Branching of unitary O(1,n+1)-representations with non-trivial (đ”€,K)-cohomology
Annales de l'Institut Fourier, Volume 74 (2024) no. 6, pp. 2331-2377.

Let G=O(1,n+1) with maximal compact subgroup K and let Π be a unitary irreducible representation of G with non-trivial (đ”€,K)-cohomology. Then Π occurs inside a principal series representation of G, induced from the O(n)-representation ⋀ p (ℂ n ) and characters of a minimal parabolic subgroup of G at the limit of the complementary series. Considering the subgroup G â€Č =O(1,n) of G with maximal compact subgroup K â€Č , we prove branching laws and explicit Plancherel formulas for the restrictions to G â€Č of all unitary representations occurring in such principal series, including the complementary series, all unitary G-representations with non-trivial (đ”€,K)-cohomology and further relative discrete series representations in the cases p=0,n. Discrete spectra are constructed explicitly as residues of G â€Č -intertwining operators which resemble the Fourier transforms on vector bundles over the Riemannian symmetric space G â€Č /K â€Č .

Soient G=O(1,n+1), K un sous-groupe compact maximal de G et Π une reprĂ©sentation unitaire irrĂ©ductible de G possĂ©dant une (đ”€,K)-cohomologie non triviale. Alors Π apparaĂźt comme une sous-reprĂ©sentation d’une sĂ©rie principale de G, induite depuis la reprĂ©sentation de O(n) sur ⋀ p (ℂ n ) et un caractĂšre d’un sous-groupe parabolique maximal de G Ă  la limite de la sĂ©rie complĂ©mentaire. En considĂ©rant le sous-groupe G â€Č =O(1,n) de G ayant un sous-groupe compact maximal K â€Č , nous prouvons des lois de branchement et des formules de Plancherel explicites pour la restriction Ă  G â€Č de toutes les reprĂ©sentations unitaires apparaissant dans de telles sĂ©ries principales. Ceci inclut la sĂ©rie complĂ©mentaire, toutes les reprĂ©sentations unitaires de G ayant une (đ”€,K)-cohomologie non triviale, et d’autres reprĂ©sentations de la sĂ©rie discrĂšte relative dans les cas p=0,n. Les spectres discrets sont construits explicitement en tant que rĂ©sidus d’opĂ©rateurs d’entrelacement qui ressemblent Ă  la transformĂ©e de Fourier pour des fibrĂ©s vectoriels sur l’espace symĂ©trique riemannien G â€Č /K â€Č .

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3622
Classification: 22E45, 22E46
Keywords: Real reductive groups, unitary representations, branching laws, direct integral, symmetry breaking operators.
Mot clés : Groupes réductif réels, représentations unitaires, lois de branchement, intégrale directe, opérateurs de brisures de symétries.

Weiske, Clemens 1

1 Mathematical Sciences, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2024__74_6_2331_0,
     author = {Weiske, Clemens},
     title = {Branching of unitary $\mathrm{O}(1,n+1)$-representations with non-trivial $(\mathfrak{g},K)$-cohomology},
     journal = {Annales de l'Institut Fourier},
     pages = {2331--2377},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {6},
     year = {2024},
     doi = {10.5802/aif.3622},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3622/}
}
TY  - JOUR
AU  - Weiske, Clemens
TI  - Branching of unitary $\mathrm{O}(1,n+1)$-representations with non-trivial $(\mathfrak{g},K)$-cohomology
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 2331
EP  - 2377
VL  - 74
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3622/
DO  - 10.5802/aif.3622
LA  - en
ID  - AIF_2024__74_6_2331_0
ER  - 
%0 Journal Article
%A Weiske, Clemens
%T Branching of unitary $\mathrm{O}(1,n+1)$-representations with non-trivial $(\mathfrak{g},K)$-cohomology
%J Annales de l'Institut Fourier
%D 2024
%P 2331-2377
%V 74
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3622/
%R 10.5802/aif.3622
%G en
%F AIF_2024__74_6_2331_0
Weiske, Clemens. Branching of unitary $\mathrm{O}(1,n+1)$-representations with non-trivial $(\mathfrak{g},K)$-cohomology. Annales de l'Institut Fourier, Volume 74 (2024) no. 6, pp. 2331-2377. doi : 10.5802/aif.3622. https://aif.centre-mersenne.org/articles/10.5802/aif.3622/

[1] Borel, Armand; Wallach, Nolan R. Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, 94, Princeton University Press, Princeton, NJ, 1980, xvii+388 pages | MR | Zbl

[2] Branson, Thomas; Ólafsson, Gestur; Ørsted, Bent Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal., Volume 135 (1996) no. 1, pp. 163-205 | DOI | MR | Zbl

[3] Burger, M.; Sarnak, P. Ramanujan duals. II, Invent. Math., Volume 106 (1991) no. 1, pp. 1-11 | DOI | MR | Zbl

[4] Camporesi, Roberto The spherical transform for homogeneous vector bundles over Riemannian symmetric spaces, J. Lie Theory, Volume 7 (1997) no. 1, pp. 29-60 | MR | Zbl

[5] Dong, Chao-Ping Unitary representations with non-zero Dirac cohomology for complex E 6 , Forum Math., Volume 31 (2019) no. 1, pp. 69-82 | DOI | MR | Zbl

[6] Frahm, Jan On the direct integral decomposition in branching laws for real reductive groups, J. Lie Theory, Volume 32 (2022) no. 1, pp. 191-196 | MR | Zbl

[7] Frahm, Jan; Weiske, Clemens Symmetry breaking operators for real reductive groups of rank one, J. Funct. Anal., Volume 279 (2020) no. 5, 108568, 70 pages | DOI | MR | Zbl

[8] Johnson, Kenneth D.; Wallach, Nolan R. Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 137-173 | DOI | MR | Zbl

[9] Kobayashi, Toshiyuki A program for branching problems in the representation theory of real reductive groups, Representations of reductive groups. In Honor of the 60th Birthday of David A. Vogan, Jr. (Progr. Math.), Volume 312, BirkhÀuser/Springer, Cham, 2015, pp. 277-322 | DOI | MR | Zbl

[10] Kobayashi, Toshiyuki Branching laws of unitary representations associated to minimal elliptic orbits for indefinite orthogonal group O(p,q), Adv. Math., Volume 388 (2021), 107862, 38 pages | DOI | MR | Zbl

[11] Kobayashi, Toshiyuki; Speh, Birgit Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc., 238, American Mathematical Society, Providence, RI, 2015 no. 1126, v+110 pages | DOI | MR | Zbl

[12] Kobayashi, Toshiyuki; Speh, Birgit Symmetry breaking for representations of rank one orthogonal groups II, Lecture Notes in Mathematics, 2234, Springer, Singapore, 2018, xv+342 pages | DOI | MR | Zbl

[13] Möllers, Jan; Oshima, Yoshiki Restriction of most degenerate representations of O(1,N) with respect to symmetric pairs, J. Math. Sci. Univ. Tokyo, Volume 22 (2015) no. 1, pp. 279-338 | MR | Zbl

[14] Oda, Hiroshi; Shimeno, Nobukazu Spherical functions of small K-types, Geometric and harmonic analysis on homogeneous spaces (Springer Proc. Math. Stat.), Volume 290, Springer, Cham, 2019, pp. 121-168 | DOI | MR | Zbl

[15] Ørsted, Bent; Speh, Birgit Branching laws for discrete series of some affine symmetric spaces, Pure Appl. Math. Q., Volume 17 (2021) no. 4, pp. 1291-1320 | DOI | MR | Zbl

[16] Speh, B.; Zhang, G. Restriction to symmetric subgroups of unitary representations of rank one semisimple Lie groups, Math. Z., Volume 283 (2016) no. 1-2, pp. 629-647 | DOI | MR | Zbl

[17] Speh, Birgit Unitary representations of Gl(n,R) with nontrivial (đ”€,K)-cohomology, Invent. Math., Volume 71 (1983) no. 3, pp. 443-465 | DOI | MR | Zbl

[18] Speh, Birgit; Venkataramana, T. N. Discrete components of some complementary series, Forum Math., Volume 23 (2011) no. 6, pp. 1159-1187 | DOI | MR | Zbl

[19] Sun, Binyong; Zhu, Chen-Bo Multiplicity one theorems: the Archimedean case, Ann. Math. (2), Volume 175 (2012) no. 1, pp. 23-44 | DOI | MR | Zbl

Cited by Sources: