In his work on representations of Thompson’s group , Vaughan Jones defined and studied the -colorable subgroup of . Later, Ren showed that it is isomorphic to the Brown–Thompson group . In this paper we continue with the study of the -colorable subgroup and prove that the quasi-regular representation of associated with the -colorable subgroup is irreducible. We show in addition that the preimage of under a certain injective endomorphism of is contained in three (explicit) maximal subgroups of of infinite index. These subgroups are different from the previously known infinite index maximal subgroups of , namely the parabolic subgroups that fix a point in , (up to isomorphism) the Jones’ oriented subgroup , and the explicit examples found by Golan.
Vaughan Jones a introduit et étudié un sous-groupe du groupe de Thompson dit le sous-groupe 3-colorable, apparu naturellement dans son travail sur les représentations unitaires de . Ren a montré que ce sous-groupe est isomorphe au groupe de Brown–Thompson. Ici, nous poursuivons l’étude du sous-groupe 3-colorable et démontrons que la représentation quasi-régulière de qui lui est associée est irréductible. Nous démontrons de plus que la préimage de par un certain endomorphisme injectif de est contenue dans trois sous-groupes maximaux de que nous construisons explicitement. Ces sous-groupes maximaux sont d’indice infini et sont des nouveaux exemples dans la liste des sous-groupes maximaux d’indice infini connus dans , tels les sous-groupes paraboliques fixant un point de l’intervalle , le sous-groupe orienté introduit par Jones, et les exemples construits par Golan.
Revised:
Accepted:
Published online:
Keywords: Thompson groups, Brown–Thompson groups, irreducible unitary representations, Jones representation, infinite index maximal subgroups, stabilizer subgroups, chromatic polynomial, closed subgroups.
Mot clés : Groupes de Thompson, groupes de Brown–Thompson, représentation unitaire irréductible de groupe, représentations de Jones, sous-groupe maximal d’indice infini, sous-groupe stabilisateur, polynôme chromatique, sous-groupe fermé.
Aiello, Valeriano 1; Nagnibeda, Tatiana 2
@article{AIF_2023__73_2_783_0, author = {Aiello, Valeriano and Nagnibeda, Tatiana}, title = {On the $3$-colorable subgroup $\protect \mathcal{F}$ and maximal subgroups of {Thompson{\textquoteright}s} group $F$}, journal = {Annales de l'Institut Fourier}, pages = {783--828}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {2}, year = {2023}, doi = {10.5802/aif.3555}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3555/} }
TY - JOUR AU - Aiello, Valeriano AU - Nagnibeda, Tatiana TI - On the $3$-colorable subgroup $\protect \mathcal{F}$ and maximal subgroups of Thompson’s group $F$ JO - Annales de l'Institut Fourier PY - 2023 SP - 783 EP - 828 VL - 73 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3555/ DO - 10.5802/aif.3555 LA - en ID - AIF_2023__73_2_783_0 ER -
%0 Journal Article %A Aiello, Valeriano %A Nagnibeda, Tatiana %T On the $3$-colorable subgroup $\protect \mathcal{F}$ and maximal subgroups of Thompson’s group $F$ %J Annales de l'Institut Fourier %D 2023 %P 783-828 %V 73 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3555/ %R 10.5802/aif.3555 %G en %F AIF_2023__73_2_783_0
Aiello, Valeriano; Nagnibeda, Tatiana. On the $3$-colorable subgroup $\protect \mathcal{F}$ and maximal subgroups of Thompson’s group $F$. Annales de l'Institut Fourier, Volume 73 (2023) no. 2, pp. 783-828. doi : 10.5802/aif.3555. https://aif.centre-mersenne.org/articles/10.5802/aif.3555/
[1] On the Alexander theorem for the oriented Thompson group , Algebr. Geom. Topol., Volume 20 (2020) no. 1, pp. 429-438 | DOI | MR | Zbl
[2] Arborescence of positive Thompson links, Pacific J. Math., Volume 316 (2022) no. 2, pp. 237-248 | DOI | MR | Zbl
[3] Jones representations of Thompson’s group arising from Temperley-Lieb-Jones algebras, Int. Math. Res. Not. IMRN (2021) no. 15, pp. 11209-11245 | DOI | MR | Zbl
[4] Graph polynomials and link invariants as positive type functions on Thompson’s group , J. Knot Theory Ramifications, Volume 28 (2019) no. 2, 1950006, 17 pages | DOI | MR | Zbl
[5] The Jones polynomial and functions of positive type on the oriented Jones–Thompson groups and , Complex Anal. Oper. Theory, Volume 13 (2019) no. 7, pp. 3127-3149 https://doi-org.proxy.library.vanderbilt.edu/10.1007/s11785-018-0866-6 | DOI | MR | Zbl
[6] The Homflypt polynomial and the oriented Thompson group, Quantum Topol., Volume 9 (2018) no. 3, pp. 461-472 https://doi-org.proxy.library.vanderbilt.edu/10.4171/QT/112 | DOI | MR | Zbl
[7] On spectral measures for certain unitary representations of R. Thompson’s group F, J. Funct. Anal., Volume 280 (2021) no. 1, 108777, 27 pages https://doi-org.proxy.library.vanderbilt.edu/10.1016/j.jfa.2020.108777 | DOI | MR | Zbl
[8] On the oriented Thompson subgroup and its relatives in higher Brown–Thompson groups, J. Algebra Appl., Volume 21 (2022) no. 7, 2250139, 21 pages | DOI | MR | Zbl
[9] Thompson’s group F (2007) (https://arxiv.org/abs/0708.3609)
[10] Conjugacy and dynamics in Thompson’s groups, Geom. Dedicata, Volume 169 (2014), pp. 239-261 https://doi-org.proxy.library.vanderbilt.edu/10.1007/s10711-013-9853-2 | DOI | MR | Zbl
[11] Finite index subgroups of R. Thompson’s group F (2007) (http://arxiv.org/abs/0711.1014)
[12] Pythagorean representations of Thompson’s groups, J. Funct. Anal., Volume 277 (2019) no. 7, pp. 2442-2469 https://doi-org.proxy.library.vanderbilt.edu/10.1016/j.jfa.2019.02.009 | DOI | MR | Zbl
[13] Finiteness properties of groups, J. Pure Appl. Algebra, Volume 44 (1987) no. 1-3, pp. 45-75 https://doi-org.proxy.library.vanderbilt.edu/10.1016/0022-4049(87)90015-6 | DOI | MR | Zbl
[14] Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), Volume 42 (1996) no. 3-4, pp. 215-256 | MR | Zbl
[15] Finite factor representations of Higman–Thompson groups, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 375-389 https://doi-org.proxy.library.vanderbilt.edu/10.4171/GGD/230 | DOI | MR | Zbl
[16] On the stabilisers of points in groups with micro-supported actions (2020) (to appear in J. Group Theory)
[17] The generation problem in Thompson group (2016) (https://arxiv.org/abs/1608.02572)
[18] On Jones’ subgroup of R. Thompson group , J. Algebra, Volume 470 (2017), pp. 122-159 https://doi-org.proxy.library.vanderbilt.edu/10.1016/j.jalgebra.2016.09.001 | DOI | MR | Zbl
[19] On subgroups of R. Thompson’s group , Trans. Amer. Math. Soc., Volume 369 (2017) no. 12, pp. 8857-8878 https://doi-org.proxy.library.vanderbilt.edu/10.1090/tran/6982 | DOI | MR | Zbl
[20] On the stabilizers of finite sets of numbers in the R. Thompson group , Algebra i Analiz, Volume 29 (2017) no. 1, pp. 70-110 https://doi-org.proxy.library.vanderbilt.edu/10.1090/spmj/1482 | DOI | MR | Zbl
[21] Finitely presented infinite simple groups, Notes on Pure Mathematics, Australian National University, Department of Mathematics, I.A.S., Canberra, 1974 no. 8, vii+82 pages | MR
[22] Planar algebras, I, New Zealand J. Math., Volume 52 (2021 [2021–2022]), pp. 1-107 | DOI | MR | Zbl
[23] Some unitary representations of Thompson’s groups and , J. Comb. Algebra, Volume 1 (2017) no. 1, pp. 1-44 https://doi-org.proxy.library.vanderbilt.edu/10.4171/JCA/1-1-1 | DOI | MR | Zbl
[24] A no-go theorem for the continuum limit of a periodic quantum spin chain, Comm. Math. Phys., Volume 357 (2018) no. 1, pp. 295-317 https://doi-org.proxy.library.vanderbilt.edu/10.1007/s00220-017-2945-3 | DOI | MR | Zbl
[25] On the construction of knots and links from Thompson’s groups, Knots, low-dimensional topology and applications (Springer Proc. Math. Stat.), Volume 284, Springer, Cham, 2019, pp. 43-66 https://doi-org.proxy.library.vanderbilt.edu/10.1007/978-3-030-16031-9_3 | DOI | MR | Zbl
[26] Irreducibility of the Wysiwyg representations of Thompson’s groups, Representation theory, mathematical physics, and integrable systems (Progr. Math.), Volume 340, Birkhäuser/Springer, Cham, 2021, pp. 411-430 | DOI | MR | Zbl
[27] The theory of unitary group representations, University of Chicago Press, Chicago, Ill.-London, 1976, x+372 pages (Based on notes by James M. G. Fell and David B. Lowdenslager of lectures given at the University of Chicago, Chicago, Ill., 1955, Chicago Lectures in Mathematics) | MR | Zbl
[28] Categories generated by a trivalent vertex, Selecta Math. (N.S.), Volume 23 (2017) no. 2, pp. 817-868 https://doi-org.proxy.library.vanderbilt.edu/10.1007/s00029-016-0240-3 | DOI | MR | Zbl
[29] On Jones’ subgroup of R. Thompson’s group , Internat. J. Algebra Comput., Volume 28 (2018) no. 5, pp. 877-903 https://doi-org.proxy.library.vanderbilt.edu/10.1142/S0218196718500388 | DOI | MR | Zbl
[30] Regular Isotopy Classes of Link Diagrams From Thompson’s Groups (2020) (https://arxiv.org/abs/2008.11052)
[31] From skein theory to presentations for Thompson group, J. Algebra, Volume 498 (2018), pp. 178-196 https://doi-org.proxy.library.vanderbilt.edu/10.1016/j.jalgebra.2017.11.018 | DOI | MR | Zbl
[32] Some graphs related to Thompson’s group , Combinatorial and geometric group theory (Trends Math.), Birkhäuser/Springer Basel AG, Basel, 2010, pp. 279-296 https://doi-org.proxy.library.vanderbilt.edu/10.1007/978-3-7643-9911-5_12 | DOI | MR | Zbl
[33] Schreier graphs of actions of Thompson’s group on the unit interval and on the Cantor set, Geom. Dedicata, Volume 175 (2015), pp. 355-372 https://doi-org.proxy.library.vanderbilt.edu/10.1007/s10711-014-9951-9 | DOI | MR | Zbl
Cited by Sources: