Absolute sets of rigid local systems
Annales de l'Institut Fourier, Volume 73 (2023) no. 2, pp. 829-872.

The absolute sets of local systems on a smooth complex algebraic variety are the subject of a conjecture of Budur–Wang based on an analogy with special subvarieties of Shimura varieties. An absolute set should be the higher-dimensional generalization of a local system of geometric origin. We show that the conjecture for absolute sets of simple cohomologically rigid local systems reduces to the zero-dimensional case, that is, to Simpson’s conjecture that every such local system with quasi-unipotent monodromy at infinity and determinant is of geometric origin. In particular, the conjecture holds for this type of absolute sets if the variety is a curve or if the rank is two.

Les ensembles absolus de systèmes locaux sur une variété algébrique complexe lisse font l’objet d’une conjecture de Budur–Wang basée sur une analogie avec les sous-variétés spéciales des variétés de Shimura. Un ensemble absolu devrait être la généralisation en dimension supérieure d’un système local d’origine géométrique. Nous montrons que la conjecture pour les ensembles absolus de systèmes locaux simples cohomologiquement rigides se réduit au cas de la dimension zéro, c’est-à-dire à la conjecture de Simpson selon laquelle chaque système local de ce type avec monodromie quasi-unipotente à l’infini, ainsi que le déterminant, est d’origine géométrique. En particulier, la conjecture est vraie pour ces ensembles absolus si la variété est une courbe ou si le rang est deux.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3551
Classification: 14F05, 14F10, 14F45
Keywords: Absolute set, local system, logarithmic connection, rigid local system.
Mot clés : Ensemble absolu, système local, connexion logarithmique, système local rigide.

Budur, Nero 1, 2; Lerer, Leonardo A. 3; Wang, Haopeng 4

1 Department of Mathematics KU Leuven Celestijnenlaan 200B, 3001 Leuven (Belgium)
2 BCAM Mazarredo 14, 48009 Bilbao (Spain)
3 Département de Mathématiques d’Orsay Université Paris-Saclay F-91405 Orsay (France)
4 Department of Mathematics KU Leuven Celestijnenlaan 200B, 3001 Leuven, (Belgium)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2023__73_2_829_0,
     author = {Budur, Nero and Lerer, Leonardo A. and Wang, Haopeng},
     title = {Absolute sets of rigid local systems},
     journal = {Annales de l'Institut Fourier},
     pages = {829--872},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {73},
     number = {2},
     year = {2023},
     doi = {10.5802/aif.3551},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3551/}
}
TY  - JOUR
AU  - Budur, Nero
AU  - Lerer, Leonardo A.
AU  - Wang, Haopeng
TI  - Absolute sets of rigid local systems
JO  - Annales de l'Institut Fourier
PY  - 2023
SP  - 829
EP  - 872
VL  - 73
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3551/
DO  - 10.5802/aif.3551
LA  - en
ID  - AIF_2023__73_2_829_0
ER  - 
%0 Journal Article
%A Budur, Nero
%A Lerer, Leonardo A.
%A Wang, Haopeng
%T Absolute sets of rigid local systems
%J Annales de l'Institut Fourier
%D 2023
%P 829-872
%V 73
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3551/
%R 10.5802/aif.3551
%G en
%F AIF_2023__73_2_829_0
Budur, Nero; Lerer, Leonardo A.; Wang, Haopeng. Absolute sets of rigid local systems. Annales de l'Institut Fourier, Volume 73 (2023) no. 2, pp. 829-872. doi : 10.5802/aif.3551. https://aif.centre-mersenne.org/articles/10.5802/aif.3551/

[1] Beĭlinson, A. A.; Bernstein, J.; Deligne, P. Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, Paris, 1982, pp. 5-171 | MR | Zbl

[2] Budur, Nero; Gatti, Pietro; Liu, Yongqiang; Wang, Botong On the length of perverse sheaves and 𝒟-modules, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 62(110) (2019) no. 4, pp. 355-369 | MR | Zbl

[3] Budur, Nero; Wang, Botong Absolute sets and the decomposition theorem, Ann. Sci. Éc. Norm. Supér. (4), Volume 53 (2020) no. 2, pp. 469-536 | DOI | MR | Zbl

