We give an example of a horocycle in the Teichmüller space of the five-times-punctured sphere that does not converge in the Gardiner–Masur compactification, or equivalently in the horofunction compactification of the Teichmüller metric. As an intermediate step, we exhibit a simple closed curve whose extremal length is periodic but not constant along the horocycle. The example lifts to any Teichmüller space of complex dimension greater than one via covering constructions.
Nous donnons un exemple d’horocycle dand l’espace de Teichmüller de la sphère épointée cinq fois qui ne converge pas dans le compactifié de Gardiner–Masur, ou, de façon équivalente, dans le compactifié par horofonctions de la métrique de Teichmüller. Comme étape intermédiaire, nous exhibons une courbe simple fermée dont la longueur extrémale est périodique mais pas constante le long de l’horocycle. L’exemple se relève à tout espace de Teichmüller de dimension complexe supérieure à un par des constructions de revêtement.
Revised:
Accepted:
Published online:
Keywords: Horocycle, horofunction, Teichmüller space, extremal length.
Mot clés : Horocycle, horofonction, espace de Teichmüller, longueur extrémale
@article{AIF_2023__73_5_1885_0, author = {Fortier Bourque, Maxime}, title = {A divergent horocycle in the horofunction compactification of the {Teichm\"uller} metric}, journal = {Annales de l'Institut Fourier}, pages = {1885--1902}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {5}, year = {2023}, doi = {10.5802/aif.3564}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3564/} }
TY - JOUR AU - Fortier Bourque, Maxime TI - A divergent horocycle in the horofunction compactification of the Teichmüller metric JO - Annales de l'Institut Fourier PY - 2023 SP - 1885 EP - 1902 VL - 73 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3564/ DO - 10.5802/aif.3564 LA - en ID - AIF_2023__73_5_1885_0 ER -
%0 Journal Article %A Fortier Bourque, Maxime %T A divergent horocycle in the horofunction compactification of the Teichmüller metric %J Annales de l'Institut Fourier %D 2023 %P 1885-1902 %V 73 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3564/ %R 10.5802/aif.3564 %G en %F AIF_2023__73_5_1885_0
Fortier Bourque, Maxime. A divergent horocycle in the horofunction compactification of the Teichmüller metric. Annales de l'Institut Fourier, Volume 73 (2023) no. 5, pp. 1885-1902. doi : 10.5802/aif.3564. https://aif.centre-mersenne.org/articles/10.5802/aif.3564/
[1] Convergence of some horocyclic deformations to the Gardiner–Masur boundary, Ann. Acad. Sci. Fenn. Math., Volume 41 (2016) no. 1, pp. 439-455 | DOI | MR | Zbl
[2] Non-convex balls in the Teichmüller metric, J. Differ. Geom., Volume 110 (2018) no. 3, pp. 379-412 | DOI | MR | Zbl
[3] Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, II, J. Reine Angew. Math., Volume 758 (2020), pp. 1-66 | DOI | MR | Zbl
[4] Limits in of Teichmüller geodesics, J. Reine Angew. Math., Volume 747 (2019), pp. 1-44 | DOI | MR | Zbl
[5] Thurston’s work on surfaces, Mathematical Notes, 48, Princeton University Press, Princeton, NJ, 2012, xvi+254 pages (translated from the 1979 French original by Djun M. Kim and Dan Margalit) | DOI | MR | Zbl
[6] Extremal length geometry of Teichmüller space, Complex Variables Theory Appl., Volume 16 (1991) no. 2-3, pp. 209-237 | DOI | MR | Zbl
[7] Classifying complex geodesics for the Carathéodory metric on low-dimensional Teichmüller spaces, J. Anal. Math., Volume 140 (2020) no. 2, pp. 669-694 | DOI | MR | Zbl
[8] Quadratic differentials and foliations, Acta Math., Volume 142 (1979) no. 3-4, pp. 221-274 | DOI | MR | Zbl
[9] Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, Providence, RI, 1992, xii+127 pages (translated from the Russian by E. J. F. Primrose and revised by the author) | DOI | MR | Zbl
[10] On the existence of certain general extremal metrics, Ann. Math. (2), Volume 66 (1957), pp. 440-453 | DOI | MR | Zbl
[11] Convergence of earthquake and horocycle paths to the boundary of Teichmüller space, Sci. China Math., Volume 59 (2016) no. 10, pp. 1937-1948 | DOI | MR | Zbl
[12] The asymptotic geometry of Teichmüller space, Topology, Volume 19 (1980) no. 1, pp. 23-41 | DOI | MR | Zbl
[13] The Nielsen realization problem, Ann. Math. (2), Volume 117 (1983) no. 2, pp. 235-265 | DOI | MR | Zbl
[14] Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine Angew. Math., Volume 737 (2018), pp. 1-32 | DOI | MR | Zbl
[15] Teichmüller geodesics that do not have a limit in , Geom. Topol., Volume 12 (2008) no. 1, pp. 177-197 | DOI | MR | Zbl
[16] Teichmüller geodesics with -dimensional limit sets, J. Mod. Dyn., Volume 12 (2018), pp. 261-283 | DOI | MR | Zbl
[17] The horofunction compactification of the Teichmüller metric, Handbook of Teichmüller theory. Vol. IV (IRMA Lect. Math. Theor. Phys.), Volume 19, Eur. Math. Soc., Zürich, 2014, pp. 355-374 | DOI | MR | Zbl
[18] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space, Geom. Dedicata, Volume 137 (2008), pp. 113-141 | DOI | MR | Zbl
[19] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II, Geom. Dedicata, Volume 162 (2013), pp. 283-304 | DOI | MR | Zbl
[20] Extremal length geometry, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, Eur. Math. Soc., Zürich, 2014, pp. 197-234 | DOI | MR | Zbl
[21] Lipschitz algebras and compactifications of Teichmüller space, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, Eur. Math. Soc., Zürich, 2014, pp. 375-413 | DOI | MR | Zbl
[22] Unification of extremal length geometry on Teichmüller space via intersection number, Math. Z., Volume 278 (2014) no. 3-4, pp. 1065-1095 | DOI | MR | Zbl
[23] On the Finsler structure of Teichmüller’s metric and Thurston’s metric, Expo. Math., Volume 33 (2015) no. 1, pp. 30-47 | DOI | MR | Zbl
[24] Konstruktion gewisser quadratischer Differentiale mit Hilfe von Dirichletintegralen, Math. Nachr., Volume 73 (1976), pp. 125-142 | DOI | MR | Zbl
[25] Über quadratische Differentiale mit geschlossenen Trajektorien und extremale quasikonforme Abbildungen, Festband 70. Geburtstag R. Nevanlinna, Springer, Berlin, 1966, pp. 105-127 | DOI | MR | Zbl
[26] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl
[27] The horoboundary and isometry group of Thurston’s Lipschitz metric, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, Eur. Math. Soc., Zürich, 2014, pp. 327-353 | DOI | MR | Zbl
[28] The asymptotic geometry of the Teichmüller metric, Geom. Dedicata, Volume 200 (2019), pp. 115-152 | DOI | MR | Zbl
Cited by Sources: