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EQUI-SINGULARITY OF REAL FAMILIES AND
LIPSCHITZ–KILLING CURVATURE DENSITIES AT

INFINITY

by Nicolas DUTERTRE & Vincent GRANDJEAN (*)

Abstract. — Fix an o-minimal structure expanding the ordered field of real
numbers. Let (Wy)y∈Rs be a definable family of closed subsets of Rn whose total
space W = ∪yWy × y is a closed connected C2 definable sub-manifold of Rn ×Rs.
Let φ : W → Rs be the restriction of the projection to the second factor.

After defining K(φ), the set of generalized critical values of φ, showing that
they are closed and definable of positive codimension in Rs, contain the bifurca-
tion values of φ and are stable under generic plane sections, we prove that all the
Lipschitz–Killing curvature densities at infinity y 7→ κ∞

i (Wy) are continuous func-
tions over Rs \K(φ). When W is a C2 definable hypersurface of Rn ×Rs, we further
obtain that the symmetric principal curvature densities at infinity y 7→ σ∞

i (Wy)
are continuous functions over Rs \ K(φ).

Résumé. — On fixe une structure o-minimale qui étend le corps ordonné des
nombres réels. Soit (Wy)y∈Rs une famille définissable de sous-ensembles fermés de
Rn dont l’espace total W = ∪yWy × y est une sous-variété définissable connexe et
fermée de Rn × Rs de classe C2. Soit φ : W → Rs la restriction de la projection
sur le second facteur.

Après avoir défini K(φ), l’ensemble des valeurs critiques généralisées de φ, mon-
tré qu’elles forment un sous-ensemble définissable fermé de codimension non-nulle
de Rs, contiennent les valeurs de bifurcations de φ et sont stables par section
plane générique, nous montrons que toutes les densités à l’infini des courbures de
Lipschitz–Killing y 7→ κ∞

i (Wy) sont des fonctions continues sur Rs \ K(φ). Quand
W est une hypersurface définissable de Rn × Rs de classe C2, nous obtenons de
plus que les densités à l’infini des courbures symétriques principales y 7→ σ∞

i (Wy)
sont des fonctions continues sur Rs \ K(φ).
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1. Introduction

Let (Wy)y∈P be a family of subsets of Rn or Cn with parameter space
P . This is the family of the (projections onto Rn or Cn of the) levels of the
projection φ of the total space of the family W := ∪y∈PWy × y onto the
parameter space

φ : W −→ P.

Assuming that φ is continuous, this family is locally trivial at c ∈ P if
φ induces a trivial topological fibre bundle structure over a neighbourhood
of c, with model fibre Wc for which φ is the projection-onto-the-base map-
ping. Similarly, a Ck mapping F : X → P , with k ⩾ 1, is locally trivial at
c ∈ P if it induces a Ck−1 trivial fibre bundle structure over a neighbour-
hood of c, with model fibre F−1(c). A proper and submersive F induces
a locally trivial fibre bundle over P , by Ehresmann’s Fibration Theorem
[18]. A value at which F is not locally trivial is a bifurcation value. Critical
values are bifurcation values.

Whenever the mapping or the family is rigid/regular in some explicit
sense, bifurcations values are rare, e.g. real and complex polynomial func-
tions admit finitely many bifurcation values [44]. Regular bifurcation values
are even rarer and are hard to detect. When X and P are affine spaces,
sufficient conditions for F or W to be locally trivial at a regular value
already exist. Among others are Malgrange–Rabier condition [26, 38, 39],
t-regularity [10, 40, 45, 46], ρ-regularity [10, 32, 34], spherical-ness at in-
finity [7, 8, 17]. Any such regularity condition at infinity at a given value
compels the behaviour at infinity of the nearby levels to be “tame”.

An interesting task, related to equi-singularity theory, is to find numerical
criteria characterizing these regularity conditions at infinity. For instance,
following Teissier’s works on plane sections and polar invariants [41, 42,
43], Tibăr produced, for each parameter t of a complex family of affine
hypersurfaces ({x ∈ Cn : F (x, t) = 0})t∈C, where F : Cn × C 7→ C is a
polynomial, a polar-like invariant vector (α∗(t)) with integer values [45],
whose local constancy at a value c is equivalent to t-regularity nearby c.
(See also [37, 47] for earlier special occurrences of equi-singularity numerical
criteria for complex polynomials.)

Possible avatars, in the real setting, of the previously mentioned local
(complex) polar invariants are integrals of Lipschitz–Killing curvatures.
Since in general such integrals, as functions over the parameters of a given
real family W , do not take only isolated values, we should instead look
for the continuity of such functions. A first, yet essential, step consists of
chasing sufficient conditions: Given R a regularity condition at infinity, can
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EQUI-SINGULARITY OF REAL FAMILIES 3

we produce a vector valued mapping, defined over the parameter space of
the family W , which would be continuous in a neighbourhood of a value c
once the family W would be R-regular at c?

Our approach for the results presented here feeds on two facts: (i) The
stability of t-regularity of complex polynomial functions by generic plane
sections [45]; (ii) The general results about Lipschitz–Killing
curvatures/measures of tame sets of the first named author [14, 15, 16]
rely heavily on generic plane sections. In this paper, we produce a vec-
tor valued mapping, with components built from Lipschitz–Killing curva-
tures/measures, and show it is continuous at any regular value which is
also Malgrange–Rabier regular.

We treat the more general context of definable families of subsets of Rn

whose total space is a closed sub-manifold. It is sufficient to work with a
connected total space, which we assume. Let be given an o-minimal struc-
ture expanding the ordered field of real numbers. Consider the following
C2 definable mapping:

φ : W −→ Rs, (x,y) 7−→ y

defined over the definable closed connected C2 sub-manifold W of Rn ×Rs

with dimW ⩾ s. Since, by definition φ−1(y) = Wy × y, we are interested
in the local triviality properties of the definable family (Wy)y∈Rs of closed
subsets of Rn nearby regular values (of φ). Passing to the graph of the
mapping F , the looked for properties for F are in a simple and explicit cor-
respondence with those of φ, as checked here. The choice of C2 is arbitrary.
Everything we will do have analogues in Ck-regularity, 2 ⩽ k ⩽ ∞.

The results of this paper are of two sorts: (I) those about Malgrange–
Rabier regularity condition (see Definition 6.1) later on shortened as (MR),
and (II) those about Lipschitz–Killing curvature densities at infinity.

(I) It is simpler to describe (MR)-regularity in the case of function (i.e.
s = 1): A value c is (MR)-regular for φ if there exists a positive
constant Mc such that for any sequence (wk)k of W such that
(i) |wk| → ∞, (ii) φ(wk) → c, then

k ≫ 1 =⇒ |wk| · |∇φ(wk)| ⩾Mc.

The set of critical values of φ is K0(φ) and that of non (MR)-regular
values is K∞(φ). We shall proof in this most general context the
following results:

Theorem I.
(1) K∞(φ) is definable;

TOME 0 (0), FASCICULE 0
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(2) K(φ) := K0(φ) ∪ K∞(φ) is closed, definable (Lemma 6.4) and of
positive codimension (Theorem 7.5);

(3) the family (Wy)y/∈K(φ) is C1 locally trivial at each of its point (The-
orem 8.2), from which we deduce Bif(φ) ⊂ K(φ) (Corollary 8.6);

(4) (MR)-condition at a regular value is stable by generic plane sections
(Theorem 11.2).

If all known occurrences of statements (1), (2) and (3) of Theorem I are
special cases of the present setting, point (4) is new in the real setting, and
outside the case of complex polynomial functions.

(II) Let Z be a closed connected C2 sub-manifold of Rn of dimension d
(equipped with the restriction of the Euclidean metric tensor). The
other objects we will consider are the Lipschitz–Killing curvature
densities at infinity of Z defined as

κ∞
i (Z) := lim

R→+∞

1
Rd−i

∫
Z∩Bn

R

Ki(Z,x) dx, for i = 0, . . . , d,

where Ki(Z,x) is the i-th Lipschitz–Killing curvature of Z at x.
Note that Ki(Z,x) = 0 if i is odd or ⩾ d + 1. When Z is the
hypersurface {f = 0}, oriented by −∇f |Z , let σZ

i (x) be the i-th
symmetric function of the principal curvatures of Z at x. We further
define the symmetric principal curvature densities at infinity of Z
as

σ∞
i (Z) := lim

R→+∞

1
Rn−1−i

∫
Z∩Bn

R

σZ
i (x) dx, 0 ⩽ i ⩽ n− 1.

When i is even 2σ∞
i (Z) = κ∞

i (Z), but when i is odd in general
σ∞

i (Z) is not identically null. Considering Corollary 8.3, we can
reduce to the case where Wy is connected for each y /∈ K(φ). A
concise way to present our main results Theorem 14.3 and Theo-
rem 16.2 is as follows:

Theorem II. — Assume that Wy is connected at each y /∈ K(φ). For
each i = 0, . . . , dimW − s, the function y 7→ κ∞

i (Wy) is continuous over
Rs \ K(φ). When the Wy’s are furthermore hypersurfaces, for each i =
0, . . . , n− 1, the function y 7→ σ∞

i (Wy) is continuous over Rs \K(φ).

Theorem II is the continuation of the results of the second named author
[20], stating that the following total Gauss–Kronecker curvature functions,
associated with a C2 definable function f : Rn → R, have at most finitely
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many discontinuities

y 7−→GK(y) :=
∫

f−1(y)
κy(x) dx, and y 7−→ |GK|(y) :=

∫
f−1(y)

|κy(x)| dx,

where κy := σ
f−1(y)
n−1 , and of our recent result [17], where continuity of

GK and |GK| is proved at any regular value at which the function is
also spherically regular at infinity. It is worth mentioning here the recent
paper [11] investigating sufficient conditions of equi-singularity at infinity
in terms of topological properties of set valued mappings over the levels
of the given mapping F . Theorems I and II are to be associated with the
results of [3, 4, 36] about the continuity of local Lipschitz–Killing invariants
along Whitney and Verdier strata of definable subsets.

The paper is organized as follows: Section 2 introduces notations and
a few reminders used in what follows. Section 3 lists a few facts about
definability in order to provide some exhaustive-ness. Section 4 to Sec-
tion 8 present material for Theorem I. We have given detailed proofs of
facts (1) to (3). Our treatment uses heavily the Rabier number (Defini-
tion 4.1), and Lemma 4.3 explains why dealing with families includes the
case of mappings. The proof of Theorem 8.2 following Rabier’s point of
view [39] is of interest in its own, and so is Remark 8.4. Section 9 will
briefly deal with a trivialisation result of the sub-level family associated
with a family of hypersurfaces (Proposition 9.1). Section 10 reviews in an
explicit fashion properties on the family of links at infinity, which is a cen-
tral tool to deal with the Lipschitz–Killing measures/curvatures. We give
also proofs of Proposition 10.2 and of the lesser known Proposition 10.3.
Section 11 takes care of point (4) of Theorem I. Theorem 11.2 is new and
is one of the two cornerstones over which will be established Theorem II.
Section 12 to Section 16 are devoted to present all the necessary material
around Lipschitz–Killing measures/curvatures to obtain Theorem II. The
second cornerstone needed to produce Theorem II is the Gauss–Bonnet
type Theorem 12.3 (from the first author [15, 16]).

2. Miscellaneous

Let R⩾0 := [0,+∞[ and R>0 := ]0,+∞[.
We denote by 0 the origin (or the null vector) of any vector space or

subspace of dimension at least two.
The Euclidean unit closed ball of Rq centred at the origin is Bq. If w is a

point of Rq, the Euclidean closed ball of radius r and centre w is Bq(w, r).
When w is just the origin we write simply Bq

r.

TOME 0 (0), FASCICULE 0



6 Nicolas DUTERTRE & Vincent GRANDJEAN

The Euclidean unit sphere of Rq centred at the origin is Sq−1. The Eu-
clidean sphere of radius r centred at the origin is Sq−1

r .
The Grassmann manifold of vector k-planes of Rq is G(k, q). We will

sometimes write Pq−1 for G(1, q). We will use the same notation P to
mean either a point of G(k, q), or the corresponding vector subspace of Rq.

Any real vector space Rq comes equipped with the Euclidean metric, and
associated scalar product ⟨−,−⟩ and norm | − |. Any vector subspace E of
Rq turns into an Euclidean space when restricting the Euclidean structure.
The unit sphere of E is S(E) and the orthogonal of E in Rq is E⊥.

Given a sequence (wk)k of Rq, we will write wk → ∞ to mean that
|wk| → +∞ as k goes to +∞.

Given any C1 sub-manifold S of the Euclidean space Rq, the tangent
bundle TS is a sub-vector bundle of TRq|S , therefore is equipped with the
restriction to TS of the Riemannian metric tensor over TRq|S .

Let X,Y be two connected C1 sub-manifolds of Rq. The pair (X,Y ) is
Whitney (a)-regular at the point y of Y , if (i) Y satisfies the frontier condi-
tion Y ⊂ clos(X) \X, and (ii) the following condition holds true: For any
sequence (xk)k of X such that xk → y and Txk

X → P ∈ G(dimX, q), we
have that TyY ⊂ P . Let f : X∪Y 7→ R be a continuous function such that
each restriction f |X and f |Y is C1. The function f satisfies Thom condition
(arel) at the point y of Y (also called Thom (arel)-regular) if the pair (X,Y )
is Whitney (a)-regular at y and the following conditions are verified: (i) the
functions f |X and f |Y have constant ranks, and (ii) For any sequence (xk)k

of X such that xk → y and kerDxk
(f |X) → T ∈ G(dimX−1, q), we have

that

kerDy(f |Y ) ⊂ T.

Let a ∈ R := [−∞,+∞]. Let f, g : (I, a) → R be two germs of real func-
tions at a, where I is any interval with non-empty interior whose frontier
in R contains a. We use the following notations:

(i) f ∼ g ⇐⇒ lim
a

f

g
∈ R∗,

(ii) f ≃ g ⇐⇒ lim
a

f

g
= 1,

(iii) |f | ≪ |g| ⇐⇒ lim
a

|f |
|g|

= 0.

If f, g : (I, a) → Rs, for s ⩾ 2, we will write

(iv) f ∼ g ⇐⇒ |f | ∼ |g|,
(v) f ≃ g ⇐⇒ |f | ≃ |g|.

ANNALES DE L’INSTITUT FOURIER



EQUI-SINGULARITY OF REAL FAMILIES 7

3. On o-minimal structures

We collect here a very few definitions and facts about o-minimal struc-
tures and definability we will use in the sequel of this paper (see [12, 13]
for a proper treatment). We adopt a point of view close to those of [6, 25].

An o-minimal structure M expanding the ordered field of real numbers
(R,+, · , >) is a collection (Mq)q∈N, where each Mq is a family of subsets
of Rq satisfying the following axioms:

(1) For each q ∈ N, the family Mq is a boolean sub-algebra of subsets
of Rq.

(2) For any pair of subsets A ∈ Mp and B ∈ Mq, then A×B ∈ Mp+q.
(3) Let π : Rq+1 → Rq be the projection on the first q factors. Given

any subset A of Mq+1, its projection π(A) is a subset lying in Mq.
(4) The algebraic subsets of Rq belong to Mq.
(5) The family M1 consists exactly of the finite unions of points and

intervals.

Those points imply that the smallest o-minimal structure is the structure
of the semi-algebraic subsets, thus contained in any other one.

Assume that such an o-minimal structure M is given for the rest of this
paper.

A subset A of Rq is a definable subset shortened as definable (in the
given o-minimal structure), if A ∈ Mq.

Let A be a subset of Rq, a mapping A 7→ Rr is definable if its graph is
a definable subset of Rq × Rr.

Let A be a definable subset of Rq and let B be a definable subset of A.
The pair (A,B) admits a definable Whitney (a)-regular Ck stratification,
namely the following result holds true:

Theorem (see for instance [9, 13, 33, 35, 48]). — For each positive inte-
ger k, there exists a finite partition of A into connected Ck sub-manifolds,
called strata with the following properties: (i) Each stratum is definable;
(ii) B is a union of strata; (iii) Each pair (X,Y ) such that dimX > dimY

either verifies the frontier condition Y ⊂ clos(X) \ X, or the intersection
Y ∩ clos(X) is empty; (iv) Each pair of strata (X,Y ) satisfying the frontier
condition is Whitney (a)-regular at each point of Y .

Let f : A → R be a definable mapping. Let B be a definable subset of
A. The function f admits a definable (arel)-regular Ck stratification, that
is the following statement holds true:

TOME 0 (0), FASCICULE 0
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Theorem (see for instance [1, 21, 27, 28, 30, 31]). — For each positive
integer k, there exists a Whitney (a)-regular Ck stratification of the pair
(A,B) satisfying the following additional property: (v) For each pair of
strata (X,Y ), the restriction f |X∪Y is (arel)-regular at every point of Y .

The notions of definability of subsets or mappings germ-ify along any
definable subset. In particular, the germ of a mapping (R,+∞) → Rs is
definable at +∞ if it admits a representative which is definable.

Let I, a as above. Let I+ be (I∩]a,+∞[, a) if a < +∞, or (R,+∞) when
a = +∞. Similarly let I− be (I∩] − ∞, a[, a) when a > −∞, or (R,−∞) if
a = −∞.

We would like to recall the following well known two elementary facts:
Let ε ∈ {+,−} be such that Iε is not empty. Let f : (Iε, a) → R be
definable.

(i) For every non-negative integer number k, there exists Uk an open
neighbourhood of a such that f admits a Ck representative Iε ∩
Uk 7→ R.

(ii) There exists U an open neighbourhood of a such that f admits a
monotonic representative Iε ∩ U 7→ R.

Let t 7→ γ(t) ∈ Rn be a mapping definable at +∞. The differential
mapping t 7→ γ′(t) ∈ Rn is also definable at +∞. We define

u(t) := γ(t)
|γ(t)| ∈ Sn−1, and L(t) := Rγ′(t) ∈ Pn−1

to be respectively the secant mapping and tangent direction mapping asso-
ciated with γ, both definable at +∞. Definability at +∞ guarantees that
the following limits exist

uγ := lim
t→+∞

u(t), and Lγ := lim
t→+∞

L(t).

Moreover the following very useful result holds true.

Lemma 3.1 ([6, Lemmas 2.5-7]).

(1) Lγ = Ruγ ;
(2) Assume furthermore that |γ(t)| = t for t large enough. Then

lim
t→+∞

γ′(t) = uγ .

In particular |γ′| is bounded.

We also recall the following:

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.2. — Let f : (R⩾0,+∞) → R>0 be the germ of a function
definable at +∞ such that f → 0 as t → +∞. The following limits hold
true

(i) lim
t→+∞

t · f ′(t) = 0, and

(ii) lim
t→+∞

t1+τ · f
′(t)
f(t) = −∞, ∀ τ > 0.

Proof. — We recall that ultimately a function definable at +∞ is mono-
tonic. In both cases an integrability argument near +∞ combined with
contradicting the desired statement yields the proof. □

Our Setting

Let W be a C2 connected and closed sub-manifold of Rn ×Rs, definable
in M. The restriction of the Euclidean metric onto TW induces a definable
C1 Riemannian metric over W . We further require that

dimW ⩾ s.

Let φ : W 7→ Rs be the restriction to W of the projection on Rs, thus φ is
a C2 and definable mapping.

4. Some elementary linear algebra

Let V be a real vector space of dimension q.
Let G be the union

⋃
k G(k, V ), the total Grassmann space of V .

We assume that V is equipped with a scalar product ⟨−,−⟩. Let | − |
be the associated norm. Any vector subspace E of V is equipped with the
restriction of the scalar product, to yield a scalar product on E. Let S(E)
be the unit sphere of E.

Let E be a vector subspace of V and let u be a unit vector of V . The
distance of u to E is defined as

δq(u, E) := max{|⟨u,v⟩| : v ∈ S(E⊥)}.

This function (u, E) 7→ δq(u, E) is semi-algebraic over S(V ) × G.
Let E,F be vector subspaces of V . The distance from E to F is defined as

δq(E,F ) := max{δq(u, F ) : u ∈ S(E)}.

TOME 0 (0), FASCICULE 0
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The function (E,F ) → δq(E,F ) is also semi-algebraic in its entries in G ×
G. It is not symmetric in E and F . Yet its restriction to G(k, V )×G(k, V )
yields a distance on G(k, V ).

Let L(p, q) be the space of linear mappings from Rp to Rq. It is equipped
with its Euclidean norm.

Let Σ(p, q) be the algebraic subset of L(p, q) consisting of all linear maps
that are not surjective.

For A a linear operator of L(p, q), let A∗ ∈ L(q, p) be the adjoint operator
of A.

Definition 4.1. — Let A ∈ L(p, q). The Rabier number of the operator
A is defined as

(4.1) ν(A) := inf
|φ|=1

|A∗(φ)|.

As can be seen in [22, 26, 39], we know the following result:

Proposition 4.2. — Let A ∈ L(p, q). We have

inf
|φ|=1

|A∗(φ)| = sup{r > 0 : Bq(0, r) ⊂ A · Bp(0, 1)} = dist(A,Σ(p, q)).

Let A be any linear map of L(p, q). Whenever the operator A is not
surjective, we get ν(A) = 0. For any real number λ we also get

ν(λA) = |λ|ν(A).

Let N(A) be the orthogonal space of kerA in Rp. Although obvious it is
worth singling out the following

(4.2) ν(A) = ν(A|N(A)) ⩾ ν(A|P )

for every subspace P of Rp.
In order to work with families rather than mappings, the following elemen-
tary result is key to this approach.

Lemma 4.3. — Let A ∈ L(p, q) and let V be the graph of A, subspace of
Rp ×Rq. Let φ : V → Rq be the restriction to V of the canonical projection
Rp × Rq → Rq.

(1) If ν(A) > 0, then

(4.3) ν(A) := min{|A · u| : u ∈ S(N(A))}.

(2) The following is true

(4.4) ν(φ) = ν(A)√
1 + ν(A)2

.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Point (1) is straightforward.
For point (2), observe that ν(φ) = 0 if and only if ν(A) = 0.

We thus assume that ν(A) is positive. Working with N(A) instead of Rp

does not change the value of ν(A). We can thus assume that V is the graph
of A|N(A).

Let us consider the following real algebraic subset of N(A)

SA := {u ∈ N(A) : |u|2 + |A · u|2 = 1}.

The subset SA is compact and does not contain 0. Consider the following
continuous semi-algebraic mapping

a : SA −→ R, u 7−→ |A · u|
|u|

.

Since the radial projection of SA over S(N(A)) is a homeomorphism, the
image of a is the interval [ν(A), ∥A∥]. For u ∈ SA we deduce that

|u| = 1√
1 + a(u)2

, and |Au| = a(u)√
1 + a(u)2

.

By definitions of φ and of ν(φ) we get

ν(φ) = min{|v| : (u,v) ∈ S(V )} = min{|A · u| : u ∈ SA}.

Since the function t 7→ t√
1+t2 is increasing, we obtain

ν(φ) = ν(A)√
1 + ν(A)2

. □

5. Blowing-up at infinity

We need to describe conveniently in our setting (and for our purposes)
a neighbourhood of infinity.

Let I := ]0,+∞[. Let M := I × Sn−1. Given the point m = (r,u) ∈
I × Sn−1, we observe that TmM = R × TuSn−1.

The spherical blowing-up of Rn at infinity is the following Nash diffeo-
morphism, defined as

β : M −→ Rn \ 0, m 7−→ x = u
r .

The mapping β provides a single chart to investigate the behaviour of any
mapping, with source a non-bounded domain of Rn, nearby the boundary
part of the domain lying at infinity.

TOME 0 (0), FASCICULE 0
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Let M := [0,+∞[×Sn−1. It is a semi-algebraic subset of R × Rn and is
a sub-manifold, with smooth and algebraic boundary

M∞ := 0 × Sn−1.

We compactify Rn as the Nash manifold with boundary Rn := M ⊔ 0 =
Rn ⊔ Sn−1 identifying Rn \ 0 with M via the mapping β. We furthermore
define

Ms := M × Rs, Ms := M × Rs, and M∞
s := M∞ × Rs.

Let G(k,Ms) be the Grassmann bundle of subspaces of rank k of TMs.
Let clos(Z) be the closure in Ms of the C1 connected definable sub-manifold
Z of Ms. Let

Z∞ := clos(Z) ∩ M∞
s .

Let g : Z → R be a definable C1 function. We define the relative tangent
bundle of g over clos(Z) as follows

Tg := clos{(z, Tzg) ∈ G(dimZ−1,Ms)|Z\crit(g)} ⊂ G(dimZ−1,Ms)|clos(Z),

where Tzg is the tangent space to the level of g through the point z. Note
that Tg is closed and definable in G(dimZ − 1,Ms). Let π : G(dimZ −
1,Ms) → Ms be the projection (z, T ) 7→ z on the base of the Grassmann
bundle. The fibre Tg,z of Tg over z ∈ Ms is the subset of G(dimZ−1, TzMs)
defined as

z × Tg,z := Tg ∩ π−1(z).

Definition 5.1. — The relative tangent bundle of g over clos(Z) at
infinity is defined as

T ∞
g := π−1(Z∞) ∩ Tg.

For any z ∈ Z∞, let (T ∞
g )z be the fibre of Tg above z.

Let rZ : Z → R be the C1 definable function given by the restriction of
r to Z, that is for z = (r,u,y) ∈ Ms we find rZ(z) = r.

The behaviour nearby Z∞ of the function rZ contains some information
about the accumulation of Z onto Z∞. The notion of t-regularity [40, 46] is
about the nature of the relative conormal space at the divisor at infinity of
a projective compactification of the graph of a complex or real polynomial
function. In our present and most general real and definable setting, the
analogue of the divisor at infinity would be the “boundary subset” Z∞.
Using the Rabier number, it is much clearer and easier to present our
avatar of the notion of t-regularity in terms of limits of tangent spaces (see
Definition 5.2). We introduce the following mapping

βs := β × IdRs : Ms −→ Rn × Rs.
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For any limit of tangent spaces T of (T ∞
rZ

)z, with z = (0,u, c), the projec-
tion of T onto Rs means the restriction to T of the projection of TzMs =
T(0,u)M × TcRs onto the second factor TcRs of this product.

Definition 5.2. — Let W be a closed connected definable C1 sub-
manifold of Rn × Rs of dimension d ⩾ s. Let Z := β−1

s (W ).
The subset W is t-regular at the value c if for any z ∈ Z∞ ∩ M × c and

any T ∈ T ∞
rZ ,z the projection mapping T → Rs is surjective.

If W is the graph of F : X → Rs, the mapping F is t-regular at the
value c if W is.

When working with a polynomial or semi-algebraic C1 mapping Rn 7→
Rs, observe that [46, Definition 2.10] and [10, Definition 2.5] are somehow
equivalent to our Definition 5.2.

Equipping [0,+∞[ and Sn−1 with their respective Euclidean metric, the
space M inherits this metric product structure, and so does Ms.
If m = (r,u, c) is any point of Ms then TmMs = R× TuSn−1 × TcRs. For
any given subspace T of TmM, let L : T 7→ Rs = TcRs be the projection
of T onto Rs. The Rabier number νs(L) of L is defined w.r.t the product
metric on Ms and the canonical one on Rs. Let πs(m) be the projection of
TmMs onto TcRs.

We get the following useful and quantified characterization of t-regularity.

Lemma 5.3. — The sub-manifold W = βs(Z) is t-regular at the regular
value c if and only if there exists νc > 0 such for every z ∈ Z∞ ∩ M∞ × c
and every T ∈ T ∞

rZ ,z we have

νs (πs(z)|T ) ⩾ νc.

Proof. — It is a straightforward consequence of the following ingredients:
Z∞ ∩M∞ ×c is definable and compact, the mapping z 7→ νs(πs(z)|TzrZ

) is
definable and continuous, the projection of (dimW − 1)-planes of Rn ×Rs

onto Rs is continuous, and the definition of t-regularity. □

6. Rabier number, Malgrange–Rabier condition

Let w := (x,y) be the Euclidean coordinates of Rn × Rs. Let W be a
closed connected definable C2 definable sub-manifold of Rn ×Rs of dimen-
sion d ⩾ s and let φ : W → Rs be the projection (x,y) 7→ y. We introduce
the following (see [26, 39]):
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14 Nicolas DUTERTRE & Vincent GRANDJEAN

Definition 6.1. — The mapping φ satisfies the Malgrange–Rabier con-
dition (MR) at the value c ∈ Rs if there exists a positive constant L such
that

(6.1) |φ(w) − c| ≪ 1 and |w| ≫ 1 =⇒ |w| · ν(Dwφ) ⩾ L.

We will also say that φ is (MR)-regular at c.

In Definition 6.1, the mapping φ tends to a finite value c, therefore the
asymptotic phenomenon at infinity only occurs in the directions of the
Rn component. In other words, since w = (x,y) ∈ Rn × Rs, instead of
requiring |w| ≫ 1 and |w| · |Dwφ| ⩾ L, we can equivalently require |x| ≫ 1
and |x| · |Dwφ| ⩾ L.

As counterpart to (MR)-regular values we explicitly introduce the next

Definition 6.2. — An asymptotic critical value c of the mapping φ

is simply a Malgrange–Rabier critical value of φ, namely there exists a
sequence wk := (xk,yk)k of points of W such that: (i) wk → ∞, (ii) yk → c
and

|wk| · ν(Dwk
φ) −→ 0.

It is customary to write K∞(φ) for the set of ACVs of the mapping φ.

Definition 6.3. — A generalized critical value of φ is any value of the
subset

K(φ) := K0(φ) ∪K∞(φ) ⊂ Rs.

Notation. — Let νφ(w) := ν(Dwφ).

We start with the following expected result:

Lemma 6.4. — The subset K(φ) is definable and closed.

Proof. — Since the Malgrange–Rabier condition proceeds from a first
order formula in the language of the structure M, the subset K∞(φ) is
definable in the structure. Therefore the subset K(φ) is too.
Compactify Rq as Sq, and R⩾0 as [0,+∞], by adding a single point at infin-
ity. The compactification is semi-algebraic. Consider the following compact
definable subset

G := clos{(w, (1 + |w|) · νφ(w)) ∈ W × R⩾0} ⊂ Sn × Ss × [0,+∞].

Denoting by g : G → Ss the projection on Ss = Rs ⊔ ∞, the following
identity

K(φ) = Rs ∩ g (G ∩ Sn × Ss × 0)
concludes the proof. □
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The next result tells us about the behaviour at infinity nearby a value
c /∈ K(φ) of some feature of the mapping φ.

Lemma 6.5. — Let c be a regular value of φ which is also (MR)-regular.
Let (wk)k be any sequence of W such that (i) wk → ∞, (ii) yk → c. The
following limit holds true

(6.2) lim
k→+∞

δn+s

(
wk

|wk|
, Twk

φ

)
= 0.

Proof. — By hypothesis, there exists a positive constant L such that
along any sequence (wk)k as in the statement we have

|wk| · νφ(wk) ⩾ L, for k ≫ 1.

It is enough to work with paths definable at +∞ instead of sequences.
Let

t 7−→ w(t) = (x(t),y(t)) ∈ W

be a germ of definable mapping at +∞, such that as t goes to +∞

w(t) := tu(t), with u(t) ∈ Sn+s−1; y(t) −→ c.

In particular u(t) → u ∈ Sn−1 × 0. Since φ is definable, the tangent-to-
the-fibre mapping

w 7−→ Twφ ∈ G(dimW − s, n+ s)

is definable. Thus the following mappings are definable at +∞

t 7−→ Tw(t)φ, and Tw(t)φ −→ T

as t goes to +∞. We want to show that
lim∞ δn+s(w′, Twφ) = 0,

since Lemma 3.1 gives that
∣∣∣w′ − w

|w|

∣∣∣ → 0 at infinity. The mapping

t 7−→ f(t) := φ(w(t)) − c

is definable at +∞ and tends to 0 as t goes to +∞. Working with each
component of f , Lemma 3.2 yields

t · f ′(t) −→ 0.

Let Nwφ ⊂ TwW be the orthogonal complement of Twφ. Let w′ = w′
T +

w′
N be the decomposition of w′ in the orthogonal direct sum Tw(t)φ ⊕

Nw(t)φ = Tw(t)W . Of course the germ of each of the following mappings

t 7−→ Tw(t)W, t 7−→ Nw(t)φ, t 7−→ w′
T , and t 7−→ w′

N
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16 Nicolas DUTERTRE & Vincent GRANDJEAN

is definable at +∞. By definition we have

δn+s(w′, Twφ) = |w′
N |.

Combining the previous equality with the hypothesis, we find

|Dwφ · w′| = |Dwφ · w′
N | ⩾ |w′

N | · νφ(w(t)),

from which we get

|w′
N (t)| ⩽ t · |f ′(t)|

L
−→ 0. □

We introduce the following:

Definition 6.6. — A germ of a continuous, positive function
µ : (R⩾0,+∞) → R⩾0 is increasing fast at +∞ if

lim
t→+∞

t−1 · µ(t) = +∞.

For a function germ µ increasing fast at +∞, we define

Kµ
∞(φ) =

{
c ∈ Rs :

∃(wk)k ∈ W with wk −→ +∞, yk −→ c
such that µ(|wk|) · νφ(wk) −→ 0

}
.

In Definition 6.6 we can, equivalently, require that µ(|xk|) · νφ(wk) →
∞. When the function germ µ is definable at +∞, the subset Kµ

∞(φ) is
definable, contained in K∞(φ). As in [6, 26], we have

Proposition 6.7. — There exists a function germ at infinity
µ : (R⩾0,+∞) → R⩾0 increasing fast and definable at +∞ such that

K∞(φ) = Kµ
∞(φ).

Proof. — The principle of the proof is the same as that of [6, Lemma 3.3]
or [26, Lemma 3.1]. Using the inverse of the stereographic projection,
any Euclidean space Rq compactifies smoothly and semi-algebraically as
Sq = Rq ⊔ ∞. Let clos(W ) be the closure of W in Sn+s. We consider the
following definable mapping

G : W −→ Rs × R, w 7−→ (φ(w), |w| · νφ(w)).

Let Y := clos(W ) × Ss × S1. Define

Γ := clos(graph(G)) ⊂ Y and A := ∞ × clos(K∞(φ)) × 0 ⊂ Y.

Observe thatA is closed. The definable Wing Lemma ([48], [29, Lemma 2.7])
states that there exists a closed definable subset B of Γ such that

B ∩A = ∅, and clos(B) ∩ Γ \ graph(G) = A.

The point ∞ × u × 0 belongs to A if there exists a sequence (wk)k ∈
πW (B) such that wk → ∞, yk → c and |w| · νφ(w) → 0, where πW :
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Γ 7→ clos(W ) is the projection onto the first factor. Consider the following
definable function

b(r) := r · max{νφ(w) for w ∈ πW (B) and |w| = r}.

We check as in [6, Lemme 3.3] that the function defined as

r 7−→ µ(r) := r√
b(r)

satisfies the announced statement. □

To conclude this section, we would like to add a few words about the
special case of graphs.

Let X be a closed connected definable C2-sub-manifold of Rn. Let F :
X → Rs be a C2 and definable mapping. We suppose that dimX ⩾ s. The
corresponding Rabier number function to consider is

x 7−→ νF (x) := ν(DxF ).

We recall the following complementary definitions:
A value c is a Malgrange–Rabier regular value of the mapping F if there

exists a positive constant L such that for any sequence (xk)k of X such
that (i) xk → +∞, (ii) F (xk) → c, we have

|xk| · νF (xk) ⩾ L.

A value c ∈ Rs is an ACV of the mapping F if there exists a sequence
(xk)k ofX such that (i) xk → +∞, (ii) F (xk) → c and (iii) |xk|·νF (xk) → 0.

Let W be the graph of F , and let w = (x, F (x)) be a point of W .
Since TwW is just the graph of the linear mapping DxF : TxX → Rs,
Equation (4.4) of Lemma 4.3 guarantees that the value c ∈ Rs lies in
K∞(F ) if and only if it lies in K∞(φ).

Any statement and notion for φ presented in this section admits a version
for the mapping F . The modifications to be done are clear, and we can check
that each demonstration for a statement about F adapts easily from the
corresponding statement for φ, following the same steps.

7. Malgrange–Rabier condition and geometry at infinity

We are going to combine here the local point of view at infinity of Sec-
tion 5 and the affine one of Section 6.

The blowing-up at infinity mapping β : M → Rn \ 0, although being a
diffeomorphism is by no means an isometry. Nevertheless spheres r× Sn−1

are mapped onto spheres Sn−1
1
r

, angles of pairs of vectors tangent to a sphere
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18 Nicolas DUTERTRE & Vincent GRANDJEAN

at a same point are preserved and orthogonality to the spheres as well, as
we can check below: Let m = (r,u) be a point of M. We find

Dmβ|TuSn−1 = r−1 IdTuSn−1 , and Dmβ · ∂r = −r−2u = −r−1β(m).

Working with Z nearby rZ = 0 is working in a neighbourhood at infinity
of W . We find the following:

Lemma 7.1. — If φ is (MR)-regular at the regular value c, then W is
t-regular at c.

Proof. — It is sufficient to show the result along a path at infinity.
Let t 7→ w(t) ∈ W be the germ of a mapping definable at +∞ such that:

z(t) := β−1
s (w(t)) → z∞ = (0,u, c) ∈ M∞

s , for c a (MR)-regular value of
φ, and

T (t) := Tz(t)Z −→ T, and R(t) := Tz(t)rZ −→ R.

Without loss of generality we further assume that w(t) = tu+o(t), and set

u(t) = x(t)
|x(t)| = w(t)

|w(t)| + o(1).

We recall that
R(t) ⊂ T (t) ∩ 0 × Tu(t)Sn−1 × Rs.

Let D(t) := Dw(t)φ. Let ν(t) = νφ(w(t)). By hypothesis we have

t · ν(t) ⩾ L, for some constant L > 0.

Let us still denote by D(t) the extension of D(t) to Rn × Rs as the null
mapping over (Tw(t)W )⊥. In other words, we have

t ≫ 1 =⇒ 1
ν(t)D(t) · Bn+s(0, 1) ⊃ Bs(0, 1).

Let ξs be any vector of Ss−1. There exists a germ of mapping definable at
infinity

t 7−→ χ(t) ∈ Bn+s(0, 1)
tangent to X along w, such that for t large enough

ξs = 1
ν(t)D(t) · χ(t) ∈ Ss−1.

In the orthogonal direct sum

Tw(t)(Rn × Rs) = Ru(t) ⊕ Tu(t)Sn−1 ⊕ Rs,

we decompose χ(t) as the definable orthogonal sum

χ(t) = ψ(t)u(t) + χS(t) + ν(t)ξs.
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We find

ξ(t) := Dw(t)β
−1
s · 1

ν(t)χ(t) =
(

−ψ(t)
t2ν(t) ,

1
tν(t)χS(t), ξs

)
.

Since |χ(t)| ⩽ 1 and t · ν(t) ⩾ L once t is large enough, we deduce there
exists ξS ∈ TuSn−1 such that

ξ(t) −→ (0, ξS, ξs) ∈ R × TuSn−1 × Rs,

proving the announced result. Indeed the vector (0, ξS, ξs) lies necessarily
in R, since R is a subspace of T ∩ 0 × TuSn−1 × Rs. □

The next lemma is a converse of Lemma 7.1.

Lemma 7.2. — If W is t-regular at the regular value c of φ, then φ is
(MR)-regular at c.

Proof. — Again, it is enough to check that the property holds true along
a definable path at infinity.

Let t 7→ w(t) := (x(t),y(t)) be a germ of a mapping definable at +∞,
and let z = β−1

s ◦ w. Let us consider the following limits as t → +∞

z(t) −→ z∞ := (0,u, c) ∈ M∞
s , and R(t) := Tz(t)rZ −→ R,

where Z := β−1
s (W ). We can assume that z(t) = (t−1,u(t),y(t)) with

y(t) → c /∈ K(φ). Let

πs(t) := πs(z(t)) and νs(t) := νs

(
πs(t)|Tz(t)rZ

)
.

The hypothesis implies that

lim
t→+∞

νs(t) = ν ⩾ νc.

Let ξ be a unit vector of Rs. Let ξ(t) be a definable path with values in
TrZ , along the path t 7→ z(t) such that for t large enough we have

πs(t) · ξ(t) = ξ.

Therefore we can write the following orthogonal decomposition

ξ(t) = r(t)∂r ⊕ ζ(t) ⊕ ξ ∈ Tz(t)Ms = R ⊕ Tu(t)Sn−1 ⊕ Rs,

so that the hypotheses yield

r(t) = 0, and |ξ(t)| ⩽ 1
νs(t) ⩽

2
ν
.

Let t 7→ χ(t) be the definable path at infinity

χ(t) := Dz(t)βs(t) · ξ(t) ∈ Tw(t)W.
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Decomposing χ(t) in the orthogonal direct sum Ru(t) ⊕ Tu(t)Sn−1 ⊕ Rs,
we get

χ(t) = 0 ⊕ v(t) ⊕ ξ.

In particular we obviously find

Dw(t)φ · χ(t) = ξ.

By the choice of parametrization of z we have |x(t)| = t. Since

ξ(t) = 0 ⊕ 1
t
v(t) ⊕ ξ,

we observe furthermore that
2
ν

· t ⩾ t · |ξ(t)| ⩾ |χ(t)|.

Since |w(t)| ⩾ t, the previous inequalities imply the following inclusion

Bs
1 ⊂ D(t) · Bn+s

2
ν |w(t)|,

where D(t) ∈ L(n + s, s) is the linear extension of Dw(t)φ to Rn × Rs, as
the null mapping over the normal space Nw(t)W of Tw(t)W in Rn ×Rs. In
other words we have proved that

νφ(w(t)) = ν(D(t)) ⩾ νc

2 · 1
|w(t)| ,

which ends the proof. □

Combining Lemma 7.1, Lemma 7.2 we have proved in our most general
context the following

Proposition 7.3. — A regular value c of φ is (MR)-regular if and only
if the sub-manifold W is t-regular at the value c.

In other words, we have rigorously showed, in this most general context,
that (MR)-regularity and (the current avatar of) t-regularity are equivalent
(see [10, 17, 46] for special cases).

Remark 7.4. — When d = s, the condition of Malgrange–Rabier regu-
larity at c is equivalent to the local properness of the mapping φ at the
value c, which means that φ is proper over some neighbourhood of c. In-
deed the ACVs coincide with the non-properness values of the mapping φ
(see [26, pages 86 to 88] and adapt almost readily their arguments to our
context). In particular Lemma 7.1 and Lemma 7.2 are trivial.

Using Proposition 6.7 we are now in position to show the following
Morse–Sard type result, whose proof is different from those given in [24, 26]
and gives a more precise insight of the geometric phenomenon at hand than
that of [10].
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Theorem 7.5. — The subset K∞(φ) of Rs (is definable) and has posi-
tive codimension.

Proof. — By Proposition 6.7 we know that K∞(φ) = Kµ
∞(φ), for some

fast decreasing function µ definable at +∞. The following subset

W1 := {w ∈ W : µ(|w|) · νφ(w) ⩽ 1}

is a closed and definable subset of Rn × Rs. Let

Z1 := β−1
s (W1), and Z∞

1 := clos(Z1) ∩ M∞
s .

By Lemma 7.1 and Lemma 7.2, any point z∞ = (0,u, c) of Z∞
1 is a limit

of a sequence (zk)k of Z1 such that Tzk
rZ → R ⊂ Tz∞Ms which does not

projects surjectively onto Rs. Let τZ be the projection of clos(Z) onto Rs.
Thus

τZ(Z∞
1 ) = K∞(φ).

Let r1 be the restriction of rZ to clos(Z1). It is a continuous definable
mapping. The pair (Z1, Z

∞
1 ) of germs at M∞

s can be definably stratified
to be (arel)-regular w.r.t. the function r1 [31]. Let z∞ be a point of S∞,
a strata contained in Z∞

1 . Therefore Tz∞S
∞ is contained in the limit T at

z∞ of the relative tangent spaces Tzk
rZ = Tzk

r1, given any sequence (zk)k

of Z1 converging to z∞. By Proposition 7.3 and the definition of Z1, the
limit T cannot project surjectively onto Rs. Therefore we deduce

rank Dz∞ (τZ |S∞) ⩽ s− 1,

and thus we find
dim τZ(Z∞

1 ) ⩽ s− 1. □

8. Bifurcation values and triviality results

We recall here in this most general setting the notions and results about
equi-singularity nearby a (MR)-regular value c in the context of the previ-
ous sections.

Let X be a connected, definable Ca sub-manifold of Rn which is also
a closed subset of Rn, where a ∈ N⩾2 ∪ ∞. Let F : X → Rs be a Ck

definable mapping where 2 ⩽ k ⩽ a. In this definition Ck is understood as
the maximal possible regularity of F on X. In order to have an interesting
statement we assume that dimX ⩾ s.
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Definition 8.1. — A value c of Rs is typical for the mapping F if there
exists a neighbourhood V of c in Rs such that the restriction

F |U : U := F−1(V) −→ V

is a trivial Ck−1-fibre bundle over V with model fibre F−1(c) and F |U is
the projection mapping onto the base.

We can now see the relation of (MR)-regularity condition previously
introduced with equi-singularity in the following expected

Theorem 8.2. — If a regular value c of Rs is (MR)-regular for the
mapping F , then c is a typical value for F .

There are many occurrences of this result over the last forty years, mostly
for functions though [6, 10, 17, 22, 23, 24, 26, 32, 37, 39, 40, 46, 47] (this list
is far from being exhaustive). The proof we present here is explicit and does
not get into the messy task of composing s flows (which is rarely explicitly
done once s ⩾ 2). We follow the simple and beautiful idea of Rabier [39]
(see also Jelonek’s variation in [22, 23] using Gaffney’s characterization of
(MR)-regularity [19]).

Proof. — Assume that c is a (MR)-regular value of F . There exists a
positive number ε such that the closed ball B := Bp(c, ε) does not intersect
with K(F ). Let F be the closed definable Ck sub-manifold with boundary

F := F−1(B) ⊂ X.

Observe that a sequence (xk)k of F escaping F as k goes to infinity either
goes to the boundary ∂F or goes to infinity (see Condition (4.1) in [39,
Lemma 4.1]). Up to a translation we can assume that the origin of Rn does
not lie in F. By definition of Malgrange–Rabier regularity, we can assume
that there exists a positive constant M such that the following estimate
holds true in F:

(8.1) |x| · ν(DxF ) ⩾M.

For x ∈ F, let A(x) := DxF . We consider the following linear mapping

V(x) := A(x)∗ · (A(x) ·A(x)∗)−1.

Following Rabier’s terminology, V(x) is a right inverse of A(x):

A(x) · V(x) = IdTF (x) R
s.

The mapping x 7→ V(x) is a Ck−1 definable section of the vector bundle
F ∗(TRs)|F and takes values in NF |F ⊂ TRn|F, the normal bundle of F
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over F. We follow now Rabier’s proof [39, Section 4]. Consider the following
differential equation with parameters:

(8.2)
{

ẋ = V(x) · (y − c)
x(0) ∈ F

where y ∈ B. The vector field with parameters

ξ(x,y) := V(x) · (y − c)

is definable and Ck−1. If Ψ denotes the flow of ODE (8.2), observe that

F (Ψ(t,x,y)) = F (x) + t(y − c).

Let z = (x,y) be in F×B and let Iz be the domain over which the solution

t 7−→ φ(t; z)

of the ODE (8.2) exists and where φ(0; z) = x. Let

ℓ(t; z) :=
∣∣∣∣∫ t

0
|V(φ(τ ; z))|dτ

∣∣∣∣ ,
be the length of the trajectory t 7→ φ(t; z) between the time 0 and t. Using
Estimate (8.1) combined with a Grönwall argument (see [8]), we find that

ℓ(t; z) ⩽ 1
M

· |y − c| · |x| · e t
M .

From here we conclude as in the proof of [39, Lemma 4.2], that for each
x ∈ F−1(c) the interval Iz contains [−1, 1]. The trivialization is achieved
as the Ck−1 diffeomorphism

□(8.3) F−1(c) × B −→ F, (x,y) 7−→ Ψ(1,x,y).

Let V be any connected component of Rs \K(F ). Let U1, . . . ,Uα be the
connected components of F−1(V) and F a be the restriction of F to Ua.
Theorem 8.2 implies the following:

Corollary 8.3. — For each a = 1, . . . , α, the mapping F a : Ua 7→ V
induces a locally trivial Ck−1 fibre bundle structure over V, with connected
model fibre F−1(ca) ∩ Ua for some ca ∈ V.

Of interest is the following

Remark 8.4. — Assume that F is real analytic and globally sub-analytic.
The proof of Theorem 8.2 shows that nearby (MR)-regular values the pro-
duced flow of Equation (8.3) is real analytic, since ξ is a real analytic
mapping.
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Definition 8.5. — A value c of Rs is a bifurcation value of the mapping
F if it is not typical. Let Bif(F ) be the set of bifurcation values of F .

The (expected) corollary of Theorem 8.2 and Definition 8.5 is the
following

Corollary 8.6. — Bif(F ) ⊂ K(F ).

9. Sub-level sets family associated with a family of
hypersurfaces

This is the setting that will be used in Section 16.
Let F : Rn ×Rs → R be a C2 definable function such that 0 is a regular

value of F . Define the following C2 closed definable subsets of Rn × Rs,

W := {p ∈ Rn × Rs : F (p) ⩽ 0}, and W := {p ∈ Rn × Rs : F (p) = 0}.

We assume that W and W are both not empty. Observe that W is a
definable C2 sub-manifold with definable C2 boundaryW . Let φ : W → Rs,
ω : W → Rs be respectively the projection mappings (x,y) → y. For each
parameter y ∈ Rs, we define the function

fy : Rn −→ R, as x 7−→ F (x,y),

yielding the definable family of C2 functions (fy)y∈Rs . For y ∈ Rs we have

φ−1(y) = f−1
y (0) × y ⊂ Rn × Rs and ω−1(y) = {fy ⩽ 0} × y ⊂ Rn × Rs.

Let us write

Wy := {x ∈ Rn : fy(x) ⩽ 0}, and Wy := {x ∈ Rn : fy(x) = 0}.

Whenever y is a regular value of φ, the level Wy is a C2 closed definable
hypersurface of Rn bounding the C2 closed definable sub-manifold with
boundary Wy.

We need some equi-singularity results about the family (Wy)y/∈K(φ) sim-
ilar to those presented in Section 8, but for the mapping ω instead of
simply φ.

Proposition 9.1. — For every c /∈ K(φ), there exists a closed ball B
of Rs \K(φ) centred at c such that ω−1(B) is C1 trivial fibre bundle over
B with model fibre Wc × c.
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Proof. — Following [5, Theorem 6.11], the hypersurface W admits a de-
finable neighbourhood in Rn × Rs which is C1 definably diffeomorphic to

NW (ρ) := {(w, ξ) ∈ NW : |ξ| ⩽ ρ(w)},

where ρ is C2 positive definable function on W and NW is the normal bun-
dle of W in T (Rn ×Rs). The diffeomorphism is obtained by the restriction
of “the end point mapping”

E : T (Rn × Rs) −→ Rn × Rs, (p, ξ) 7−→ p + ξ

to NW (ρ). The aforementioned neighbourhood of W is defined as

Tρ := E(NW (ρ)).

Let Nφ be the normal bundle of Tφ taken into T (W \ crit(φ)). It is C1,
definable and of rank s. Let Nρφ be the definable C1 vector bundle of
T (Rn ×Rs)|Tρ

of rank s obtained by parallel transport of Nφ: any p ∈ Tρ

writes uniquely as p = w + ξ with (w, ξ) in NW (ρ), yielding, when w is
not a critical point of φ,

(Nρφ)p := Nwφ.

Assume that B = Bs(c, ε) for some positive radius ε. For p = (x,y) ∈
ω−1(B), we define

A(p) := Dpω, and V (p) := A(p)∗ · (A(p) ·A(p)∗)−1.

Observe that V (p) : TyRs 7→ 0 × TyRs ⊂ TpW is the “identity” mapping
of TyRs. Similarly we define for p ∈ Tρ ∩ ω−1(B) the following linear
operators:

Aρ(p) := Dpω|Nρφ, and Vρ(p) := Aρ(p)∗ · (Aρ(p) ·Aρ(p)∗)−1.

For any p in Tρ we have Aρ(p) · Vρ(p) = IdTyRs . Note that the mapping
p → Vρ(p) is C1 and definable. Since any p ∈ Tρ writes uniquely as
p = w + ξ we find

Aρ(p) = Dwφ|Nwφ.

There exist C1 definable functions a0, b0 : R⩾0 7→ [0, 1] such that:
(i) a0 + b0 ≡ 1; (ii) a−1

0 (0) = [1,+∞[; (iii) b−1
0 (0) = [0, 1

2 ]. Any p ∈ Tρ has
a unique form p = w + ξ. Define the following mapping over ω−1(B):

p 7−→ V(p) :=


V (p) if t /∈ Tρ,

Vρ(p) if t ∈ T ρ
2
,

a0

(
|ξ|

ρ(p)

)
Vρ(p) + b0

(
|ξ|

ρ(p)

)
V (p) if t ∈ Tρ \ T ρ

2
.
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It is definable and C1 and satisfies

Dpω · V(p) = IdTyRs .

Observe that whenever p lies in W \W , we have ν(Dpω) = 1. By definition
of c and B there exists a positive constant M (depending on B) such that

w ∈ φ−1(B) =⇒ (1 + |w|) · νφ(w) ⩾M.

Observe that for any p = w + ξ ∈ Tρ ∩ ω−1(B), we have

ν(Aρ(p)) = νφ(w).

We consider again the ODE (8.2). The remarks about the estimates of
ν(Dpω) and νφ(w) are just to guarantee that Grönwall arguments of the
proof of Theorem 8.2 will go through so that the rest of this proof adapts
readily to our current V, and produces a C1 flow that gives the announced
trivialisation. □

Let V be any connected component of Rs \K(φ). Let U1, . . . ,Uα be the
connected components of ω−1(V) and ωa be the restriction of ω to Ua.
Proposition 9.1 implies the following

Corollary 9.2. — For each a = 1, . . . , α, the mapping ωa : Ua → V
induces a locally trivial fibre bundle structure over V, with connected model
fibre ω−1(ca) ∩ Ua for some ca ∈ V.

10. On the link at infinity

Let S be a closed definable subset of Rp. For any positive R, let

SR := S ∩ Sp−1
R .

The family (SR)R>0 is a definable family, thus there exists a positive radius
rS such that the topological type of SR is constant once R > rS (see for
instance [5, Theorem 5.22]). In order to use the techniques developed in
[15, 16], we recall the following key notion:

Definition 10.1. — The link at infinity Lk∞(S) of S is any subset SR

for R > rS .

Let W be a C2 connected closed definable sub-manifold of Rn × Rs

and let φ : W → Rs be the restriction to W of the canonical projection
Rn × Rs → Rs. For any value y of Rs, we recall that φ−1(y) = Wy × y.

Let V be any connected component of Rs \K(φ). Let U1, . . . ,Uα be the
connected components of the germ at infinity of φ−1(V).
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Let us write (φ|Ua)−1(y) = W a
y × y.

The following result is probably known folklore, yet we will provide a
proof.

Proposition 10.2. — Let c be a regular and (MR)-regular value of φ
lying in V. For each a = 1, . . . , α, there exists a closed ball B of Rs centred
at c and not intersecting with K(φ) and there exists RB > 0 such that for
each y ∈ B◦ and each R ⩾ RB the links (φ|Ua)−1(y)R and (φ|Ua)−1(c)RB

are C1 diffeomorphic, and the links (W a
y )R and (W a

c )RB are C1 diffeomor-
phic as well.

Proof. — We can assume that α = 1. Let ψ : W → R⩾0 ×Rs be defined
as w 7→ (|x|2,y) when w = (x,y). Lemma 6.5 implies that there exist a
closed ball B centred at c and a positive radius R1 such that ψ is a proper
submersion over φ−1(B) ∩ {(x,y) : |x| ⩾ R1}. Observe that the following
closed definable subset

F := φ−1(B) ∩ {(x,y) : |x| > R1}.

is C2 sub-manifold with boundary. The restriction of φ to the definable
C2 sub-manifold with boundary (F, ∂F) is a C2 submersion. Ehresmann
Fibration Theorem over B◦ yields the result once RB > R1.

To get the result for the levels of φ instead of the family (Wy)y, we
follow the same scheme of proof as the previous one, only changing ψ into
the mapping w 7→ (|w|2,y). □

We complete this section dealing also with the links at infinity of the
“family of the sub-level sets” of the hypersurface family context presented
in Section 9. We keep the exact same notations.

Let V be any connected component of Rs \ K(φ). Let U1, . . . ,Uα be
the connected components of the germ at infinity of ω−1(V). Let us write
(ω|Ua)−1(y) = Wa

y × y. We have the following result.

Proposition 10.3. — Let c be a regular and (MR)-regular value of V.
For every a = 1, . . . , α, there exists a closed ball B of Rs centred at c and
not intersecting with K(φ) and there exists RB > 0 such that for each
y ∈ B◦ and each R ⩾ RB the links (ω|Ua)−1(y)R and (ω|Ua)−1(c)RB are
C1 diffeomorphic, and the links (Wa

y)R and (Wa
c )RB are C1 diffeomorphic

as well.

Proof. — We can assume that V = Rs \ K(φ) and the germ at infinity
of ω−1(V) are both connected.

Consider the mapping ψ : Rn × Rs → R⩾0 × Rs defined as (x,y) 7→
(|x|2,y). For c ∈ Rs \ K(φ), Proposition 10.2 implies that there exist a
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small neighbourhood U of c in Rs and a compact subset K0 of Rn such
that

(φ−1(U) \K0 × U) ∩ crit(ψ|W ) = ∅.
Observe also the obvious fact that crit(ψ) = 0 ×Rs. Let B be a closed ball
of Rs centred at c of radius r > 0. The subset K1 := Bn

1 × B is compact in
Rn × Rs.

Claim 10.4. — (φ−1(B) \K1) ∩ crit(ψ) = ∅.

Proof. — If (x,y) ∈ φ−1(B) then y ∈ B. If (x,y) lies in crit(ψ), then
x = 0. □

Up to reducing r, we can assume that the closed ball B is contained in
U . Let R1 > 0 be such that Bn

R1
contains K0 ∪ Bn

1 . Define

K := Bn
R1

× B

so that (K0 ×B)∪K1 is a subset of K. Claim 10.4 implies that the mapping
ψ|W is a proper submersion over φ−1(B) \K. Ehresmann Fibration Theo-
rem for a manifold with boundary applies. Therefore we have obtained the
announced result of constancy of the C1 type. Since

ψ−1(R × y) ∩ W = Wy × y

we conclude that for all y ∈ B◦, the links Lk∞(Wy) and Lk∞(Wc) are
C1-diffeomorphic.

To get the result for the levels of ω instead of the family (Wy)y, there is
just to follow the same scheme of demonstration as the previous one, only
modifying ψ to become p 7→ (|p|2,y). □

11. Hyperplane sections and Malgrange–Rabier Condition

We start with the following simple lemma:

Lemma 11.1 (see also [15]). — Let S be a connected definable C2 sub-
manifold of Rq of positive codimension. For each k ⩾ dimS, there exists an
open dense and definable subset Ωk

S of G(k, q) such that S∩P is transverse
(but possibly at the origin) for any k-plane P of Ωk

S .

Proof. — Let 0 be the origin of Rq and let S∗ := S \ 0. Let k ⩾ dimS.
Let us consider the following subset

Bk := {(x, P ) ∈ S∗ × G(k, q) : x ∈ P}.

It is a closed definable C2 sub-manifold of S∗×G(k, q) of dimension dimS+
(k−1)(q−k) since it is a fibre bundle over S∗ with model fibre G(k−1, q−1).
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Let πk be the projection Bk → G(k, q). It is obviously a C2 definable
mapping. The subset ∆ = πk(crit(πk)) of its critical values is definable in
G(k, q) and of positive codimension. The complement G(k, q) \ clos(∆) is
the desired looked for Ωk

S . □

Of course the proof works for any k, but for q − k ⩾ dimS, we have
π(Bk) = ∆, so that the fibre of πk over P /∈ ∆ is empty.

Since any linear subspace P of dimension k − s of Rn gives rise to a
unique linear subspace P × Rs of Rn × Rs of dimension k, we check that
the following subset

Π(k) := {P × Rs ∈ G(k, n+ s) : P ∈ G(k − s, n)}

is a non-singular projective sub-variety of G(k, n + s) isomorphic to
G(k − s, n).

The first main new result of the paper is the following:

Theorem 11.2. — Let c /∈ K(φ). For every k ⩾ n + s − dimW , there
exists a definable open dense subset Ωk

c of Π(k) consisting of k-vector planes
P × Rs such that the value c does not lie in K(φ|P ×Rs).

Proof. — Observe that for any vector p-plane P of Rn with p ⩾ 1, we
have

β−1(P ) = ]0,+∞[ × S(P ) ⊂ M.

Let us define the “p-plane” induced from P in M

P+ := [0,+∞[ × S(P ) ⊂ M.

Let c be a (regular) value of φ. The set of accumulation points at infinity of
the value c of the mapping φ is the closed, definable subset of Sn−1 × 0 ⊂
Sn+s−1 defined as

(11.1) W∞
c :=

u ∈ Sn+s−1 ;
∃ (wk)k∈N ⊂ W :

wk −→ ∞, yk −→ c, wk

|wk|
−→ u

 .

We write W∞
c = A∞

c × 0. We recall that Z = β−1
s (W ) and that Z∞ =

clos(Z) ∩ M∞
s . Observe that

Z∞
c := Z∞ ∩ 0 × Sn−1 × c = 0 ×A∞

c × c.

We recall that z = (r,u,y) ∈ Ms, and rZ(z) = r for z ∈ Z. We need the
following intermediary result:
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Claim 11.3. — Let c ∈ Rs\K(φ). There exists a definable stratification
of Z∞

c such that for any point u of A∞
c and for any sequence (zk)k∈N of Z

such that (i) rk → 0, (ii) yk → c, (iii) uk → u, and (iv) Tzk
rZ → R, we

have
TuS ⊂ R,

where S is the stratum of Z∞
c containing 0 × u × c.

Proof of the claim. — The function rZ extends continuously and defin-
ably to 0 on Z∞. Following [30, 31], it can be definably stratified (arel).
We can further ask that 0 × A∞

c × c is a union of strata. Any stratum of
0 ×A∞

c × c is of the form 0 × S × c, for some sub-manifold S of Sn−1. □

Let us write again Wc × c := φ−1(c). It is more convenient to work in a
neighbourhood of M∞

s , more precisely nearby Z∞
c .

Let S1, . . . , Sl be the strata of A∞
c obtained from Claim 11.3.

Let k ⩽ n+s be any integer such that k+dimW−s ⩾ n. Let us consider
the following definable open dense subset of G(k − s, n)

Ωk
c := ∩l

j=0Ωk−s
Sj

,

where Ωk−s
Sj

is the definable open dense subset of G(k−s, n) of Lemma 11.1
corresponding to Sj .

Assume that dimW − s ⩾ n− k + 1.
Let P be a (k−s)-plane of Ωk

c . Let (zm)m be a sequence of P+ ×Rs \Z∞

such that zm → z∞ = (0,u, c) ∈ Z∞
c . We can assume that

Tzm
rZ −→ R, and um −→ u ∈ (0 ×A∞

c ∩ P+) × 0.

Since u ∈ P+, we deduce that P = Ru ⊕ TuS(P ).
All the computations which will follow are done in

Tz∞Ms = R × TuSn−1 × Rs = R × Rn−1 × Rs.

Therefore we write P for R × TuS(P ) = T(0,u)P
+ ⊂ R × Rn−1.

By hypothesis R = 0 × R1 ⊂ 0 × Rn−1 × Rs and the space R projects
surjectively onto Rs (see Definition 5.2 and Lemma 7.1). We want to show
that R ∩ P × Rs projects surjectively onto Rs. Let

0 ×KR × 0 := R ∩ (R × Rn−1) × 0 = ker(R 7−→ Rs).

We can assume that KR = Rp × 0 ⊂ Rn−1 where p = dimW − s − 1. By
hypothesis, denoting by S the stratum of A∞

c containing u, we have

TuS ⊂ KR, and P + TuS = R × Rn−1.
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Since TuS is contained in 0 × Rn−1, the k-plane P is not. Let 0 × P1 :=
P ∩ 0 × Rn−1. Since we find

KR + P1 = Rn−1,

we deduce the following key fact

0 × Rn−1−p ⊂ P1.

Let NR := K⊥
R ∩ R be the orthogonal complement of KR in R, thus the

projection to Rs when restricted to NR is an isomorphism. Since the space
NR is contained in 0 × Rn−1−p × Rs, we deduce that

NR = (0 × P1 × Rs) ∩NR ⊂ (P × Rs) ∩R.

In other words R ∩ (P × Rs) projects surjectively onto Rs.
Assume dimW − s = n − k. For each generic k-plane P of Ωk

c , the
fibre (φ|P ×Rs)−1(c) is finite. The definition of W∞

c prohibits, when it is
not empty, that c be a properness value of φ|P ×Rs , therefore c lies in
K(φ|P ×Rs) if W∞

c is not empty. In such a case, the arguments used in the
previous case show the existence of a surjective mapping from a space of
dimension s− 1 onto Rs. □

Let F : X → Rs be a C2 definable mapping over a closed connected C2

definable sub-manifold X of Rn with dimX ⩾ s. The original goal of this
section, consequence of Theorem 11.2, is the following result:

Corollary 11.4. — Let c be a value not in K(F ). For every k ⩾
n−(dimX−s), there exists a definable and dense open subset Vk

c of G(k, n)
such that for every plane P of Vk

c the value c does not lie in K(F |P ).

Proof. — Let W be the graph of F and let φ : W → Rs be the restriction
to W of the projection Rn × Rs → Rs. The regular mapping

Π(k + s) ιn7−→ G(k, n), P 7−→ Pn := P ∩ Rn × 0

is an isomorphism. Let c ∈ Rs which does not lie in K(φ) = K(F ). For any
l ⩾ (n+s)−(dimW−s), let U l+s

c be the open dense subset of Theorem 11.2.
The image

Vk
c := ιn(Uk+s

c )

is definable, open and dense in G(k, n). □
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12. Lipschitz–Killing Measures

We present very briefly in this section the Lipschitz–Killing measures of a
definable set in an o-minimal structure following Bröcker and Kuppe’s ap-
proach [2]. They are the essential ingredients to define the functions Λ∞

k (−)
(Definition 12.2), bricks of the general Gauss–Bonnet Formula presented in
Theorem 12.3.

We start with a few reminders about the extrinsic geometry of sub-
manifolds of the Euclidean space Rn.

Let Z be a C2 connected orientable sub-manifold of Rn equipped with
the restriction of the Euclidean metric tensor. Let x be a point of Z. Let
S(NxZ) be the unit sphere of the normal space NxZ = TxZ

⊥ in TxRn =
Rn. For v a given vector of S(NxZ), let v∗ be the linear form over TxRn

defined by the scalar product with v.
Let ∇ be the covariant differentiation in Rn w.r.t. the Euclidean metric

tensor.
Of fundamental importance to define the Lipschitz–Killing curvatures of

Z at any of its points is the family of second fundamental forms
(II n)n∈S(NZ), where S(NZ) is the unit sphere bundle of the normal bundle
NZ of Z in TRn|Z . Given n = (x,v) in S(NZ), we recall that II n, the
second fundamental form in the direction v, is the symmetric bilinear form
over TxZ defined as

II n(u1,u2) = −⟨∇u1ν,u2⟩,

where u1,u2 are vectors of TxZ and ν is any C1 local extension of v normal
to Z at x.

For each l = 0, . . . ,dimZ, let σZ
l (n) be the l-th elementary symmetric

function of the eigenvalues of II n when considered as a symmetric endo-
morphism of TxZ.

Let X be a closed definable subset of Rn equipped with S = {Sa}a∈A,
a finite C2 definable Whitney stratification. Let S be a stratum Sa of
dimension dS . Let x be a point of S and let v be a unit vector normal to
S at x. We recall the definition of the following index

indnor(v∗, X,x) = 1 − χ (X ∩Nx ∩ Bn(x, ε) ∩ {v∗ = v∗(x) − δ}) ,

where 0 < δ ≪ ε ≪ 1 and Nx is a normal (definable) slice to S at x in Rn.
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For each k = 0, . . . , n, we define the function λS
k : S → R as

λS
k (x) :=

{
1

sn−k−1

∫
S(NxS) indnor(v∗,X,x)σS

dS−k(x,v) dv if 0 ⩽ k ⩽ dS ,

0 if dS + 1 ⩽ k ⩽ n,

where sl is the l-volume of the unit Euclidean sphere Sl of Rl+1.
If S has dimension n then for all x ∈ S, we find

λS
0 = · · · = λS

n−1 ≡ 0 and λS
n ≡ 1.

If S has dimension 0 then
indnor(v∗, X,x) = ind(v∗, X,x)

:= 1 − χ (X ∩ Bn(x, ε) ∩ {v∗ = v∗(x) − δ}) ,

and we set

λS
0 (x) = 1

sn−1

∫
Sn−1

ind(v∗, X,x)dv, and λS
k ≡ 0, once k ⩾ 1.

Definition 12.1. — Let k ∈ {0, . . . , n}. The k-th Lipschitz–Killing
measure Λk(X,−) of X is defined as follows:

U 7−→ Λk(X,U) =
∑
a∈A

∫
Sa∩U

λSa

k (x) dx,

where U is any bounded Borel subset of X.

Denoting by d the dimension of X, we obviously have

Λd+1(X,−) = · · · = Λn(X,−) ≡ 0,

and for any bounded Borel subset U of X we get

Λd(X,U) = Hd(U),

where Hd is the d-th dimensional Hausdorff measure in Rn.
An exhaustive family of compact subsets (KR)R>0 of X is an increasing,

for the inclusion, family of compacts of X covering X:⋃
R>0

KR = X.

We introduce some new notations in order to present short formulae.
Let gl

n be the volume of the Grassmann manifold G(l, n) of vector l-planes
of Rn when equipped with the Euclidean metric (see Section 4). We start
with the following two sets of numbers:
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Definition 12.2. — Let X be a closed definable subset of Rn. For each
l = 0, . . . , n, let χ∞

l (X) be defined as

(12.1) χ∞
l (X) := 1

2gl
n

∫
G(l,n)

χ (Lk∞(X ∩ P )) dP,

and let Λ∞
l (X) be the l-th Lipschitz–Killing invariant of X at infinity

defined as

(12.2) Λ∞
l (X) := lim

R→+∞

Λl(X,X ∩ Bn
R)

blRl
,

where bl is the volume of the Euclidean unit ball Bl
1.

Observe that for l = n we have the obvious equality

(12.3) χ(Lk∞(X)) = 2χ∞
n (X).

When X is a closed definable connected sub-manifold, note that
χ∞

k (X) = 0 whenever Lk∞(X ∩ P ) has odd dimension, that is when
dimX − (n− k) is even. When n− k ⩾ dimX we also find that

χ∞
k (X) = 0,

since the link Lk∞(X ∩ P ) is empty for P lying in a definable open dense
subset of G(k, n).

We recall now several Gauss–Bonnet type formulas for a closed definable
set X subset of Rn established by the first author in [15, 16] and which
relate the numbers χ∞

l (−) and Λ∞
l (−).

Theorem 12.3 ([15, 16]).
(1) The limit

Λ∞
0 (X) := lim

R→+∞
Λ0(X,X ∩KR)

exists and does not depend on the choice of the exhaustive family
of compact subsets (KR)R>0. More precisely the following equality
holds:

(12.4) Λ∞
0 (X) = χ(X) − χ∞

n (X) − χ∞
n−1(X).

(2) For each k = 1, . . . , n− 2, we furthermore have:

(12.5) Λ∞
k (X) = −χ∞

n−k−1(X) + χ∞
n−k+1(X),

and for l = n− 1, n, we have

(12.6) Λ∞
l (X) = χ∞

n−l+1(X).
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Remark 12.4. — Consider the following two vectors of Rn+1

Λ∞
∗ (X) = (Λ∞

0 (X), . . . ,Λ∞
n (X))

and

χ∞
−∗(X) = (χ(X), χ∞

n (X), . . . , χ∞
1 (X)).

As seen in Theorem 12.3, both vectors carry the same information about X
at infinity. Precisely, there exists a triangular superior matrix L, depending
only on n, with coefficients in {−1, 1} and only with 1 on the diagonal such
that

Λ∞
∗ (X) = L · χ∞

−∗(X).

13. The case of sub-manifolds with boundary

We describe the Lipschitz–Killing measures when (X, ∂X) is a closed C2

definable sub-manifold with boundary of Rn of dimension d. In this case,
the partition X = X◦ ⊔∂X, where X◦ = X \∂X, is a C2 definable Whitney
stratification of X, to which we can apply the construction of Section 12.

Let x ∈ X◦. If d < n then for k = 0, . . . , d, we have

λX◦

k (x) = 1
sn−k−1

∫
S(NxX◦)

σX◦

d−k(x,v)dv.

We get the following identities of the extrinsic geometry of Euclidean sub-
manifolds

λX◦

k (x) = 1
sn−k−1

Kd−k(X◦,x),

where Kd−k(X◦,−) is the (d−k)-th Lipschitz–Killing curvature of X◦. We
recall that

d− k odd =⇒ Kd−k(X◦,−) ≡ 0.
We recall that if d = n, then λX◦

n ≡ 1 and λX◦

0 = · · · = λX◦

n−1 ≡ 0.
Let y ∈ ∂X and let νy be the unit vector tangent to X at y, normal to

the boundary ∂X and pointing inwards. For v ∈ Sn−1 we recall that the
following alternative holds

indnor(v∗, X, y) =
{

1 if ⟨v, νy⟩ > 0,
0 if ⟨v, νy⟩ < 0.

Let S(Ny∂X)+ be the following open half-sphere:

S(Ny∂X)+ = {v ∈ S(Ny∂X) : ⟨v, νy⟩ > 0} .
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Therefore, for k = 0, . . . , d− 1, we can write

λ∂X
k (y) = 1

sn−k−1

∫
S(Ny∂X)+

σ∂X
d−1−k(y,v)dv.

The case of a definable sub-manifold with boundary of dimension d yields
the following explicit description of the Lipschitz–Killing measures. For any
bounded Borel subset U of X we find

(13.1) Λd(X,U) = Hd(U).

When d < n and k = 0, . . . , d− 1, we find

(13.2) Λk(X,U) =
∫

X◦∩U

λX◦

k (x)dx +
∫

∂X∩U

λ∂X
k (y)dy.

If d = n and k = 0, . . . , n− 1,

(13.3) Λk(X,U) =
∫

∂X∩U

λ∂X
k (y)dy.

14. Definable families and continuity of Lipschitz–Killing
curvature densities at infinity

We return to the setting of the previous sections: letW be a C2 connected
sub-manifold of Rn × Rs which is also a closed subset of Rn, definable in
M, and let φ : W → Rs be the restriction to W of the canonical projection
on Rs. Let d = dimW . Hence for y any regular value of φ either the level
φ−1(y) is empty or is a C2 definable sub-manifold of dimension d − s of
Rn, of the form

φ−1(y) = Wy × y ⊂ Rn × Rs.

Instead of working with the family of levels (φ−1(y))y we will work with
the family (Wy)y of the projections onto Rn of the levels of φ, a definable
family of closed subsets of Rn.

Let V1, . . . ,Vβ be the connected components of Rs \ K(φ) for which
φ−1(Vb) is not empty. For each b = 1, . . . , β, let Ub,1, . . . ,Ub,αb

be the con-
nected components of φ−1(Vb). For each y ∈ Vb and each a = 1, . . . , αb, let

(14.1) W a
y × y := Wy × y ∩ Ub,a.

Each such sub-manifold W a
y is not empty, closed and connected, by Corol-

lary 8.3.
We present in this section now the looked for continuity results of the

functions y 7→ Λ∞
k (Wy) nearby a regular value which is also a (MR)-regular

value of this definable family.
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Proposition 14.1. — For each k = 0, . . . , d− s, for each b = 1, . . . , β,
and each a = 1, . . . , αb, the functions

y 7−→ χ∞
n+1−k(W a

y ), and y 7−→ Λ∞
d−s−k(W a

y )

are continuous over Vb, (where χ∞
n+1(−) is the null function over the subsets

of Rn).

Proof. — Theorem 12.3 and Remark 12.4 guarantee that it is sufficient
to prove it for the functions y 7→ χ∞

n+1−k(W a
y ). Observe that the mapping

y 7→ χ(W a
y ) is constant on Vb for each a = 1, . . . , αb, by Corollary 8.3.

For a closed definable subset X of Rn, let us write

χ∞(X) := χ(Lk∞(X)).

• Assume first that Wy is connected for y /∈ K(φ). The case k =
0 is obvious by definition, so we treat first the case k = 1. Let
c ∈ Rs \ K(φ). Proposition 10.2 implies the existence of an open
neighbourhood U of c in Rs such that

y ∈ U =⇒ 2χ∞
n (Wy) = χ∞(Wy) = χ∞(Wc).

In other words, the mapping y 7→ χ∞
n (Wy) is constant on each

connected component of Rs \K(φ).
We treat now the case k = 2, . . . d− s, and c ∈ Rs \K(φ). The-

orem 11.2 ensures the existence of an open dense definable subset
Uk

c of G(n+ 1 − k, n) such that

P ∈ Uk
c =⇒ c /∈ K(φ|P ×Rs).

For any P ∈ G(n+ 1 − k, n) and any y ∈ Rs we find

(φ|P ×Rs)−1(y) = (Wy ∩ P ) × y ⊂ P × Rs.

As for k = 1, given P ∈ Uk
c , there exists an open neighbourhood

UP of c contained in Rs \ K(φ|P ×Rs) such that for all y ∈ UP , we
find

χ∞(Wy ∩ P ) = χ∞(Wc ∩ P ),

which we can write as

lim
y→c

χ∞(Wy ∩ P ) = χ∞(Wc ∩ P ).
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Now Lebesgue Dominated Convergence Theorem provides

lim
y→c

∫
Gn+1−k

n

χ∞(Wy ∩ P )dP =
∫

Gn+1−k
n

lim
y→c

χ∞(Wy ∩ P )dP

=
∫

Gn+1−k
n

χ∞(Wc ∩ P )dP,

namely the desired continuity result.
• Let b ∈ {1, . . . , β} and let y ∈ Vb. For each a = 1, . . . , αb, the

connected case implies that each function y 7→ χ∞
n+1−k(W a

y ) is con-
tinuous over Vb. □

Let X be a closed definable sub-manifold of Rq of dimension d. For
i = 0, . . . , d, let Ki(X,x) be the i-th Lipschitz–Killing curvature of X at x.
For i ⩾ d+1, we may define Ki(X,−) ≡ 0 if need be. The global polar-like
invariant avatars we are looking for in our real context are presented in the
next definition.

Definition 14.2. — Let i ∈ {0, . . . , d}. The i-th Lipschitz–Killing cur-
vature density at infinity of the closed definable sub-manifold X of Rq of
dimension d is defined as

κ∞
i (X) := lim

R→+∞

1
Rd−i

∫
X∩Bn

R

Ki(X,x)dx.

The second main result of the paper is the following

Theorem 14.3. — For each i = 0, . . . , d− s, for each b = 1, . . . , β, and
each a = 1, . . . , αb, the functions

y −→ κ∞
i (W a

y )

are continuous over Vb. Thus the functions y 7→ κ∞
i (Wy) are continuous

on Rs \K(φ).

Proof. — As we saw in the demonstration of Proposition 14.1, we can
work only with connected Wy as far as y lies in Rs \K(φ), which we will
assume for the rest of the proof.

We treat first the case i = d−s. Theorem 12.3 (see also [15, Theorem 5.6])
gives

1
sn−1

κ∞
d−s(Wy) = χ(Wy) − χ∞

n (Wy) − χ∞
n−1(Wy)

for y any regular value. Applying Proposition 14.1 concludes this case.
For 2 ⩽ i ⩽ d − s − 1 and y any regular value of φ, Theorem 12.3 (see

also [16, Theorem 4.1]) gives
1

sn−(d−s)+i−1 · bd−s−i
κ∞

i (Wy) = −χ∞
n−(d−s)+i−1(Wy)+χ∞

n−(d−s)+i+1(Wy).
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We conclude again by Proposition 14.1.
For i = 0 or 1 and y any regular value of φ, Theorem 12.3 gives again

1
sn−(d−s)+i−1 · bd−s−i

κ∞
i (Wy) = χ∞

n−(d−s)+i+1(Wy).

We remark that the term
χ∞

n−(d−s)(Wy)
that appears in the equality concerning the curvature K1 is in fact zero,
because generically Wy ∩P is of dimension 0, hence compact. We conclude
with the previous proposition again. □

Remark 14.4. — For odd i, the i-th Lipschitz–Killing curvature func-
tion Ki(X,−) of a given sub-manifold X is identically null, therefore the
mapping in our context y 7→ κ∞

i (Wy) is the null mapping over Rs \K(φ).

15. Curvatures of hypersurfaces

In this section, we study the special case of regular levels of a C2 definable
function, and express some curvature-like integrals over them as Lipschitz–
Killing measures.

Let f : Rn → R be a C2 definable function. We assume that 0 is a regular
value of f taken by f , so that Y = f−1(0) is a non-empty C2 hypersurface.
We orientate Y by the normal vector −∇f |Y , with the convention that
(ξ1, . . . , ξn−1) is a positive basis of TxY if and only if (ξ1, . . . , ξn−1,−∇f(x))
is a positive basis of Rn.

The Gauss mapping νY of Y is the following mapping:

νY : Y −→ Sn−1, x 7−→ − ∇f
|∇f |

(x).

Its derivative
DxνY : TxY 7−→ Tν(x)Sn−1 = TxY

is a self-adjoint operator. The principal curvatures k1(x), . . . , kn−1(x) are
the opposite of the eigenvalues of DxνY . Let σY

i be the i-th elementary sym-
metric function of the principal curvatures. Note that σY

n−1 is the Gauss–
Kronecker curvature and σY

0 ≡ 1. These elementary symmetric functions
are related to the Lipschitz–Killing curvatures of Y and the sub-level set
Y := {f ⩽ 0} in the following way: Given x ∈ Y , since Y is the boundary
of Y, we note that

i even =⇒ 2σY
i (x) = Ki(Y,x) = si · λY

n−1−i(x).
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Definition 15.1. — Let i ∈ {0, . . . , n− 1}. The i-th symmetric princi-
pal curvature density at infinity of the hypersurface Y is defined as

(15.1) σ∞
i (Y ) := lim

R→+∞

1
Rn−1−i

∫
Y ∩Bn

R

σY
i (x) dx.

The density at infinity of Y is defined as

(15.2) Θ∞
n (Y) := lim

R→+∞

1
Rn

Hn(Y ∩ Bn
R).

In this context, Equations (13.3) give

σ∞
n−1−i(Y ) = sn−1−ibi · Λ∞

i (Y), i = 0, . . . , n− 1.

The next corollary gives explicit relations between the numbers χ∞
l (−) of

Equation (12.1) and Equation (12.3) and the numbers σ∞
l (−) of Equa-

tion (15.1). It is an application of the Gauss–Bonnet formulas of Theo-
rem 12.3 for the levels of the function f , the description of the Gauss–
Bonnet measures for manifolds with boundary and Equations (13.3) for
the numbers σ∞

i (−).

Corollary 15.2.

(15.3) Θ∞
n (Y) = χ∞

1 (Y),

and for i = n− 1

(15.4) 1
sn−1

σ∞
n−1(Y ) = χ(Y) − χ∞

n (Y) − χ∞
n−1(Y),

and for i = 0, . . . , n− 2,

(15.5) 1
sibn−i−1

σ∞
i (Y ) = −χ∞

i (Y) + χ∞
i+2(Y).

Remark 15.3. — We can orientate Y by the normal vector ∇f |Y , with
the convention that (ξ1, . . . , ξn−1) is a positive basis of TxY if and only
if (∇f(x), ξ1, . . . , ξn−1) is a positive basis of Rn. In this case, the Gauss
mapping νH of H is the mapping:

νY : Y −→ Sn−1, x 7−→ ∇f
|∇f |

(x).

and the principal curvatures k1(x), . . . , kn−1(x) are the eigenvalues of DxνY .
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16. Continuity of curvature integrals and families of
hypersurfaces

In this last section we expand and strengthen the study initiated in [17],
addressing here the special case of families of hypersurfaces.

We work within the context of Section 9. We are given a C2 definable
function F : Rn × Rs → R for which 0 is a regular value. Let again W and
W be defined as

W := {p : F (p) ⩽ 0}, and W := {p : F (p) = 0}.

The mappings ω, φ are the restrictions of the projection Rn × Rs → Rs to
W,W , respectively. Practically we work with the connected components
of W , thus we further assume that W is connected. For each y ∈ Rs, the
function fy : Rn → R defined as x 7→ F (x; y) is also C2 and definable. We
recall that

W ∩ Rn × y = Wy × y, and φ−1(y) = Wy × y.

Whenever y is a regular value of φ, the hypersurface Wy = f−1
y (0) bounds

the C2 closed definable n-dimensional sub-manifold with boundary Wy :=
{fy ⩽ 0}.

Let V1, . . . ,Vβ be the connected components of Rs \ K(φ) for which
φ−1(Vb) is not empty. For each b = 1, . . . , β, let Ub,1, . . . ,Ub,αb

be the con-
nected components of ω−1(Vb). For each couple (b, a) and each y ∈ Vb, let

Wa
y := Wy ∩ Ub,a.

We obtain the following:

Proposition 16.1. — For each b = 1, . . . , β, for each a = 1, . . . , αb, and
for k = 1, . . . , n, the functions y 7→ χ∞

k (Wa
y) are continuous over R \K(φ).

Proof. — We can assume that b = 1 and α1 = 1 as well. Thus Wa
y = Wy.

We treat first the case k = n. Proposition 10.3 shows that the following
function is constant on Vb

y 7−→ χ∞
n (Wy) = χ∞(Wy).

We assume that 1 ⩽ k ⩽ n. Let c ∈ Rs \K(φ). Theorem 11.2 guarantees
that for almost all P ∈ G(k, n), the value c does not lie in K∞(φ|P ×Rs).
Proposition 10.3 gives the existence of an open neighbourhood VP of c in
Rs such that for all y in VP ,

χ∞(Wy ∩ P ) = χ∞(Wc ∩ P ).

The proof ends applying Lebesgue Dominated Convergence Theorem, as
was done in the proof of Proposition 14.1. □
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For b = 1, . . . , β, let Ub,1, . . . ,Ub,αb
be the connected components of

φ−1(Vb). For y in Vb and a = 1, . . . , αb, let

Wa
y := Wy ∩ Ub,a, and W a

y := Wy ∩ Ub,a.

The last main result of the paper is the following:

Theorem 16.2. — For each b = 1, . . . , β, and for each a = 1, . . . , αb,
the following statements hold true:

(1) For each i = 0, . . . , n−1, the functions y 7→ σ∞
i (W a

y ) are continuous
on Vb. Thus y 7→ σ∞

i (Wy) is continuous over Rs \K(φ).
(2) The function y 7→ Θ∞

n (Wa
y) is also continuous on Vb. Thus y 7→

Θ∞
n (Wy) is continuous over Rs \K(φ).

Proof. — Let c ∈ Rs \K(f). We can assume that both Wc and Wc are
connected. Let us apply the Gauss–Bonnet formulas of Theorem 12.3 to
the n-dimensional closed definable set Wy. We get

(16.1) Λ∞
0 (Wy) = χ(Wy) − χ∞

n (Wy) − χ∞
n−1(Wy).

Moreover, for k = 0, . . . , n− 2, we have:

(16.2) Λ∞
k (Wy) = −χ∞

n−k−1(Wy) + χ∞
n−k+1(Wy),

and

Λ∞
n−1(Wy) = χ∞

2 (Wy)(16.3)
Θ∞

n (Y) = Λ∞
n (Wy) = χ∞

1 (Wy).(16.4)

Since Wy is n-dimensional, Equalities (16.1), (16.2), (16.3), and (16.4) are
non-trivial.

Applying Proposition 16.1, we obtain that for k = 0, . . . , n, the functions

y 7−→ Λ∞
k (Wy)

are continuous on Rs \ K(φ). It is enough to apply the expressions of
Corollary 15.2 to conclude. □
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