A divergent horocycle in the horofunction compactification of the Teichmüller metric
[Un horocycle divergent dans le compactifié par horofonctions de la métrique de Teichmüller]
Annales de l'Institut Fourier, Tome 73 (2023) no. 5, pp. 1885-1902.

Nous donnons un exemple d’horocycle dand l’espace de Teichmüller de la sphère épointée cinq fois qui ne converge pas dans le compactifié de Gardiner–Masur, ou, de façon équivalente, dans le compactifié par horofonctions de la métrique de Teichmüller. Comme étape intermédiaire, nous exhibons une courbe simple fermée dont la longueur extrémale est périodique mais pas constante le long de l’horocycle. L’exemple se relève à tout espace de Teichmüller de dimension complexe supérieure à un par des constructions de revêtement.

We give an example of a horocycle in the Teichmüller space of the five-times-punctured sphere that does not converge in the Gardiner–Masur compactification, or equivalently in the horofunction compactification of the Teichmüller metric. As an intermediate step, we exhibit a simple closed curve whose extremal length is periodic but not constant along the horocycle. The example lifts to any Teichmüller space of complex dimension greater than one via covering constructions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3564
Classification : 32G15, 57K20
Keywords: Horocycle, horofunction, Teichmüller space, extremal length.
Mot clés : Horocycle, horofonction, espace de Teichmüller, longueur extrémale

Fortier Bourque, Maxime 1

1 Département de mathématiques et de statistique Université de Montréal 2920, chemin de la Tour, Montréal (QC) H3T 1J4 (Canada)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2023__73_5_1885_0,
     author = {Fortier Bourque, Maxime},
     title = {A divergent horocycle in the horofunction compactification of the {Teichm\"uller} metric},
     journal = {Annales de l'Institut Fourier},
     pages = {1885--1902},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {73},
     number = {5},
     year = {2023},
     doi = {10.5802/aif.3564},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3564/}
}
TY  - JOUR
AU  - Fortier Bourque, Maxime
TI  - A divergent horocycle in the horofunction compactification of the Teichmüller metric
JO  - Annales de l'Institut Fourier
PY  - 2023
SP  - 1885
EP  - 1902
VL  - 73
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3564/
DO  - 10.5802/aif.3564
LA  - en
ID  - AIF_2023__73_5_1885_0
ER  - 
%0 Journal Article
%A Fortier Bourque, Maxime
%T A divergent horocycle in the horofunction compactification of the Teichmüller metric
%J Annales de l'Institut Fourier
%D 2023
%P 1885-1902
%V 73
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3564/
%R 10.5802/aif.3564
%G en
%F AIF_2023__73_5_1885_0
Fortier Bourque, Maxime. A divergent horocycle in the horofunction compactification of the Teichmüller metric. Annales de l'Institut Fourier, Tome 73 (2023) no. 5, pp. 1885-1902. doi : 10.5802/aif.3564. https://aif.centre-mersenne.org/articles/10.5802/aif.3564/

[1] Alberge, V. Convergence of some horocyclic deformations to the Gardiner–Masur boundary, Ann. Acad. Sci. Fenn. Math., Volume 41 (2016) no. 1, pp. 439-455 | DOI | MR | Zbl

[2] Bourque, Maxime Fortier; Rafi, Kasra Non-convex balls in the Teichmüller metric, J. Differ. Geom., Volume 110 (2018) no. 3, pp. 379-412 | DOI | MR | Zbl

[3] Brock, Jeffrey; Leininger, Christopher; Modami, Babak; Rafi, Kasra Limit sets of Teichmüller geodesics with minimal nonuniquely ergodic vertical foliation, II, J. Reine Angew. Math., Volume 758 (2020), pp. 1-66 | DOI | MR | Zbl

[4] Chaika, Jon; Masur, Howard; Wolf, Michael Limits in 𝒫ℳℱ of Teichmüller geodesics, J. Reine Angew. Math., Volume 747 (2019), pp. 1-44 | DOI | MR | Zbl

[5] Fathi, Albert; Laudenbach, François; Poénaru, Valentin Thurston’s work on surfaces, Mathematical Notes, 48, Princeton University Press, Princeton, NJ, 2012, xvi+254 pages (translated from the 1979 French original by Djun M. Kim and Dan Margalit) | DOI | MR | Zbl

[6] Gardiner, Frederick P.; Masur, Howard Extremal length geometry of Teichmüller space, Complex Variables Theory Appl., Volume 16 (1991) no. 2-3, pp. 209-237 | DOI | MR | Zbl

[7] Gekhtman, Dmitri; Markovic, Vladimir Classifying complex geodesics for the Carathéodory metric on low-dimensional Teichmüller spaces, J. Anal. Math., Volume 140 (2020) no. 2, pp. 669-694 | DOI | MR | Zbl

[8] Hubbard, John; Masur, Howard Quadratic differentials and foliations, Acta Math., Volume 142 (1979) no. 3-4, pp. 221-274 | DOI | MR | Zbl

[9] Ivanov, Nikolai V. Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, Providence, RI, 1992, xii+127 pages (translated from the Russian by E. J. F. Primrose and revised by the author) | DOI | MR | Zbl

[10] Jenkins, James A. On the existence of certain general extremal metrics, Ann. Math. (2), Volume 66 (1957), pp. 440-453 | DOI | MR | Zbl

[11] Jiang, ManMan; Su, WeiXu Convergence of earthquake and horocycle paths to the boundary of Teichmüller space, Sci. China Math., Volume 59 (2016) no. 10, pp. 1937-1948 | DOI | MR | Zbl

[12] Kerckhoff, Steven P. The asymptotic geometry of Teichmüller space, Topology, Volume 19 (1980) no. 1, pp. 23-41 | DOI | MR | Zbl

[13] Kerckhoff, Steven P. The Nielsen realization problem, Ann. Math. (2), Volume 117 (1983) no. 2, pp. 235-265 | DOI | MR | Zbl

[14] Leininger, Christopher; Lenzhen, Anna; Rafi, Kasra Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, J. Reine Angew. Math., Volume 737 (2018), pp. 1-32 | DOI | MR | Zbl

[15] Lenzhen, Anna Teichmüller geodesics that do not have a limit in 𝒫ℳℱ, Geom. Topol., Volume 12 (2008) no. 1, pp. 177-197 | DOI | MR | Zbl

[16] Lenzhen, Anna; Modami, Babak; Rafi, Kasra Teichmüller geodesics with d-dimensional limit sets, J. Mod. Dyn., Volume 12 (2018), pp. 261-283 | DOI | MR | Zbl

[17] Liu, Lixin; Su, Weixu The horofunction compactification of the Teichmüller metric, Handbook of Teichmüller theory. Vol. IV (IRMA Lect. Math. Theor. Phys.), Volume 19, Eur. Math. Soc., Zürich, 2014, pp. 355-374 | DOI | MR | Zbl

[18] Miyachi, Hideki Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space, Geom. Dedicata, Volume 137 (2008), pp. 113-141 | DOI | MR | Zbl

[19] Miyachi, Hideki Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space II, Geom. Dedicata, Volume 162 (2013), pp. 283-304 | DOI | MR | Zbl

[20] Miyachi, Hideki Extremal length geometry, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, Eur. Math. Soc., Zürich, 2014, pp. 197-234 | DOI | MR | Zbl

[21] Miyachi, Hideki Lipschitz algebras and compactifications of Teichmüller space, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, Eur. Math. Soc., Zürich, 2014, pp. 375-413 | DOI | MR | Zbl

[22] Miyachi, Hideki Unification of extremal length geometry on Teichmüller space via intersection number, Math. Z., Volume 278 (2014) no. 3-4, pp. 1065-1095 | DOI | MR | Zbl

[23] Papadopoulos, A.; Su, W. On the Finsler structure of Teichmüller’s metric and Thurston’s metric, Expo. Math., Volume 33 (2015) no. 1, pp. 30-47 | DOI | MR | Zbl

[24] Renelt, Heinrich Konstruktion gewisser quadratischer Differentiale mit Hilfe von Dirichletintegralen, Math. Nachr., Volume 73 (1976), pp. 125-142 | DOI | MR | Zbl

[25] Strebel, Kurt Über quadratische Differentiale mit geschlossenen Trajektorien und extremale quasikonforme Abbildungen, Festband 70. Geburtstag R. Nevanlinna, Springer, Berlin, 1966, pp. 105-127 | DOI | MR | Zbl

[26] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl

[27] Walsh, Cormac The horoboundary and isometry group of Thurston’s Lipschitz metric, Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics), Volume 19, Eur. Math. Soc., Zürich, 2014, pp. 327-353 | DOI | MR | Zbl

[28] Walsh, Cormac The asymptotic geometry of the Teichmüller metric, Geom. Dedicata, Volume 200 (2019), pp. 115-152 | DOI | MR | Zbl

Cité par Sources :