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A DIVERGENT HOROCYCLE IN THE
HOROFUNCTION COMPACTIFICATION OF THE

TEICHMÜLLER METRIC

by Maxime FORTIER BOURQUE

Abstract. — We give an example of a horocycle in the Teichmüller space of
the five-times-punctured sphere that does not converge in the Gardiner–Masur
compactification, or equivalently in the horofunction compactification of the Te-
ichmüller metric. As an intermediate step, we exhibit a simple closed curve whose
extremal length is periodic but not constant along the horocycle. The example
lifts to any Teichmüller space of complex dimension greater than one via covering
constructions.

Résumé. — Nous donnons un exemple d’horocycle dand l’espace de Teichmül-
ler de la sphère épointée cinq fois qui ne converge pas dans le compactifié de
Gardiner–Masur, ou, de façon équivalente, dans le compactifié par horofonctions de
la métrique de Teichmüller. Comme étape intermédiaire, nous exhibons une courbe
simple fermée dont la longueur extrémale est périodique mais pas constante le long
de l’horocycle. L’exemple se relève à tout espace de Teichmüller de dimension com-
plexe supérieure à un par des constructions de revêtement.

1. Introduction

In [6], Gardiner and Masur defined a compactification of Teichmüller
space which mimics Thurston’s compactification [26], but uses extremal
length instead of hyperbolic length. Since the Teichmüller distance can
be computed in terms of extremal lengths of simple closed curves [12],
one expects the Gardiner–Masur compactification to interact nicely with
this metric. This is indeed the case, for it turns out that the Gardiner–
Masur compactification is isomorphic to the horofunction compactification
of the Teichmüller metric [17]. In particular, all Teichmüller geodesic rays
converge in the Gardiner–Masur compactification; there is even an explicit
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1886 Maxime FORTIER BOURQUE

formula for their limits [28]. In contrast, Teichmüller rays can accumulate
onto intervals [4, 14, 15], circles [3], and even higher-dimensional sets [16]
in the Thurston boundary.

Besides Teichmüller geodesics, another family of paths that are used ex-
tensively in Teichmüller dynamics are the horocycles obtained by shearing
half-translation structures (coming from quadratic differentials) with the
matrices

ht =
(

1 t

0 1

)
for t ∈ R. These are called horocycles because the Teichmüller disk gene-
rated by a quadratic differential q is isometric to the hyperbolic plane, and
the path {ht q | t ∈ R} traces a horocycle (i.e., a limit of circles whose
centers go off to infinity) in this plane. Since horocycles converge in the
horofunction compactification of the hyperbolic plane (which is the same
as the visual compactification in this case) as t tends to ±∞, it is natu-
ral to ask whether they converge in the horofunction compactification of
Teichmüller space. That is the case whenever the horizontal foliation of q
consists of a single cylinder [1, Theorem 17] or is uniquely ergodic [1, The-
orem 20] [11, Theorem 1.3]. However, the goal of this note is to give an
example of a horocycle that does not converge in the horofunction (or
Gardiner–Masur) compactification. The example is then lifted to all Teich-
müller spaces of Riemann surfaces of genus g with p punctures such that
3g + p > 4 via covering constructions.

Theorem 1.1. — In every Teichmüller space of complex dimension
greater than one, there exists a horocycle which does not converge in the
horofunction compactification of the Teichmüller metric.

This has the following immediate consequence, which was first observed
by Miyachi in genus two [21, Section 8.1] (see also [1, Section 4.3]).

Corollary 1.2. — In every Teichmüller space of complex dimension
greater than one, there exists a Teichmüller disk whose isometric inclusion
does not extend continuously to the horoboundaries.

The example underlying Theorem 1.1 is a horocycle generated by a Jen-
kins–Strebel quadratic differential q with two cylinders on the five-times-
punctured sphere. The proof that this horocycle diverges consists in two
parts. First, we show that for any s ∈ R, the sequence (hs+n q)∞

n=1 (obtained
by applying successive powers of a Dehn multitwist to hs q) converges in
the Gardiner–Masur boundary and we describe its limit. This is deduced
from a more general criterion for convergence along mapping class group
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A DIVERGENT HOROCYCLE 1887

orbits (Lemma 3.1), which we also use to reprove that every horocycle or
earthquake directed by a simple closed curve converges ([1, Theorem 20]
and [11, Corollary 3.2]). The second step is to show that the limit of this
sequence depends on s. To prove this, it suffices to check that the extremal
length of a certain simple closed curve α is not constant along the horocycle
hs q. In Lemma 4.2, we show that the extremal length of α attains a strict
local maximum at s = 0 (and hence at all the integers by periodicity). This
contrasts with the convexity of hyperbolic length along earthquakes [13,
Theorem 1] and complements the existence of local maxima for extremal
length along Teichmüller geodesics [2].

