume 27 (2021) no. 2, pp. 751-771 | DOI | MR | Zbl
[22] Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc., Volume 111 (2015) no. 5, pp. 1071-1129 | DOI | MR | Zbl
[23] Stein’s method for the beta distribution and the Pólya–Eggenberger urn, J. Appl. Probab., Volume 50 (2013) no. 4, pp. 1187-1205 | DOI | MR | Zbl
[24] Bakry–Émery conditions on almost smooth metric measure spaces, Anal. Geom. Metr. Spaces, Volume 6 (2018) no. 1, pp. 129-145 | DOI | MR | Zbl
[25] Sphere theorems for RCD and stratified spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 22 (2021) no. 2, pp. 903-923 | DOI | MR | Zbl
[26] Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes, Ann. Inst. Fourier, Volume 33 (1983) no. 2, pp. 151-165 | DOI | Numdam | MR | Zbl
[27] Sharp spectral gaps on metric measure spaces, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 1, 14, 14 pages | DOI | MR | Zbl
[28] Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl., Volume 103 (2015) no. 5, pp. 1228-1275 | DOI | MR | Zbl
[29] Obata’s rigidity theorem for metric measure spaces, Anal. Geom. Metr. Spaces, Volume 3 (2015) no. 1, pp. 278-295 | DOI | MR | Zbl
[30] Needle decompositions in Riemannian geometry, Memoirs of the American Mathematical Society, 249, American Mathematical Society, 2017 no. 1180, v+77 pages | DOI | MR | Zbl
[31] Brascamp–Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal., Volume 27 (2017) no. 2, pp. 1680-1702 | DOI | MR | Zbl
[32] Poincaré and Brunn–Minkowski inequalities on the boundary of weighted Riemannian manifolds, Am. J. Math., Volume 140 (2018) no. 5, pp. 1147-1185 | DOI | MR | Zbl
[33] Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[34] On Riemannian manifolds with positive weighted Ricci curvature of negative effective dimension, Kyushu J. Math., Volume 73 (2019) no. 1, pp. 205-218 | DOI | MR | Zbl
[35] On the approximate normality of eigenfunctions of the Laplacian, Trans. Am. Math. Soc., Volume 361 (2009) no. 10, pp. 5377-5399 | DOI | MR | Zbl
[36] Nonlinear spectral calculus and super-expanders, Publ. Math., Inst. Hautes Étud. Sci., Volume 119 (2014), pp. 1-95 | DOI | Numdam | MR | Zbl
[37] Transformations de Riesz pour les lois gaussiennes, Seminar on probability, XVIII (Lecture Notes in Mathematics), Volume 1059, Springer, 1984, pp. 179-193 | DOI | Numdam | MR | Zbl
[38] Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension, Trans. Am. Math. Soc., Volume 369 (2017) no. 5, pp. 3605-3637 | DOI | MR | Zbl
[39] Remarks on non linear type and Pisier’s inequality, J. Reine Angew. Math., Volume 552 (2002), pp. 213-236 | DOI | MR | Zbl
[40] Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, Volume 14 (1962), pp. 333-340 | DOI | MR | Zbl
[41] -convexity and the curvature-dimension condition for negative , J. Geom. Anal., Volume 26 (2016) no. 3, pp. 2067-2096 | DOI | MR | Zbl
[42] On eigenvalue pinching in positive Ricci curvature, Invent. Math., Volume 138 (1999) no. 1, pp. 1-21 | DOI | MR | Zbl
[43] The sharp Sobolev inequality on metric measure spaces with lower Ricci curvature bounds, Potential Anal., Volume 43 (2015) no. 3, pp. 513-529 | DOI | MR | Zbl
[44] Fundamentals of Stein’s method, Probab. Surv., Volume 8 (2011), pp. 210-293 | DOI | MR | Zbl
[45] Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in metric measure spaces, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 4, pp. 1641-1661 | DOI | MR | Zbl
[46] Local Poincaré inequalities in non-negative curvature and finite dimension, J. Funct. Anal., Volume 198 (2003) no. 1, pp. 197-228 | DOI | MR | Zbl
[47] A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, University of California Press (1972), pp. 583-602 | MR | Zbl
[48] Approximate computation of expectations, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 7, Institute of Mathematical Statistics, 1986, iv+164 pages | DOI | MR | Zbl
[49] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl
[50] On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl
Cited by Sources: