Le résultat central est une nouvelle version du théorème d’irréductibilité de Hilbert qui fournit des bornes explicites pour le nombre de spécialisations de hauteur bornée d’un polynôme à deux variables sur un corps de nombres . Comme application, en démarrant d’une extension galoisienne finie régulière de groupe , nous pouvons compter le nombre d’extensions spécialisées conservant le groupe et dont la norme du discriminant de l’extension est majorée. En conséquence, nous contribuons à la conjecture de Malle sur le nombre d’extensions finies galoisiennes sur un corps de nombres , de groupe et de norme de discriminant . Pour chaque corps de nombres contenant un certain corps de nombres (dépendant de ), nous établissons cette minoration : pour et pour un exposant spécifique dépendant de . Nous pouvons aussi décrire le comportement local des extensions spécialisées en certains premiers. Nous déduisons ainsi de nouveaux résultats sur le problème local-global de Grunwald, en particulier pour certains groupes non résolubles.
The central result is a new version of the Hilbert Irreducibility Theorem which provides explicit bounds for the number of specializations of bounded height of two-variable polynomials over number fields . As an application, starting from a regular finite Galois extension of group , we can count the number of specialized extensions retaining the full Galois group and that are of bounded discriminant norm . Consequently, we contribute to the Malle conjecture on the number of finite Galois extensions of some number field , of group and of discriminant norm . For every number field containing a certain number field (depending on ), we establish this lower bound: for and some specific exponent depending on . We can also prescribe the local behaviour of the specialized extensions at some primes. We deduce new results on the local-global Grunwald problem, in particular for some non-solvable groups.
Révisé le :
Accepté le :
Publié le :
Keywords: Galois extensions, Inverse Galois theory, Malle conjecture, Grunwald problem, Algebraic covers, Specialization, Diophantine geometry
Mot clés : Extensions galoisiennes, Théorie inverse de Galois, Conjecture de Malle, Problème de Grunwald, Revêtements algébriques, Spécialisation, Géométrie diophantienne.
Motte, François 1
@article{AIF_2023__73_5_2099_0, author = {Motte, Fran\c{c}ois}, title = {Hilbert irreducibility, the {Malle} conjecture and the {Grunwald} problem}, journal = {Annales de l'Institut Fourier}, pages = {2099--2134}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {5}, year = {2023}, doi = {10.5802/aif.3567}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3567/} }
TY - JOUR AU - Motte, François TI - Hilbert irreducibility, the Malle conjecture and the Grunwald problem JO - Annales de l'Institut Fourier PY - 2023 SP - 2099 EP - 2134 VL - 73 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3567/ DO - 10.5802/aif.3567 LA - en ID - AIF_2023__73_5_2099_0 ER -
%0 Journal Article %A Motte, François %T Hilbert irreducibility, the Malle conjecture and the Grunwald problem %J Annales de l'Institut Fourier %D 2023 %P 2099-2134 %V 73 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3567/ %R 10.5802/aif.3567 %G en %F AIF_2023__73_5_2099_0
Motte, François. Hilbert irreducibility, the Malle conjecture and the Grunwald problem. Annales de l'Institut Fourier, Tome 73 (2023) no. 5, pp. 2099-2134. doi : 10.5802/aif.3567. https://aif.centre-mersenne.org/articles/10.5802/aif.3567/
[1] Counting algebraic integers of fixed degree and bounded height, Monatsh. Math., Volume 175 (2014) no. 1, pp. 25-41 | DOI | MR | Zbl
[2] Counting number fields in fibers (with an appendix by Jean Gillibert), Math. Z., Volume 288 (2018) no. 1-2, pp. 541-563 | DOI | MR | Zbl
[3] The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989) no. 2, pp. 337-357 | DOI | MR | Zbl
[4] A note on a paper by R. Heath-Brown: “The density of rational points on curves and surfaces” [Ann. Math. (2) 155 (2002), no. 2, p. 553–595; MR1906595], J. Reine Angew. Math., Volume 571 (2004), pp. 159-178 | DOI | MR | Zbl
[5] Explicit uniform estimation of rational points II. Hypersurface coverings, J. Reine Angew. Math., Volume 668 (2012), pp. 89-108 | DOI | MR | Zbl
[6] Hilbert subsets and -integral points, Manuscr. Math., Volume 89 (1996) no. 1, pp. 107-137 | DOI | MR | Zbl
[7] Méthodes topologiques et analytiques en théorie inverse de Galois: théorème d’existence de Riemann, Arithmétique de revêtements algébriques (Saint-Étienne, 2000) (Sémin. Congr.), Volume 5, Soc. Math. France, Paris, 2001, pp. 27-41 | MR | Zbl
[8] On the Malle conjecture and the self-twisted cover, Israel J. Math., Volume 218 (2017) no. 1, pp. 101-131 | DOI | MR | Zbl
[9] Groups with no parametric Galois realizations, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018) no. 1, pp. 143-179 | DOI | MR | Zbl
[10] Galois covers and the Hilbert–Grunwald property, Ann. Inst. Fourier, Volume 62 (2012) no. 3, pp. 989-1013 | DOI | Numdam | MR | Zbl
[11] The Grunwald problem and approximation properties for homogeneous spaces, Ann. Inst. Fourier, Volume 67 (2017) no. 3, pp. 1009-1033 | DOI | Numdam | MR | Zbl
[12] Fields containing values of algebraic functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 21 (1994) no. 3, pp. 421-443 | Numdam | MR | Zbl
[13] Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 11, Springer-Verlag, Berlin, 1986, xviii+458 pages | DOI | MR | Zbl
[14] Quelques propriétés d’approximation reliées à la cohomologie galoisienne d’un groupe algébrique fini, Bull. Soc. Math. France, Volume 135 (2007) no. 4, pp. 549-564 | DOI | Numdam | MR | Zbl
[15] Zéro-cycles sur les espaces homogènes et problème de Galois inverse (2018) (https://arxiv.org/abs/1802.09605)
[16] The density of rational points on curves and surfaces, Ann. Math. (2), Volume 155 (2002) no. 2, pp. 553-595 | DOI | MR | Zbl
[17] Recherches sur les substitutions, J. Liouville, Volume 17 (1872), pp. 351-367 | Numdam | Zbl
[18] Asymptotics of number fields and the Cohen–Lenstra heuristics, Jux, Volume 18 (2006) no. 3, pp. 607-615 | DOI | Numdam | MR | Zbl
[19] Counting nilpotent Galois extensions, J. Reine Angew. Math., Volume 572 (2004), pp. 1-26 | DOI | MR | Zbl
[20] Number of points of varieties in finite fields, Amer. J. Math., Volume 76 (1954), pp. 819-827 | DOI | MR | Zbl
[21] Specialization results and ramification conditions, Israel J. Math., Volume 214 (2016) no. 2, pp. 621-650 | DOI | MR | Zbl
[22] On the distribution of Galois groups, J. Number Theory, Volume 92 (2002) no. 2, pp. 315-329 | DOI | MR | Zbl
[23] On the distribution of Galois groups. II, Experiment. Math., Volume 13 (2004) no. 2, pp. 129-135 | DOI | MR | Zbl
[24] Transcendental numbers, Springer, New York, 2014, xiv+217 pages | DOI | MR | Zbl
[25] On solvable number fields, Invent. Math., Volume 53 (1979) no. 2, pp. 135-164 | DOI | MR | Zbl
[26] Generic Galois extensions and problems in field theory, Adv. in Math., Volume 43 (1982) no. 3, pp. 250-283 | DOI | MR | Zbl
[27] Théorie algébrique des nombres, Hermann, 1967, 130 pages | MR | Zbl
[28] Heights in number fields, Bull. Soc. Math. France, Volume 107 (1979) no. 4, pp. 433-449 | DOI | Numdam | MR | Zbl
[29] The least admissible value of the parameter in Hilbert’s irreducibility theorem, Acta Arith., Volume 69 (1995) no. 3, pp. 293-302 | DOI | MR | Zbl
[30] Topics in Galois theory, Research Notes in Mathematics, 1, A K Peters, Ltd., 2008, xvi+120 pages (with notes by Henri Darmon) | MR | Zbl
[31] Théorème d’irréductibilité de Hilbert effectif, Acta Arith., Volume 116 (2005) no. 4, pp. 343-362 | DOI | MR | Zbl
[32] A counter-example to Grunwald’s theorem, Ann. Math. (2), Volume 49 (1948), pp. 1008-1009 | DOI | MR | Zbl
[33] Distribution of discriminants of abelian extensions, Proc. London Math. Soc. (3), Volume 58 (1989) no. 1, pp. 17-50 | DOI | MR | Zbl
[34] On the number of times of root of generates a field containing a given number field, J. Number Theory, Volume 72 (1998) no. 1, pp. 1-12 | DOI | MR | Zbl
Cité par Sources :