As argued in [28], the Gardiner–Masur compactification of Teichmüller
space is best suited for problems concerning the conformal structure of
surfaces whereas the Thurston compactification is tailored for doing hyper-
bolic geometry. There is a well-known dictionary between the two worlds,
partially given in Table 1.1 below (see [23, p.33] for an extended version).

Table 1.1. A dictionary between the conformal and hyperbolic aspects
of Teichmüller theory

Conformal Hyperbolic
Quasiconformal homeomorpisms Lipschitz maps

Teichmüller metric Thurston metric
Extremal length Hyperbolic length

Measured foliations Measured laminations
Gardiner–Masur compactification Thurston compactification

Teichmüller rays Stretch paths
Horocycles Earthquakes

The analogy between the two points of view is reinforced by the fact that
the Thurston compactification is isomorphic to the horofunction compacti-
fication of the Thurston metric [27]. Since Teichmüller rays, stretch paths,
and earthquakes all converge in their respective ‘compatible’ compactifica-
tion, it is somewhat surprising that horocycles do not.

Acknowledgements
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2. Definitions

We begin by recalling some definitions and results needed throughout
the paper.

Teichmüller space

Let S be an oriented surface with finitely generated fundamental group.
The Teichmüller space T (S) is the set of equivalence classes [(X, f)] of pairs
(X, f) where X is a closed Riemann surface minus a finite set, the marking
f : S → X is an orientation-preserving homeomorphism, and two pairs
(X, f) and (Y, g) are equivalent if the change of marking g ◦ f−1 : X → Y

is homotopic to a biholomorphism.
The Teichmüller distance between two points [(X, f)] and [(Y, g)] is

1
2 logK where K ⩾ 1 is the smallest real number such that g ◦ f−1 is
homotopic to a K-quasiconformal homeomorphism.

We will usually suppress the marking and the equivalence class from the
notation and write X ∈ T (S) to mean [(X, f)] for some marking f .

Mapping class group

The mapping class group MCG(S) of a surface S is the group of ho-
motopy classes of orientation-preserving homeomorphisms of S onto itself.
This group acts on the left on homotopy classes of objects on S (such as
closed curves) and on the right on Teichmüller space by pre-composing the
marking. That is, if [(X, f)] ∈ T (S) and [ϕ] ∈ MCG(S) then

[(X, f)] · [ϕ] := [(X, f ◦ ϕ)].

We will write X · ϕ in lieu of the above if the marking is implicit.

Quadratic differentials

A quadratic differential on a Riemann surface X is a map q : TX → C
such that q(λv) = λ2q(v) for every λ ∈ C and v ∈ TX. We only consider
quadratic differentials that are holomorphic and whose area

∫
X

|q| is finite.
A horizontal trajectory for q is a maximal smooth path γ : I → X such
that q(γ′(t)) > 0 for every t ∈ I where I ⊂ R is an interval.

ANNALES DE L’INSTITUT FOURIER
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Extremal length

Let C(S) be the set of homotopy classes of essential (not homotopic to
a point or a puncture) simple (embedded) closed curves in S. We assume
that S is not a sphere with at most 3 punctures so that C(S) is non-empty.

The extremal length of [γ] ∈ C(S) on [(X, f)] ∈ T (S) is

(2.1) EL(γ,X) := sup
ρ

infα∼f(γ) ℓρ(α)2

area(ρ)
where ℓρ(α) is the length of α with respect to ρ and the supremum is taken
over all conformal metrics ρ of finite positive area on X.

Any Riemann surface A with infinite cyclic fundamental group is bi-
holomorphic to a Euclidean cylinder C, and the extremal length of either
generator of its fundamental group is equal to the ratio of the circumference
of C to its height. We denote this number by EL(A).

Since extremal length is monotone under conformal embeddings, we can
estimate the extremal length of a curve from above using embedded annuli.

Theorem 2.1 (Jenkins). — Let γ ∈ C(S) and X ∈ T (S), and let A ⊂ X

be an annulus such that the generators of π1(A) are homotopic to γ. Then

EL(γ,X) ⩽ EL(A)

with equality if and only if A is dense in X and the pull-back of dz2 under
any biholomorphism from A to a Euclidean cylinder

{z ∈ C : 0 < Im z < m}/Z

extends to a quadratic differential on X. Such an extremal annulus always
exists, and is unique if S is not a torus.

If q is the quadratic differential alluded to in the theorem, then the
supremum in (2.1) is realized only for the conformal metric

√
|q| and its

scalar multiples. Both statements can be generalized in three different ways
to multicurves and collections of disjoint annuli [10, 24, 25].

The notion of extremal length can be extended from C(S) to the set
MF(S) of equivalence classes of measured foliations on S (see [5] for the
definition) by setting

EL(F,X) :=
∫

X

|qF |

for all F ∈ MF(S) and X ∈ T (S), where qF is the unique quadratic
differential on X whose horizontal foliation is measure-equivalent to F [8,
12]. The extremal length function EL : MF(S) × T (S) → R is continuous,
as well as homogeneous of degree 2 in the first variable.

TOME 73 (2023), FASCICULE 5
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Although we will not use this here, we mention in passing that the Te-
ichmüller distance can be recovered from extremal lengths via Kerckhoff’s
formula [12]:

d(X,Y ) = 1
2 log

(
sup

γ∈C(S)

EL(γ, Y )
EL(γ,X)

)
for all X,Y ∈ T (S).

The Gardiner–Masur compactification

Let R⩾0 := [0,∞) be the set of non-negative real numbers. The projective
space P

(
RC(S)

⩾0

)
is the quotient of RC(S)

⩾0 \ {0} by the action of R>0 by
multiplication. It is given the quotient topology inherited from the product
topology on RC(S)

⩾0 .
Gardiner and Masur [6, Section 6] showed that the map

Φ : T (S) → P
(
RC(S)

⩾0

)
X 7→

[
EL1/2(γ,X)

]
γ∈C(S)

is an embedding, and that the closure of its image is compact. The
Gardiner–Masur compactification of T (S) is the set Φ(T (S)) ⊂ P

(
RC(S)

⩾0

)
,

which we also denote by T GM(S). A sequence (Xn)∞
n=1 ⊂ T (S) converges

to a projective vector v ∈ T GM(S) if Φ(Xn) → v as n → ∞. Besides in [6],
this compactification has been studied in [1, 11, 17, 18, 19, 20, 21, 22, 28].

The horofunction compactification

The horofunction compactification of a proper metric space (M,d) is the
set of all locally uniform limits of sequences of functions M → R of the
form

y 7→ d(y, xn) − d(xn, b)
where b ∈ M is a fixed basepoint, and (xn)∞

n=1 is a sequence in M . Its ele-
ments are called metric functionals and those that belong to the boundary,
that is, are not of the form y 7→ d(y, x) − d(x, b) for any x in M , are called
horofunctions. The level sets of horofunctions are called horospheres.

Liu and Su [17] proved that the horofunction compactification of T (S)
equipped with the Teichmüller metric is isomorphic to the Gardiner–Masur
compactification. We will mostly work with the Gardiner–Masur formula-
tion except in Section 5 where the horofunction point of view simplifies
things.

ANNALES DE L’INSTITUT FOURIER
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Horocycles lie on horospheres

It is interesting to note that any horocycle ht q obtained by shearing a
quadratic differential q travels along some horosphere, namely, a level set
of the function

(2.2) X 7→ −1
2 log EL(F,X)

where F is the horizontal foliation of q. Indeed, the horizontal foliation of
ht q and its area does not depend on t, so that if Xt denotes the underlying
Riemann surface, then

EL(F,Xt) =
∫

Xt

|ht q| =
∫

X0

|q| = EL(F,X0)

for all t ∈ R. That (2.2) defines a horofunction (in fact a Busemann
function) when F is a simple closed curve follows from the proof of [2,
Lemma 3.3]. The density of weighted simple closed curves in MF(S) and
the continuity of extremal length then imply that (2.2) defines a horofunc-
tion for any F ∈ MF(S), though not a Busemann function (the limit of
an almost geodesic ray) in general.

The horocycle ht q also lies on a level set of the horofunction obtained
as the forward limit of the Teichmüller geodesic gs q where

gs =
(
es 0
0 e−s

)
.

The resulting Busemann function can be determined by combining Liu and
Su’s isomorphism [17, Section 5] between the horofunction and Gardiner–
Masur compactifications and Walsh’s formula [28, Corollary 1] for the limit
of gs q in T GM(S), though this gives a rather convoluted expression.

Our point is that the horocycle {ht q : t ∈ R} is far from an arbitrary
path – it is the intersection of one or more horospheres with a complex
geodesic—yet it can still accumulate onto a non-trivial continuum in the
horofunction boundary, as we will see in Section 4.

3. Convergence along mapping class group orbits

Our first result is a sufficient criterion for a sequence in the mapping
class group orbit of a point X ∈ T (S) to converge in the Gardiner–Masur
compactification. The idea behind this criterion was already exploited in [6,
Theorem 7.2] and [11, Proposition 4.1].

TOME 73 (2023), FASCICULE 5
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Lemma 3.1. — Let (ϕn)∞
n=1 ⊂ MCG(S) be a sequence of mapping

classes. Suppose that there exists a sequence (cn)∞
n=1 of positive real num-

bers and a non-zero function f : C(S) → MF(S) such that cnϕn(γ) → f(γ)
as n → ∞ for every γ ∈ C(S). Then for every X ∈ T (S), the sequence X ·ϕn

converges to the projective vector[
EL1/2(f(γ), X)

]
γ∈C(S)

in the Gardiner–Masur compactification T GM(S) as n → ∞.

Proof. — Let γ ∈ C(S). By definition of the mapping class group action
on Teichmüller space, we have EL(γ,X · ϕn) = EL(ϕn(γ), X) for every
n ⩾ 1. It follows that

c2
n EL(γ,X · ϕn) = c2

n EL(ϕn(γ), X) = EL(cnϕn(γ), X) → EL(f(γ), X)

as n → ∞, by homogeneity and continuity of extremal length on MF(S).
Thus X · ϕn converges to the stipulated limit in T GM(S) as n → ∞. □

A Dehn multitwist is a product τn1
1 ◦ · · · ◦ τnk

k of non-zero integer powers
nj of Dehn twists τj about the components αj of a multicurve on a surface.
We will apply the above criterion when ϕn = ϕn is a sequence of powers
of a Dehn multitwist ϕ. In order to apply the criterion, we first need to
understand the effect of ϕ and its powers on simple closed curves. The
following estimate from [9, Lemma 4.2] generalizing [5, Proposition A.1] is
used to determine the projective limit of ϕn(γ) as n → ∞ for any curve
γ ∈ C(S).

Lemma 3.2 (Ivanov). — Let τ = τn1
1 ◦ · · · ◦ τnk

k be a Dehn multitwist
about a multicurve {α1, . . . , αk} in a surface S. Then for any two essential
simple closed curves γ, β ∈ C(S) we have

k∑
j=1

(|nj | − 2)i(γ, αj)i(αj , β) − i(γ, β) ⩽ i(τ(γ), β)

⩽
k∑

j=1
|nj |i(γ, αj)i(αj , β) + i(γ, β)

where i is the geometric intersection number.

In particular, for fixed curves γ and β, the difference between i(τ(γ), β)
and

∑k
j=1 |nj |i(γ, αj)i(αj , β) is bounded independently of the powers nj .

We apply this to successive powers of a fixed Dehn multitwist ϕ.

ANNALES DE L’INSTITUT FOURIER
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Corollary 3.3. — Let ϕ = τn1
1 ◦ · · · ◦ τnk

k be a Dehn multitwist about
a multicurve {α1, . . . , αk} in a surface S and let γ ∈ C(S) be any simple
closed curve. Then ϕn(γ)/n converges to the weighted multicurve

k∑
j=1

|nj |i(γ, αj)αj

in MF(S) as n → ∞.

Proof. — Let β ∈ C(S) be any simple closed curve. We need to show
that

i(ϕn(γ)/n, β) = 1
n
i(ϕn(γ), β) converges to

k∑
j=1

|nj |i(γ, αj)i(αj , β)

as n → ∞. This follows from Lemma 3.2 applied to τ = ϕn since the error
terms tend to zero after dividing by n. □

Now that we know the projective limit of ϕn(γ) as n → ∞, we can apply
our criterion to deduce that the orbit of a point in Teichmüller space under
the cyclic group generated by a Dehn multitwist converges in the Gardiner–
Masur compactification (in either direction). Furthermore, we get a formula
for the limit.

Corollary 3.4. — Let ϕ = τn1
1 ◦ · · · ◦ τnk

k be a Dehn multitwist about
a multicurve {α1, . . . , αk} in a surface S and let X ∈ T (S). Then the
sequence X · ϕn converges toEL1/2

 k∑
j=1

|nj |i(γ, αj)αj , X


γ∈C(S)

in the Gardiner–Masur compactification T GM(S) as n → ∞.

Proof. — Corollary 3.3 shows that the hypotheses of Lemma 3.1 are
satisfied for ϕn = ϕn, cn = 1/n, and f(γ) =

∑k
j=1 |nj |i(γ, αj)αj , from

which the conclusion follows. □

Observe that the limit given in Lemma 3.1 or Corollary 3.4 appears to
depend on the initial point X. However, it may happen that for every
surface Y ∈ T (S) there is a constant c > 0 such that

EL(f(γ), Y ) = cEL(f(γ), X)

for all γ ∈ C(S), which results in the projective vector[
EL1/2(f(γ), X)

]
γ∈C(S)

TOME 73 (2023), FASCICULE 5
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being independent ofX. This occurs if the image of f is contained in a single
ray in MF(S) (the positive multiples of an element), for example if ϕ is
a Dehn twist about a single curve α ∈ C(S). In that case, f(γ) = i(γ, α)α
and X · ϕn converges to[

EL1/2(i(γ, α)α,X)
]

γ∈C(S)
=
[
i(γ, α) EL1/2(α,X)

]
γ∈C(S)

= [ i(γ, α) ]γ∈C(S)

as n → ∞. By varying α and taking limits, it follows that [ i(γ, F ) ]γ∈C(S)
belongs to T GM(S) for any measured foliation F ∈ MF(S). That is, the
Gardiner–Masur boundary contains the Thurston boundary of projective
measured foliations (both are subsets of the same projective space), as was
observed in [6, Theorem 7.1]. In the next section, we will give an example
of a Dehn multitwist ϕ where the limit of X · ϕn actually depends on X.

Lemma 3.1 can of course be applied to other sequences of mapping
classes. For instance, if ϕ is a pseudo-Anosov with horizontal and verti-
cal foliations H and V and stretch factor λ > 1, then for any γ ∈ C(S) the
sequence λ−nϕn(γ) converges to i(γ,V)

i(H,V) H as n → ∞. In this case, X · ϕn

converges to[
EL1/2

(
i(γ,V)
i(H,V) H, X

)]
γ∈C(S)

=
[
i(γ,V)
i(H,V) EL1/2(H, X)

]
γ∈C(S)

= [ i(γ,V) ]γ∈C(S)

as n → ∞, which is manifestly independent of X.
When this phenomenon happens, that is, when the limit in Lemma 3.1

is independent of X, we can promote convergence along sequences to con-
vergence along paths.

Proposition 3.5. — Suppose that ϕ ∈ MCG(S) is such that the se-
quence defined by ϕn := ϕn satisfies the hypotheses of Lemma 3.1 and is
such that the limit of X · ϕn as n → ∞ does not depend on X. Then
every continuous path ω : R → T (S) for which there is a T > 0 such that
ω(t+ T ) = ω(t) · ϕ for all t ∈ R converges to the same limit as t → ∞.

Proof. — Lemma 3.1 generalizes easily to sequences (Xn)∞
n=1 such that

Xn · ϕ−1
n converges to some X ∈ T (S) as n → ∞, with the conclusion that

Xn converges to [
EL1/2(f(γ), X)

]
γ∈C(S)

as n → ∞. By hypothesis, this limit L is independent of X.
To prove the result, it suffices to show that any sequence (tn)∞

n=1 ⊂ R
tending to infinity admits a subsequence such that ω(tnk

) → L as k → ∞.

ANNALES DE L’INSTITUT FOURIER
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For each n ⩾ 1, let mn ∈ Z be such that sn := tn − mnT belongs to the
interval [0, T ]. Then ω(tn) · ϕ−mn = ω(sn) for every n ⩾ 1. Since [0, T ] is
compact and ω is continuous, there is an s ∈ [0, T ] and a subsequence such
that snk

→ s and ω(snk
) → ω(s) as k → ∞. By the previous paragraph,

we get that ω(tnk
) → L as k → ∞. □

If ϕ is a Dehn twist about a curve α ∈ C(S), then the above proposi-
tion implies that every horocycle directed by a Jenkins–Strebel differential
with a single cylinder homotopic to α and every earthquake directed by α
converges to [ i(γ, α) ]γ∈C(S). This recovers [1, Theorem 17] and [11, Corol-
lary 3.2] respectively. If ϕ is a pseudo-Anosov, then we get that the axis
of ϕ converges to [ i(γ,V) ]γ∈C(S) in the forward direction, where V is the
vertical foliation. Since the foliations of a pseudo-Anosov are uniquely er-
godic, this also follows from [19, Corollary 2] or [28, Corollary 1]. On the
other hand, the result applies to all ϕ-invariant paths.

4. A divergent horocycle

Let S1 = R/Z and let C = S1 × [−1, 1]. Seal the top and bottom of C
shut via the relation (x, y) ∼ (−x, y) for all (x, y) ∈ S1 × {−1, 1} to create
a pillowcase, and remove the four corners (0,±1) and (1/2,±1) as well
as (0, 0) to get a five-times-punctured sphere X equipped with a quadratic
differential q coming from the differential dz2 on C. Applying the horocycle
flow ht to q results in a twisted punctured pillowcase denoted Xt.

Proposition 4.1. — The horocycle t 7→ Xt defined above does not
converge in the Gardiner–Masur compactification as t → ∞.

The proof proceeds by finding distinct limits of sequences going to infinity
along the path. This is sufficient since the projective space P

(
RC(X)

⩾0

)
is

Hausdorff, so that limits are unique when they exist.
Consider the homeomorphism ϕ obtained by applying a right Dehn twist

about each of the horizontal curves α and β at heights −1/2 and 1/2 in X.
Then Xs+n = Xs · ϕn for every s ∈ R and n ∈ Z. Indeed, ϕ can be realized
by the matrix

h1 =
(

1 1
0 1

)
and the marking for Xs+n is given by hs+n = hs ◦hn = hs ◦ϕn (recall that
mapping classes act on Teichmüller space on the right by pre-composing
the marking, while the horocycle flow acts on the left by post-composing
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charts with matrices). By Corollary 3.4, the sequence Xs+n converges to
the projective vector

(4.1) vs =
[
EL1/2 (i(γ, α)α+ i(γ, β)β,Xs)

]
γ∈C(S)

as n → ∞. We will show that the limit vs is not a constant function of s,
which implies Proposition 4.1.

We first observe that EL (α+ β,Xs) is constant equal to 2 since the qua-
dratic differential hsq has horizontal foliation α + β and area 2. Suppose
on the other hand that EL (α,Xs) is not constant in s. Then the projective
vector vs depends on s, since we can find simple closed curves η and ν in
X such that

i(η, α)α+ i(η, β)β = 2α and i(ν, α)α+ i(ν, β)β = 2(α+ β)

(see Figure 4.1). The ratio of the corresponding entries in vs is then

EL1/2 (α,Xs)
EL1/2 (α+ β,Xs)

= EL1/2 (α,Xs)√
2

,

which is non-constant by hypothesis.

α

β

η

X

ν

Figure 4.1. The punctured pillowcase X with some curves on it.

We have thus reduced Proposition 4.1 to showing that EL (α,Xs) is not
constant in s, which is our next result.
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Lemma 4.2. — The function s 7→ EL (α,Xs) attains a strict local max-
imum at zero.

Proof. — The curve α is invariant under the anti-conformal involution
of X given by (x, y) 7→ (−x, y) in cylinder coordinates. The embedded
annulus A ⊂ X realizing the extremal length of α is also invariant under
that symmetry since it is unique. It follows that A is disjoint from from the
top and bottom edges of the punctured pillowcase X. In other words, A is
contained in the punctured cyclinder B = S1 × (−1, 1)\{(0, 0)}. The latter
embeds conformally in Xs for every s ∈ R. Indeed, B is clearly invariant
under the horocycle flow. It is the identifications along its boundary that
change to (x, 1) ∼ (2s−x, 1) and (x,−1) ∼ (−2s−x,−1) in order to obtain
Xs (after puncturing at the folding points).

Since A embeds conformally in B and then in Xs (in the same homotopy
class as α), Theorem 2.1 tells us that

EL (α,Xs) ⩽ EL(A) = EL (α,X)

with equality if and only if the standard quadratic differential ψ on A

(which pulls back to dz2 in cylindrical coordinates) extends to a quadratic
differential on Xs. In turn, this happens if and only if the gluing used to
obtain Xs from B is isometric with respect to ψ.

X B Xs

Figure 4.2. The quadratic differential realizing the extremal length of
α on the punctured cylinder B extends to a quadratic differential on
X but not on Xs for any small s ̸= 0.
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The identifications (x, 1) ∼ (2s − x, 1) and (x,−1) ∼ (−2s − x,−1) on
the top and bottom boundaries are of course isometries with respect to the
quadratic differential dz2 on B, but we claim that there is a neighborhood
N of 0 in R such that they are not isometries with respect to ψ for any
s ∈ N\{0}. The main reason for this is that ψ is not rotationally symmetric.

We focus on the bottom boundary. Let h : S1 × (0,m) → A be a biholo-
morphism between a Euclidean cylinder and A chosen to be equivariant
under the symmetry (x, y) 7→ (−x, y), where the (x, y)-coordinates in the
target are those from B. This map h followed by the inclusion ι : A ↪→ B

extends to an odd analytic diffeomorphism g between the bottom circles of
S1 × (0,m) and B. Since g is odd, we have g′′(0) = 0. On the other hand,
g′′ is not constant equal to zero since ι ◦ h is not affine. By the identity
principle, there is a neighborhood U of 0 in S1 × {0} such that g′′(x) ̸= 0
for every x ∈ U \ {0}. We may assume that U is connected, in which case
we deduce that g′(u) ̸= g′(v) for every u, v ∈ U such that u < v < 0 or
0 < u < v by Rolle’s theorem.

In the cylinder coordinate S1 × (0,m), the pull-back h∗ψ becomes dz2.
Thus the line element

√
|ψ| induced by ψ on the bottom circle of B is the

push-forward of the Euclidean line element |dx| by g. If the identification
x ∼ −2s − x on the bottom of B is an isometry with respect to ψ, then
(g−1)′(x) = (g−1)′(−2s − x) for every x. If s > 0 is sufficiently small and
−2s < x < 0 then u = g−1(x) and v = g−1(−2s− x) are both in U , to the
left of 0, and satisfy

g′(u) = 1
(g−1)′(x) = 1

(g−1)′(−2s− x) = g′(v),

contradicting the previous paragraph. Similarly, if s is negative and suf-
ficiently close to zero then we can find a pair of points u, v ∈ U with
0 < u < v such that g′(u) = g′(v). This contradiction implies our claim
that there is a neighborhood N of 0 in R such that ψ does not extend
to a quadratic differential on Xs for any s ∈ N \ {0}. We conclude that
EL (α,Xs) < EL (α,X0) for every s ∈ N \ {0}. □

The above proof shows that EL (α,Xs) ⩽ EL (α,X0) for all s ∈ R. The
extremal length at s = 0 can be computed using Schwarz–Christoffel trans-
formations, and is approximately 0.8196442. The horizontal trajectories of
the corresponding quadratic differential are sketched in Figure 4.2.

As stated in the introduction, the function s 7→ EL(α,Xs) is periodic
since

EL (α,Xs+n) = EL (α,Xs · ϕn) = EL (ϕn(α), Xs) = EL (α,Xs)

ANNALES DE L’INSTITUT FOURIER



A DIVERGENT HOROCYCLE 1899

for every s ∈ R and n ∈ Z. Hence it has strict local maxima at all the
integers.

By a similar reasoning, the projective vector vs from Equation (4.1) is Z-
periodic (and in fact 1

2Z-periodic since ϕ has a square root preserving both
α and β) and invariant under s 7→ −s. We think that s 7→ vs is injective on
[0, 1/4] so that the horocycle t 7→ Xt accumulates onto an interval in the
Gardiner–Masur boundary. It would be interesting to find examples with
larger limit sets.

5. Lifting the example to higher complexity

Let Sg,p be an oriented surface of genus g with p punctures. The following
lemma is taken from [7, Lemma 7.1].

Lemma 5.1 (Gekhtman–Markovic). — If 3g − 3 + p > 1, then there is
a branched cover Sg,p → S0,5 that branches at all pre-images of marked
points that are not marked and induces an isometric embedding T (S0,5) ↪→
T (Sg,p).

We use this to export the example from Proposition 4.1 to all Teichmüller
spaces T (Sg,p) of complex dimension 3g − 3 + p > 1. We explain how this
works from the horofunction point of view as well as from the Gardiner–
Masur one.

First proof Theorem 1.1. — Let t 7→ Xt be the divergent horocycle
in S0,5 constructed in Proposition 4.1 and let ι : T (S0,5) → T (Sg,p) be
any isometric embedding induced by a branched cover (Lemma 5.1). Then
t 7→ ι(Xt) is a horocycle in T (Sg,p) since the SL(2,R)-action on quadratic
differentials commutes with the pull-back by the branched cover.

Let b ∈ T (S0,5) be any basepoint. We take ι(b) as the basepoint for
the horofunction compactification of T (Sg,p) (the choice of basepoint only
changes metric functionals by an additive constant). Suppose that ι(Xt)
converges to a horofunction h : T (Sg,p) → R as t → ∞. Then Xt converges
to the function h ◦ ι as t → ∞, a contradiction. Thus ι(Xt) diverges. □

Second proof Theorem 1.1. — Let π : Sg,p → S0,5 be a branched cover
and let ι : T (S0,5) → T (Sg,p) be the induced isometric embedding. For any
simple closed curve γ ∈ C(S0,5) and any X ∈ T (S0,5), we have the identity

EL(π−1(γ), ι(X)) = d · EL(γ,X)

where d is the degree of π. Indeed, if θ is the quadratic differential on X

whose horizontal foliation is measure-equivalent to γ, then the horizontal
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foliation of the pull-back differential π∗θ is measure-equivalent to π−1(γ)
and the area of π∗θ is d times that of θ.

Let t 7→ Xt be the divergent horocycle from Section 4 directed by the
quadratic differential q, with α, β, η, ν ⊂ X the same curves as in Figure 4.1.
Then there exists some m ∈ N such that for every s ∈ R and n ∈ Z we have
ι(Xs+mn) = ι(Xs) · ψn where ψ is a Dehn multitwist about π−1(α ∪ β).
Indeed, each component c of π−1(α ∪ β) covers either α or β with some
degree dc ∈ N, which may vary from one component to another. Thus, each
cylindrical component of π∗q corresponding to a curve c has height 1 and
circumference dc. If m is the least common multiple of the degrees dc, then
the matrix hm performs a right Dehn twist to the power m/dc about each
component c of π−1(α ∪ β).

In particular, the sequence ι(Xs+mn) converges to some limit ws in the
Gardiner–Masur compactification as n → ∞ (Corollary 3.4), but the limit
depends on s. Indeed, EL(π−1(α ∪ β), ι(Xs)) is constant while

EL(π−1(α), ι(Xs)) = d · EL(α,Xs)

is not by Lemma 4.2. The only difference with the proof of Proposition 4.1 is
that here π−1(η) and π−1(ν) are not necessarily simple closed curves in Sg,p

(they might not be connected). However, the map f : C(Sg,p) → MF(Sg,p)
defined by

f(γ) =
∑

c⊂π−1(α∪β)

m

dc
i(γ, c) c

(where the sum is over connected components) extends continuously to the
space of measured foliations MF(Sg,p). By fixing a small s ̸= 0 such that
EL(α,Xs) ̸= EL(α,X0) and by approximating π−1(η) and π−1(ν) with
simple closed curves γn, δn ∈ C(Sg,p) we get that

EL1/2 (f(γn), ι(Xs))
EL1/2 (f(δn), ι(Xs))

̸= EL1/2 (f(γn), ι(X0))
EL1/2 (f(δn), ι(X0))

if n is large enough, and hence that ws ̸= w0. Here we are using the fact
that

i(π−1(µ), c) = dc · i(µ, π(c))
for every µ ∈ C(S0,5) and c ∈ C(Sg,p), which implies that

f(π−1(η)) =
∑

c⊂π−1(α∪β)

m

dc
i(π−1(η), c) c = m

∑
c⊂π−1(α∪β)

i(η, π(c)) c

= m
∑

c⊂π−1(α)

i(η, α) c = 2mπ−1(α)

and similarly f(π−1(ν)) = 2mπ−1(α ∪ β). □
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6. Concluding remark

In [11, Section 6], Jiang and Su conjectured that there exist earthquakes
directed by disconnected multicurves that do not converge in the Gardiner–
Masur compactification. We agree with this intuition and further believe
that all earthquakes and horocycles diverge except for those directed by
indecomposable laminations or foliations.
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