[4] Corlette, Kevin; Simpson, Carlos On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math., Volume 144 (2008) no. 5, pp. 1271-1331 | DOI | MR | Zbl

[5] Deligne, Pierre Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, 163, Springer-Verlag, Berlin-New York, 1970, iii+133 pages | DOI | MR | Zbl

[6] Demailly, J. P. Complex Analytic and Differential Geometry, Université de Grenoble I, 1997

[7] Esnault, Hélène; Groechenig, Michael Cohomologically rigid local systems and integrality, Selecta Math. (N.S.), Volume 24 (2018) no. 5, pp. 4279-4292 | DOI | MR | Zbl

[8] Esnault, Hélène; Kerz, Moritz Arithmetic subspaces of moduli spaces of rank one local systems, Camb. J. Math., Volume 8 (2020) no. 3, pp. 453-478 | DOI | MR | Zbl

[9] Esnault, Hélène; Kerz, Moritz Density of arithmetic representations of function fields (2020) (https://arxiv.org/abs/2005.12819)

[10] Esnault, Hélène; Viehweg, Eckart Logarithmic de Rham complexes and vanishing theorems, Invent. Math., Volume 86 (1986) no. 1, pp. 161-194 | DOI | MR | Zbl

[11] Esnault, Hélène; Viehweg, Eckart Semistable bundles on curves and irreducible representations of the fundamental group, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) (Contemporary Mathematics), Volume 241, Amer. Math. Soc., Providence, RI (1999), pp. 129-138 | DOI | MR | Zbl

[12] Hotta, Ryoshi; Takeuchi, Kiyoshi; Tanisaki, Toshiyuki D-modules, perverse sheaves, and representation theory, Progress in Mathematics, 236, Birkhäuser Boston, Inc., Boston, MA, 2008, xii+407 pages | DOI | MR | Zbl

[13] Katz, Nicholas M. Rigid local systems, Annals of Mathematics Studies, 139, Princeton University Press, Princeton, NJ, 1996, viii+223 pages | DOI | MR | Zbl

[14] Langer, Adrian; Simpson, Carlos Rank 3 rigid representations of projective fundamental groups, Compos. Math., Volume 154 (2018) no. 7, pp. 1534-1570 | DOI | MR | Zbl

[15] Lerer, Leonardo A. Cohomology jump loci and absolute sets for singular varieties (2020) (https://arxiv.org/abs/2011.14184)

[16] Lubotzky, Alexander; Magid, Andy R. Varieties of representations of finitely generated groups, Memoirs of the American Mathematical Society, 336, American Mathematical Society (AMS), Providence, RI, 1985, xi+117 pages | DOI | MR | Zbl

[17] Nitsure, Nitin Moduli of semistable logarithmic connections, J. Amer. Math. Soc., Volume 6 (1993) no. 3, pp. 597-609 | DOI | MR | Zbl

[18] Nitsure, Nitin Moduli of regular holonomic 𝒟-modules with normal crossing singularities, Duke Math. J., Volume 99 (1999) no. 1, pp. 1-39 | DOI | MR | Zbl

[19] Nitsure, Nitin; Sabbah, Claude Moduli of pre-𝒟-modules, perverse sheaves and the Riemann–Hilbert morphism. I, Math. Ann., Volume 306 (1996) no. 1, pp. 47-73 | DOI | MR | Zbl

[20] Ohtsuki, Makoto A residue formula for Chern classes associated with logarithmic connections, Tokyo J. Math., Volume 5 (1982) no. 1, pp. 13-21 | DOI | MR | Zbl

[21] Simpson, Carlos Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 3, pp. 361-401 | DOI | Numdam | MR | Zbl

[22] Simpson, Carlos Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994) no. 79, pp. 47-129 | DOI | Numdam | MR | Zbl

[23] Simpson, Carlos T. Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. (1994) no. 80, pp. 5-79 | DOI | Numdam | MR | Zbl

[24] Wang, H. Absolute sets of local systems, Ph. D. Thesis, KU Leuven (2021)

Cited by Sources: