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ABSOLUTE SETS OF RIGID LOCAL SYSTEMS

by Nero BUDUR, Leonardo A. LERER & Haopeng WANG (*)

Abstract. — The absolute sets of local systems on a smooth complex algebraic
variety are the subject of a conjecture of Budur–Wang based on an analogy with
special subvarieties of Shimura varieties. An absolute set should be the higher-
dimensional generalization of a local system of geometric origin. We show that the
conjecture for absolute sets of simple cohomologically rigid local systems reduces
to the zero-dimensional case, that is, to Simpson’s conjecture that every such local
system with quasi-unipotent monodromy at infinity and determinant is of geomet-
ric origin. In particular, the conjecture holds for this type of absolute sets if the
variety is a curve or if the rank is two.

Résumé. — Les ensembles absolus de systèmes locaux sur une variété algébrique
complexe lisse font l’objet d’une conjecture de Budur–Wang basée sur une analo-
gie avec les sous-variétés spéciales des variétés de Shimura. Un ensemble absolu
devrait être la généralisation en dimension supérieure d’un système local d’origine
géométrique. Nous montrons que la conjecture pour les ensembles absolus de sys-
tèmes locaux simples cohomologiquement rigides se réduit au cas de la dimension
zéro, c’est-à-dire à la conjecture de Simpson selon laquelle chaque système local de
ce type avec monodromie quasi-unipotente à l’infini, ainsi que le déterminant, est
d’origine géométrique. En particulier, la conjecture est vraie pour ces ensembles
absolus si la variété est une courbe ou si le rang est deux.

1. Introduction

Let X be a smooth complex algebraic variety. The Riemann–Hilbert
correspondence establishes an equivalence between complex local systems
on the complex manifold underlying X and regular algebraic flat connec-
tions. For a set S of isomorphism classes of complex local systems on X

and σ ∈ Gal(C/Q), one constructs a set Sσ of isomorphism classes of lo-
cal systems on the complex manifold underlying the conjugate variety Xσ
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by applying σ to the algebraic flat connections corresponding to the ele-
ments of S. Then S is called absolute Q-constructible by [3] if for every
σ ∈ Gal(C/Q) the set Sσ is Q-constructible in an appropriate sense, see
Definition 4.2. This is a somewhat different definition than the notion of ab-
soluteness introduced by Simpson [21] in the projective case. If S is a subset
of the complex points of the Betti moduli space MB(X, r) parametrizing
isomorphism classes of semisimple complex rank r local systems on X,
then S is absolute Q-constructible if and only if Sσ is Q-constructible in
MB(Xσ, r) for every σ ∈ Gal(C/Q), see Proposition 4.3. Similarly one can
define absolute Q-closed sets using the Zariski topology on MB(Xσ, r). One
has:

Conjecture 1.1 (Conjecture A). — Let X be a smooth complex alge-
braic variety, and r > 0 an integer. The following hold in MB(X, r):

(1) The collection of absolute Q-constructible subsets is generated from
the absolute Q-closed subsets via finite sequences of taking unions,
intersections, and complements; the Euclidean (or equivalently, the
Zariski) closure of an absolute Q-constructible set is absolute Q-
closed; and an irreducible component of an absolute Q-closed subset
is absolute Q-closed.

(2) Any non-empty absolute Q-constructible subset contains a Zariski
dense subset of absolute Q-points.

(3) A point is an absolute Q-point if and only if it is a local system of
geometric origin (in the sense of [1, 6.2.4]).

(4) The Zariski closure of a set of absolute Q-points is Q-pseudo-iso-
morphic to an absolute Q-constructible subset of some MB(X ′, r′),
for possibly a different smooth complex algebraic variety X ′ and
rank r′. Moreover, the Q-pseudo-isomorphism restricts to a bijec-
tion between the sets of absolute Q-points. (See Section 2 for the
definition of Q-pseudo-morphisms.)

The conjecture was stated in [3], only the last part is altered slightly.
(3) had been essentially conjectured by Simpson.

It was shown in [3] that Conjecture A holds if the rank r is 1, or if X

is a complex affine torus or an abelian variety. Moreover, (1) holds if X is
projective.

If M is an absolute Q-constructible subset of MB(X, r), then one can
pose Conjecture A for M , that is with M replacing MB(X, r) in the state-
ment. This is also the reason why we slightly altered A4 compared with
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the original statement. The resulting statement is a subconjecture of Con-
jecture A. Our first result is for M = Ms

B(X, r), the submoduli of simple
local systems:

Theorem 1.2. — Consider Conjecture A for Ms
B(X, r) when X is a

smooth complex quasi-projective variety. Then (1) holds.

This implies for example that the irreducible components of Ms
B(X, r)

are in bijection with those of Ms
B(Xσ, r). At the moment we cannot prove

this, nor (1), for MB(X, r).
Next we address the submoduli M cohrig

B (X, r) of Ms
B(X, r) consisting

of cohomologically rigid simple local systems, when X has a fixed good
compactification. These are local systems that are uniquely, even at infini-
tesimal level, determined by the conjugacy classes of the local monodromy
at infinity and by the determinant, see Definition 6.1. It follows from [3]
that M cohrig

B (X, r) is absolute Q-constructible in MB(X, r). The main re-
sults are:

Theorem 1.3. — Consider Conjecture A for M cohrig
B (X, r). Then Con-

jectures (1), (2), (4) hold. Moreover, Conjecture (3) is equivalent to Simp-
son’s conjecture that cohomologically rigid simple local systems with quasi-
unipotent determinant and conjugacy classes at infinity are of geometric
origin.

Since Simpson’s conjecture is proved in the curve case by [13] and in the
rank 2 case by [4], a direct consequence is:

Theorem 1.4. — Conjecture A holds for M cohrig
B (X, r) if X is a curve

or if the rank r = 2.

Same proof yields:

Theorem 1.5. — Conjecture A holds for MB(P1 \ {0, 1, ∞}, 2).

Moreover, we illustrate the intersection of the two cases considered in
Theorem 1.4 by giving an explicit description of the moduli of rank 2 rigid
simple local systems on P1 minus a finite set of points in Proposition 6.5.

For the proof of Theorem 1.2 we use the Riemann–Hilbert correspon-
dence in moduli form. By using the de Rham moduli space of semistable
logarithmic connections constructed by Nitsure [17] and Simpson [22, 23],
the correspondence takes the form of an analytic map RH from the de
Rham moduli to the Betti moduli. We follow [3] and translate absolute-
ness in terms of the analytic RH map. However, [3] overlooked the fact
that, beyond rank 1 or the case when X is projective, RH might not be
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surjective, although we do not know of any such example. For the lack of
a proof of surjectivity, we therefore take the time to bring a small list of
necessary corrections to [3]. To finish the proof of Theorem 1.2, we then
use the fact that RH is a surjective local analytic isomorphism from a good
submoduli of the de Rham moduli onto the submoduli Ms

B(X, r) of simple
local systems, an observation going back to Nitsure–Sabbah [19] and Nit-
sure [18]. Next, the defining property of being cohomologically rigid will
imply that the eigenvalues at infinity and the determinant give a descrip-
tion up to a quasi-finite morphism of absolute subsets of M cohrig

B (X, r) in
terms of torsion-translated complex affine subtori in some (C∗)N . We can
then finish the proof of Theorem 1.3 using the results of [3].

A weak and strong analog of Conjecture (2) in an arithmetic context
was proposed in [9]. Thus [9, Theorem A] which proves the weak arith-
metic version for curves bears some similarity to Theorem 1.4. Moreover,
[9, Theorem B] which proves the strong arithmetic version, as well as its
proof, bears similarity to Theorem 1.5 and its proof. It is however not clear
to us if one can pass from the arithmetic or complex version to the other.

Acknowledgement

We thank J. António, H. Esnault, J.-B. Teyssier, B. Wang, and the referee
for useful comments.

2. Notation

Let K ⊂ C be a subfield. A C-scheme of finite type defined over K is the
base change to C of a K-scheme of finite type. A morphism defined over
K between C-schemes of finite type defined over K is the base change to
C of a morphism of finite type K-schemes. A C-subscheme is defined over
K if the embedding morphism is defined over K. Subschemes are assumed
to be locally closed in this article. For a scheme Y over K, the set of C-
points Y (C) = HomSch(K)(Spec(C), Y ) agrees with the set of C-points of
the base change of Y to C. If Y is of finite type over K, a K-constructible
(respectively, K-closed) subset of Y (C) is a finite union of sets of C-points
of K-subschemes (respectively, closed K-subschemes) of Y . A K-pseudo-
morphism between between two K-constructible sets is a map whose graph
is K-constructible. Thus two K-constructible sets are K-pseudo-isomorphic
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if there exist finite bijective partitions of each into sets of C-points of K-
subschemes such that two parts corresponding to each other are isomorphic
C-schemes and the isomorphism is defined over K. A Z-valued function on
a K-constructible set is a K-constructible function if it has finite image
and the inverse image of every k ∈ Z is K-constructible.

Let F be a functor from the category of K-schemes to the category of sets.
A K-scheme Y is a fine moduli space for F if it represents F , that is, there is
a natural isomorphism of functors F → Hom(_, Y ) =: Y (_). A K-scheme
Y corepresents F if there exists a natural transformation F → Y (_) such
that for every natural transformation F → Y ′(_) into a K-scheme Y ′, there
is a factorization through a unique morphism of K-schemes Y → Y ′. A K-
scheme Y is a coarse moduli space for F if it corepresents F and the natural
transformation gives a bijection F (L) = Y (L) for every algebraically closed
field extension L of K. A scheme Y universally corepresents F if for every
morphism of schemes Z → Y , Z corepresents the fiber product functor
Z(_) ×Y (_) F .

If G is a reductive algebraic group acting on a C-scheme Y , and if Y → X

is a G-invariant morphism of C-schemes, then X is a (universal) categorical
quotient if X together with the induced natural transformation F → X

(universally) corepresents the quotient functor F (T ) = Y (T )/G(T ) on C-
schemes.

For a C-scheme of finite type X, we denote by Xan the associated com-
plex analytic space and by X(C)an the associated reduced complex analytic
space. An analytic subspace of X will always mean one of Xan. If X is re-
duced, Xan = X(C)an.

Varieties will always be assumed irreducible.

3. Betti moduli spaces

In this section we recall basic facts about Betti moduli spaces. Let X be a
smooth complex algebraic variety. We fix a base point x0 ∈ X. By the fun-
damental group π1(X, x0) and by local systems (always finite-dimensional
complex unless mentioned otherwise) on X, we always mean with respect
to the underlying Euclidean topology, that is, on Xan.

Let r > 0 be an integer. The space of representations of rank r of the
fundamental group π1(X, x0) is

RB(X, x0, r) := Hom(π1(X, x0), GLr),

TOME 73 (2023), FASCICULE 2



834 Nero BUDUR, Leonardo A. LERER & Haopeng WANG

the C-scheme representing the functor associating to a C-scheme T the set

Hom(π1(X, x0), GLr(Γ(T, OT ))).

Since complex algebraic varieties have the homotopy type of finite-type
CW complexes, the group π1(X, x0) is finitely presented. Fixing generators
γ1, . . . , γm of π1(X, x0), one has an embedding of the representation space
as a closed affine subscheme of GL×m

r defined over Q, which on the complex
points is

(3.1) RB(X, x0, r)(C) ↪→ GLr(C)×m, ρ 7→ (ρ(γ1), . . . , ρ(γm))

and the equations satisfied come from the relations among the generators.
The representation space RB(X, x0, r) can also be interpreted as the fine

moduli space of framed local systems of rank r on X. A family over a
C-scheme T of framed local systems on X is a locally constant sheaf L

of Γ(T, OT )-modules on Xan, together with an isomorphism ξ : L|x0
∼−→

Γ(T, OT )⊕r.
The group GLr(C) acts on RB(X, x0, r) by simultaneous conjugation.

The moduli space of local systems of rank r is defined as the affine quotient
of RB(X, x0, r) with respect to this action,

MB(X, r) = RB(X, x0, r) <GLr

:= Spec
(

H0 (
RB(X, x0, r), ORB(X,x0,r)

)GLr(C)
)

.

This is a universal categorical quotient, see [23, Proposition 6.1]. The em-
bedding (3.1) descends to a closed embedding of affine schemes defined
over Q

(3.2) MB(X, r) ↪→ GL×m
r <GLr.

The complex points of MB(X, r) are in one-to-one correspondence with
the isomorphism classes of complex semisimple local systems of rank r

on X. We recall that a local system L is called simple, or irreducible, if
the associated representation π1(X, x0) → GL(L|x0) is so, and L is called
semisimple if it is a direct sum of simple local systems. We denote by

qB : RB(X, x0, r) → MB(X, r)

the quotient morphism. The fiber over a complex point L ∈ MB(X, r)(C)
consists of all framed C-local systems with semi-simplification isomorphic
to L.

For a representation ρ : π1(X, x0) → GLr(C) we denote the associated
local system on X by Lρ. The corresponding class in MB(X, r)(C) will be
sometimes denoted [ρ].
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The quotient map restricts to a morphism qB : Rs
B(X, x0, r) → Ms

B(X, r)
on the open subschemes of RB(X, x0, r) and MB(X, r), respectively, whose
closed points correspond to simple local systems, since Rs

B(X, x0, r) is also
the GIT-stable locus.

We define

RB(X, x0) :=
∐

r

RB(X, x0, r) and MB(X) :=
∐

r

MB(X, r),

the disjoint unions of schemes.

Example 3.1.

(1) If X = P1 \ {D1, . . . , Dm+1}, the complement of m + 1 > 1 distinct
points, then (3.2) is an isomorphism.

(2) (a) ([16, Example 1.35]) If x11, x12, x21, x22, x31, x32 denote the
pairwise-unordered coordinates on ((C∗)(2))3, then one has iso-
morphisms

GL2(C)×2 <GL2(C) ∼−→ V (x11x12x21x22x31x32 − 1) ∼−→ C3 × (C∗)2

with composition

[(g1, g2)] 7→ (tr(g1), tr(g2), tr(g1g2), det(g1)−1, det(g2)−1).

(b) ([24]) With X = P1 \ {0, 1, ∞}, then

MB(X, 2) \ Ms
B(X, 2)

≃ V (x11x12x21x22x31x32 − 1) ∩ V

 ∏
i,j,k=1,2

(x1ix2jx3k − 1)

 .

4. Absolute sets

Absoluteness is an abstract categorical notion introduced in [3]. The
absolute sets of local systems are subject to Conjecture A from the Intro-
duction, also called the Special Varieties Package Conjecture in [3]. The
Betti moduli spaces serve as concrete ambient spaces for absolute sets of
local systems. We recall in this section the definition of absolute sets and
some of their properties.

TOME 73 (2023), FASCICULE 2



836 Nero BUDUR, Leonardo A. LERER & Haopeng WANG

4.1. Unispaces

One has first a categorical notion of constructible (respectively, closed)
subset of S of C (C) relative to a functor

C : Algft,reg(C) → Set

from the category of finite type regular C-algebras to sets. Such C is called
a unispace. If R → R′ is a morphism in Algft,reg(C) and FR ∈ C (R),
the image of FR in C (R′) under the morphism C (R) → C (R′) will be
denoted FR ⋆R R′. We can think of FR as a family of objects from C (C)
parametrized by Spec(R).

Then S ⊂ C (C) is called constructible (respectively, closed) with respect
to the unispace C if for every R ∈ Algft,reg(C) and every FR ∈ C (R), the
subset of maximal ideals

{m ∈ Spec(R)(C) | FR ⋆R R/m ∈ S}

is Zariski constructible (respectively, closed) in the complex variety associ-
ated to R.

If C ′ → C is a natural transformation between unispaces and S ⊂ C (C)
is closed with respect to C , then the inverse image of S in C ′(C) is closed
with respect to C ′.

One can also define the notion of a morphism of unispaces C ′ → C such
that the inverse image of a constructible S ⊂ C (C) is constructible with
respect to C ′, and such that when C , C ′ are represented by finite type C-
schemes, a morphism of unispaces is equivalent to a pseudo-morphism, [3,
Section 2]. Moreover, there is a natural bijection between functions C (C) →
Z that are constructible with respect to the unispace C and morphisms from
C to the unispace of Z-valued constructible functions

Zcstr : R 7→ {constructible maps Spec(R)(C) → Z}

with ⋆RR′ being the composition with Spec(R′)(C) → Spec(R)(C).
The simplest non-trivial unispace is the unispace of finite free modules

Modfree : R 7→ {finite free R − modules}/≃

where ⋆RR′ is the usual tensor product ⊗RR′. In fact composition of the
rank map on Modfree(C) with any bijection N ∼−→ Z is a constructible
function with respect to Modfree, and it corresponds to an isomorphism of
unispaces Modfree

∼−→ Zcstr.
Thus for any map f : C (C) → Z which comes from a morphism of unis-

paces C → Modfree, and for any k ∈ Z, the subset f−1(k) is constructible
with respect to C .
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For a complex algebraic variety X there is a natural transformation of
unispaces

(4.1) LocSysfree(X, _) → Db
c(X, _).

The first unispace associates to R ∈ Algft,reg(C) the isomorphism classes
of local systems LR of finite free R-modules on X, and for a morphism
R → R′ the operation ⋆RR′ is the usual tensor product ⊗RR′. The second
unispace associates to R the isomorphism classes of objects in the bounded
derived category of constructible sheaves of finite type R-modules on Xan,
and the operation ⋆RR′ is the derived tensor product ⊗L

R R′. The stability
of Db

c(X, _) under the derived tensor product is precisely the reason why in
the definition of unispaces one restricts to regular and not arbitrary finite
type C-algebras. The above natural transformation sends LR to itself as a
complex concentrated only in degree 0.

It turns out that “all” natural functors on derived categories Db
c(X,C)

extend to give morphisms of unispaces, [3, Section 5]. They are constructible
functors, that is, via taking inverse image they preserve constructibility
with respect to the fixed unispaces. In fact most of the times these functors
give natural transformations of unispaces, so they are continuous functors,
that is, via taking inverse image they preserve closedness with respect to
the fixed unispaces. “All” here means a list of commonly used functors,
see [3, Section 5] and [2].

One produces in this way many subsets of LocSysfree(X,C) =
LocSys(X,C) that are constructible or closed with respect to the unis-
pace LocSysfree(X, _) since LocSysfree(pt, _) = Modfree . For any complex
variety Y with a natural transformation Y (_) → LocSysfree(X, _), one
produces thus constructible or Zariski closed subsets of Y (C) via inverse
image. Taking Y = RB(X, x0) and projecting further via the quotient map
qB : RB(X, x0) → MB(X), one produces constructible or Zariski closed
subsets of MB(X)(C). For example, the cohomology jump locus

{L ∈ MB(X, r)(C) | dim Hi(X, L) ⩾ k}

is Zariski closed in MB(X, r) for all r, i, k ∈ N, since it is obtained from the
subset

{L ∈ LocSys(X,C) | dim Hi(X, L) ⩾ k}
which is closed with respect to the unispace LocSysfree(X, _).

If K is a subfield of C, all the notions from above, which correspond to
the case K = C, can be updated to be defined over K. The category of
C-unispaces defined over K contains as a full subcategory the category of C-
schemes of finite type defined over K together with K-pseudo-morphisms.
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For example, the unispaces from (4.1) are defined over Q. One produces
this way many subsets of LocSys(X,C) that are Q-constructible or Q-closed
with respect to the unispace LocSysfree(X, _), if one uses natural functors
that are defined over Q in the above sense, otherwise the field of definition
has to be enlarged. For example, the operation on Db

c(X,C) given by the
derived tensor with the complexification M ⊗K C of a K-local system M

lifts to a morphism defined over K, but not over a strictly smaller subfield
of K, of unispaces defined over K. In fact, (_) ⊗L

C M is a K-continuous
functor on Db

c(X,C) with respect to the unispace Db
c(X, _) defined over

K, [3, Theorem 5.14.3]. This gives for example that

{L ∈ MB(X, r)(C) | dim Hi(X, L ⊗K M) ⩾ k}

is Zariski K-closed but not Q-closed if Q ̸= K.

4.2. Absolute sets

We assume now that X is a smooth complex algebraic variety. For each
σ ∈ Gal(C/Q), let Xσ → X be the base change of X via σ. This map is typ-
ically not continuous in the Euclidean topology since the only continuous
automorphisms of C are the identity and the complex conjugation. However
it is a homeomorphism for the Zariski topology, and it is an isomorphism
of Q-schemes. Consider the diagram

(4.2)

Db
rh(DX)

RH
��

pσ // Db
rh(DXσ )

RH
��

Db
c(X,C) Db

c(Xσ,C).

Here Db
rh(DX) is the bounded derived category of algebraic regular holo-

nomic DX -modules, RH is the Riemann–Hilbert equivalence, and pσ is the
pullback of DX -modules under the base change over σ, also an equiva-
lence of categories. On isomorphism classes the maps induced by the dia-
gram (4.2) are bijections.

For a subset T of the isomorphism classes of objects in Db
c(X,C), define

(4.3) T σ := RH ◦ pσ ◦ RH−1(T ),

a subset of the isomorphism classes of objects in Db
c(Xσ,C).
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Definition 4.1. — Let C : σ 7→ CXσ be the assignment to every σ ∈
Gal(C/Q) of a sub-unispace of Db

c(Xσ, _) defined over K, see [3, 3.3].
We also assume that for all σ ∈ Gal(C/Q), CX(C)σ = CXσ (C). Then
a subset T ⊂ CX(C) is absolute K-constructible (respectively, absolute
K-closed) with respect to C , or simply with respect to the unispace CX

if the assignment C is clear, if the set T σ ⊂ CXσ (C) is K-constructible
(respectively, K-closed) with respect to CXσ for all σ ∈ Gal(C/Q).

In practice, “all” natural functors on (bounded derived) categories of
constructible sheaves on Xan have algebraic D-module counterparts. Their
source and target dictate in each case the choice of unispace CX . Compati-
bility with the algebraic counterparts ensures that absolute
K-constructibility (respectively, absolute K-closedness) is preserved by tak-
ing inverse image, in which case the functors are called absolute
K-constructible (respectively, absolute K-continuous) functors. Here K is
mostly Q, unless we deal with a functor like (_) ⊗L

C M above with M

defined over K instead of Q, see [3, Section 6].

4.3. Absolute sets of local systems

Let X be a smooth complex algebraic variety. Denote by

l : RB(X, x0)(C) → LocSys(X,C)

the map forgetting the frame and keeping the isomorphism class of the
local system. Note that l lifts to a natural transformation l : RB(X, x0) →
LocSysfree(X, _) defined over Q of unispaces defined over Q.

Recall that there is the GIT quotient map qB : RB(X, x0) → MB(X).
Then qB(l−1(T )) ⊂ MB(X)(C) is the set of isomorphism classes of the
semisimplifications of the local systems in T if T ⊂ LocSys(X,C).

If M ⊂ MB(X)(C), we let

M̃ := l(q−1
B (M)) ⊂ LocSys(X,C)

be the subset consisting of isomorphism classes of local systems with semi-
simplifications in M . We define the unispace

MX : R 7→ {LR ∈ LocSysfree(X, R) | LR⊗RR/m ∈ M̃, ∀m ∈ Spec(R)(C)}

together with the usual base change. Then MX(C) = M̃ and MX is a
sub-unispace of LocSysfree(X, _) defined over K. If M = MB(X)(C), then
MX = LocSysfree(X, _). We let MXσ be unispace associated to Mσ, where
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Mσ is defined as in (4.3). Note that (_)̃ and (_)σ commute. The assign-
ment M : σ 7→ MXσ allows us to define what it means for S ⊂ M̃ to be
an absolute K-constructible (respectively, absolute K-closed) with respect
to M , by Definition 4.1.

Definition 4.2. — Let M ⊂ MB(X)(C). A subset S of M is called
absolute K-constructible (respectively, absolute K-closed) in M if S =
qB(l−1(T )) for some subset T of M̃ such that T is absolute K-constructible
(respectively, absolute K-closed) with respect to the unispace MX . If M =
MB(X)(C), we simply say that S is absolute K-constructible (respectively,
absolute K-closed), cf. [3, Definition 7.3.1].

We will show the following unispace-free characterization:

Proposition 4.3. — Let M ⊂ MB(X)(C) be absolute K-constructible.
Let S ⊂ M . Then S is absolute K-constructible (respectively, absolute K-
closed) in M iff Sσ is K-constructible (respectively, K-closed) in Mσ for
all σ ∈ Gal(C/Q).

Remark 4.4. — Note that taking M = MB(X)(C) we have a character-
ization of absolute subsets in MB(X)(C). However, without the unispace
approach there was a priori no reason why one can produce subsets with this
characterization from general functors on derived categories which might
lack Betti or de Rham moduli spaces.

Since (4.2) induces bijections on isomorphism classes, a consequence of
the proposition is:

Lemma 4.5. — The following hold in MB(X, r)(C):
• The intersection of (possibly infinitely-many) absolute K-closed

subsets is absolute K-closed.
• The union of finitely-many absolute K-closed subsets is absolute

K-closed.
• The intersection and the union of finitely-many absolute

K-constructible subsets is absolute K-constructible.
• The complement of an absolute K-constructible subset in an abso-

lute K-constructible subset is an absolute K-constructible set.

Hence one can define a topology depending on K on MB(X, r)(C) whose
closed sets are the absolute K-closed subsets. It is part of the conjecture on
absolute sets, see 4.4, that the family of absolute Q-constructible subsets is
equal to the subfamily of constructible sets in the sense of this new topology
for K = Q.
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As a consequence of Proposition 4.3, one obtains the following relation
between absoluteness in M with absoluteness in MB(X)(C):

Lemma 4.6.
(1) If S ⊂ MB(X)(C) is absolute K-constructible (respectively abso-

lute K-closed) in MB(X)(C), then the intersection S∩M is absolute
K-constructible (respectively K-closed) in M .

(2) Let M ⊂ MB(X)(C) be absolute K-constructible. If S ⊂ M , then
it is an absolute K-constructible subset of M iff it is absolute K-
constructible subset of MB(X)(C).

We prove Proposition 4.3 after a few lemmas.

Lemma 4.7. — Let T ⊂ LocSys(X,C), S = qB(l−1(T )), and T̃ =
l(q−1

B (S)) = S̃.
(1) If T is K-closed with respect to LocSysfree(X, _) then T contains

all the semisimplifications of its elements, and S is K-closed in
MB(X)(C).

(2) If S is K-constructible (respectively, K-closed) in MB(X)(C),
then T̃ is K-constructible (respectively, K-closed) with respect to
LocSysfree(X, _).

(3) If T is K-constructible with respect to LocSysfree(X, _) then S is
K-constructible in MB(X)(C).

(4) If T is K-constructible (respectively, K-closed) with respect to
LocSysfree(X, _) then T̃ is also.

Proof.
(1). — The natural transformation l preserves K-closedness after taking

inverse image. Thus l−1(T ) is closed. It is moreover invariant under the
group action on RB(X, x0)(C) since it contains all possible frames for each
local systems in T . Thus the orbit of every point in l−1(T ) is contained in
l−1(T ), and is closed. The claim follows.

(2). — Let LR be a local system on X of rank r free modules over a
finite type regular C-scheme R defined over K. We need to show that

T̃R = {m ∈ Spec(R)(C) | LR ⊗R R/m ∈ T̃}

is K-constructible (respectively, K-closed) in Spec(R)(C). Choose a frame
LR|x0

∼−→ R⊕r. Since RB(X, x0, r) is a fine moduli space for framed local
systems, there is a morphism

(4.4) fR : Spec(R)(C) → RB(X, x0, r)(C)
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defined over K, mapping a maximal ideal m to LR ⊗R R/m together with
the induced frame. By construction, T̃R = f−1

R (q−1
B (S)) and hence it is

K-constructible (respectively, K-closed).
(3). — The natural transformation l preserves K-constructibility after

taking inverse image, and thus S is K-constructible too.
(4). — It follows from (3) (respectively, (1)) together with (2). □

One obtains directly:

Lemma 4.8. — Let S ⊂ MB(X, r)(C) and S̃ = l(q−1
B (S)) ⊂ LocSys(X,C).

Then S̃ is K-constructible (respectively, K-closed) with respect to the unis-
pace LocSysfree(X, _) iff S is K-constructible (respectively, K-closed) in
MB(X, r)(C).

We apply the previous two lemmas to prove a generalization of the last
lemma:

Lemma 4.9. — Let N ⊂ LocSys(X,C) be K-constructible with respect
to LocSysfree(X, _). Let M = qB(l−1(N)). Let S ⊂ M and S̃ = l(q−1

B (S)).
Then S̃ is K-constructible (respectively, K-closed) with respect to the unis-
pace MX iff S is K-constructible (respectively, K-closed) in M .

Proof. — By Lemma 4.7, M is K-constructible in MB(X)(C) and M̃ is
K-constructible with respect to LocSysfree(X, _).

Suppose that S̃ is K-constructible (respectively, K-closed) with respect
to MX . Since RB(X, x0) is a fine moduli space, l restricts to a natural trans-
formation q−1

B (M)(_) → MX . This implies that l−1(S̃) is K-constructible
(respectively, K-closed) in q−1

B (M). Thus the image S = qB(l−1(S̃)) is K-
constructible in M (respectively, K-closed, since l−1(S̃) = q−1

B (S) and qB

is a universal categorical quotient).
For the converse, note that by Lemma 4.8, S is K-constructible in M iff S̃

is K-constructible with respect to the unispace LocSysfree(X, _). Since S̃ ⊂
M̃ , we have by definition of MX that if S̃ is K-constructible (respectively,
K-closed) with respect to LocSysfree(X, _) then it is also so with respect
to MX .

Lastly, if S is K-closed in M , write S = M ∩ S′ where S′ is K-closed
in MB(X)(C). Then by Lemma 4.8, S̃′ = l(q−1

B (S′)) is K-closed with
respect to LocSysfree(X, _). Since M̃ is K-constructible with respect to
LocSysfree(X, _), we have that S̃ = M̃ ∩ S̃′ is K-closed with respect to
MX , by the definition of MX . □

Lemma 4.10. — Let M ⊂ MB(X)(C) be absolute K-constructible. A
subset S of M is absolute K-constructible (respectively, absolute K-closed)
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in M iff the subset S̃ = l(q−1
B (S)) of M̃ is absolute K-constructible (re-

spectively, absolute K-closed) with respect to the unispace MX .

Proof. — The implication ⇐ follows by definition. We prove the impli-
cation ⇒.

Let T be a subset of M̃ that is absolute K-constructible (respectively,
absolute K-closed) with respect to the unispace MX , and such that S =
qB(l−1(T )). Then T σ is K-constructible (respectively, K-closed) with re-
spect to the unispace MX for all σ, by definition. Note that

Sσ = qB(l−1(T σ)),

and, as remarked before, S̃σ := l(q−1
B (Sσ)) is precisely (S̃)σ. It follows that

(S̃)σ is K-constructible with respect to LocSysfree(Xσ, _) by Lemma 4.7(4),
and hence also with respect to MXσ by the definition of the later. This
proves the constructible case.

It remains to prove the closed case. Assume that T is absolute K-closed
with respect to MX . Since T is K-closed with respect to MX , l−1(T ) is
K-closed in q−1

B (M) and invariant under the group action since it contains
all possible frames for each local systems in T . Thus S = qB(l−1(T )) is
K-closed in M . By Lemma 4.9 it follows that S̃ is K-closed with respect
to MX . Applying the same argument to T σ, we have that S̃σ is K-closed
with respect to MXσ . This shows that S̃ is absolute K-closed in M with
respect to MX . □

Proof of Proposition 4.3. — If follows from Lemma 4.10 and Lemma 4.9,
by noting that with S, S̃ as in Lemma 4.10, one has Sσ = qB(l−1(S̃σ)) and
S̃σ = l(q−1

B (Sσ)). □

4.4. Special Varieties Package Conjecture

With all notions in hand now one can make fully sense of the statement
of Conjecture A, consisting of parts (1)–(4), from Introduction. We recall
some partial results and pinpoint some difficulties. On the positive side one
has:

Theorem 4.11 ([3, Theorem 1.3.1, Proposition 10.4.3]). — Conjecture A
holds if r = 1. Moreover, every absolute Q-closed subset of the affine alge-
braic torus MB(X, 1)(C) is a finite union of torsion-translated affine alge-
braic subtori.
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In fact, the proof gives the stronger statement that the subtori involved
are motivic, that is, image of the pullback map MB(G, 1) → MB(X, 1)
associated to some morphism X → G to a semi-abelian variety G. This
was also proved later differently by [8] for an arithmetic counterpart of
absolute sets; see also [15] for an extension to a singular setup.

Theorem 4.12 ([3, Propositions 10.4.4, 10.4.5]).
(1) Conjecture A holds in any rank if X is a complex affine torus or an

abelian variety.
(2) (1) holds if X is projective.

An essential difficulty with (1) is that the following concrete question is
open in general, although we expect a positive answer:

Question 4.13. — Let X be a smooth non-proper complex algebraic
variety and σ ∈ Gal(C/Q). If MB(X, r) is irreducible, is MB(Xσ, r) also ir-
reducible? If MB(X, r) is not irreducible, and T is an irreducible component
of MB(X, r), is T σ at least constructible? Are the irreducible components
in bijection with those of MB(Xσ, r)?

Note that one can formulate by analogy the following:

Conjecture 4.14 (Conjecture A for M). — Let M be an absolute
Q-constructible subset of MB(X, r)(C). Then the conditions (1)–(4) hold
in M .

This is not just an analogy. If (1) holds in MB(X)(C), it would imply that
the absolute Q-closed subsets of M are also restrictions to M of absolute
Q-closed subsets of MB(X)(C). Thus Conjecture A for MB(X, r) implies
it for any absolute Q-constructible subset M , and more generally one has
the following whose proof is straight-forward:

Lemma 4.15. — Conjecture A for M implies Conjecture A for M ′, for
any two absolute Q-constructible subsets M ′ ⊂ M of MB(X, r).

In this article we will (partly) address Conjecture A for M , when M is
Ms

B(X, r)(C) and M cohrig
B (X, r)(C).

5. Absoluteness via de Rham moduli spaces

The absolute sets we are interested in live on Betti moduli spaces. The
notion of absoluteness is however defined via the categorical Riemann–
Hilbert correspondence. Using de Rham moduli spaces one has in certain
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situations a more concrete characterization of absoluteness, according to [3],
which we recall, correct, and expand in detail in Sections 5.1–5.3. The
concise list of corrections to [3] is placed as an appendix to this section in
Section 5.6. In Section 5.4 we use this characterization, together with the
local isomorphism property of the analytic Riemann–Hilbert map from a
good de Rham moduli subspace onto the Betti submoduli of simple local
systems, to prove Theorem 1.2. In Section 5.5 we show that the map taking
determinant and eigenvalues at infinity preserves absoluteness in a certain
sense. This will be used in Section 6 on rigid local systems.

5.1. De Rham moduli spaces

We recall the construction and the basic facts on de Rham moduli spaces.
Let X be a smooth complex quasi-projective variety. Fix a point x0 in X,
an embedding of X into a smooth complex projective variety X such that
the complement D = X \ X is a divisor with normal crossing singularities,
and a very ample line bundle on X. Let k be a common field of definition
of X, X, D, x0.

The de Rham representation space is a disjoint union k-schemes of finite
type

RDR(X/D, x0, r) =
∐
P

RDR(X/D, x0, P ),

each of which is a fine moduli space for framed semistable logarithmic
connections of rank r and Hilbert polynomial P . We explicit now what this
means.

All the definitions below should be relative to k, although we largely
suppress this from notation for simplicity, e.g. X is now a k-variety.

A logarithmic connection is a flat connection ∇ : E → E ⊗OX̄
Ω1

X
(log D)

with logarithmic poles along D on a OX -coherent torsion-free module E.
This places a structure of Λ-module on E, where Λ = DX(log D) is the
sheaf of logarithmic differential operators. The restriction E|X is a locally
free OX -module since it is an OX -coherent DX -module. Hence (E, ∇)|X is
a vector bundle with a flat connection on X.

A logarithmic connection (E, ∇) is semistable (respectively, stable) if for
any proper OX -coherent Λ-submodule F of E,

p(F, m)/ rk(F ) ⩽ p(E, m)/ rk(E) (respectively, <)

for all integers m ≫ 0, where p(F, t) is the Hilbert polynomial of F with
respect to the fixed polarization on X, and rk(F ) is the rank.
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A frame at x0 of E is an isomorphism ξ : E|x0
∼−→ O⊕r

X
|x0 .

There are straight-forward notions of a family (ET , ∇T , ξT ) over a k-
scheme T of framed semistable logarithmic connections on (X, D) with
fixed Hilbert polynomial, and of equivalence and pullbacks of families,
see [22, p.92], [17, §2]. In this case, (ET , ∇T ) is in particular a logarithmic
connection on (X ×k T, D ×k T ) relative to T . Then RDR(X/D, x0, P ) rep-
resents the functor associating to T the equivalence class of families over T

of framed semistable logarithmic connections with Hilbert polynomial P ,
see [22, Theorem 4.10].

There is an action of GLr(C) on RDR(X/D, x0, P ) given by the change
of basis in the frame and all the points are GIT-semistable with respect to
this action. The de Rham moduli space MDR(X/D, P ) is

MDR(X/D, P ) = RDR(X/D, x0, P ) <GLr(C).

The quotient morphism, denoted

qDR : RDR(X/D, x0, P ) → MDR(X/D, P ),

is a morphism of k-schemes. The scheme MDR(X/D, P ) is a universal cat-
egorical quotient, whose closed points are the Jordan equivalence classes
of semistable logarithmic connections with Hilbert polynomial P , see [22,
Theorems 4.7, 4.10], [17, Theorem 3.5]. (The condition LF (ξ) from [22,
Theorem 4.10] is automatically satisfied in our case.) The morphism qDR
is surjective, and for a point (E, ∇, ξ) ∈ RDR(X/D, x0, P )(C), the image
qDR(E, ∇, ξ) ∈ MDR(X/D, P )(C) is the isomorphism class of the logarith-
mic connection given by the direct sum of the (stable) graded quotients
with respect to a Jordan-Hölder series of (E, ∇).

We denote by

MDR(X/D, r) =
∐
P

MDR(X/D, P )

the disjoint union over Hilbert polynomials P of rank r logarithmic con-
nections (that is, the highest-degree coefficient of P is r degH(X)/n! where
n = dim X and H is the fixed polarization on X), and by

qDR : RDR(X/D, x0, r) → MDR(X/D, r)

the associated morphism. This restricts to a morphism

qDR : Rst
DR(X/D, x0, r) → Mst

DR(X/D, r)

of the open subschemes of RDR(X/D, x0, r) and MDR(X/D, r), respec-
tively, whose closed points correspond to stable logarithmic connections,
since Rst

DR(X/D, x0, r) is also the GIT-stable locus, [22, Theorem 4.10].
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Remark 5.1.
(1) Recall that to each logarithmic connection (E, ∇) on (X, D) one

can attach residue maps

Γi ∈ HomODi
(E|Di

, E|Di
)

where D =
⋃s

i=1 Di is the irreducible decomposition. Moreover, the
characteristic polynomial of Γi is constant along Di. After taking
exponentials of its roots, the resulting polynomial equals the char-
acteristic polynomial of monodromy around Di of the local system
on X induced by (E, ∇).

(2) The Hilbert polynomial of a locally free logarithmic connection
(E, ∇) can be computed in terms of the residue maps Γi. Namely,
using Hirzebruch–Riemann–Roch and the formula for the Chern
classes of (E, ∇) from [20], [10, (B.3)], one has

p(E, t) =
∑

α∈Ns

(−1)|α|

α1! · . . . · αs! Tr(Γα1
1 ◦ . . . ◦ Γαs

s )∫
X

[D1]α1 . . . [Ds]αs ch(H)ttd(X)

for integers t ⩾ 0, where |α| = α1 + · · · + αs, Tr denotes the trace
the composition of residues maps defined on the intersection of all
Di such that αi ̸= 0, ch(H) = exp([H]) is the Chern character of
the fixed ample line bundle H on X, and td(X) is the Todd class.

(3) If dim X = 1 every logarithmic connection is locally free. If the rank
r is fixed, fixing the Hilbert polynomial P = p(E, t) is equivalent to
fixing the degree of E, by the classical Riemann–Roch. The formula
from (2) becomes

p(E, t) = r deg H · t + r(1 − g) −
s∑

i=1
Tr(Γi)

where g denotes the genus of X. This equality is equivalent to
deg E +

∑s
i=1 Tr(Γi) = 0.

5.2. Riemann–Hilbert morphisms

We recall the construction and some facts about the analytic Riemann–
Hilbert maps. This will be useful to give a more concrete criterion for
absoluteness.
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The Riemann–Hilbert correspondence induces two analytic morphisms
between complex analytic spaces, called Riemann–Hilbert morphisms,
forming a commutative diagram

(5.1)

RDR(X/D, x0, r)an

qDR

��

RH // RB(X, x0, r)an

qB

��
MDR(X/D, r)an RH // MB(X, r)an.

The construction of RH is due to [23, 7.1, 7.8] for X = X. The con-
struction extends to cover the general case as well. In fact RH has been
defined more generally from the moduli of regular holonomic DX -modules
with singularities along D to a moduli of perverse sheaves with singularities
along D in [19, 18]. We explicit now the construction in our case.

The analytification RB(X, x0, r)an is a fine analytic moduli space, rep-
resenting the functor associating to a complex analytic space T the equiv-
alence classes of families over T of framed local systems on X, where
the latter notions are defined in manner similar to the case of a scheme
T . This functor is now isomorphic to the functor associating to T the
set of isomorphism classes of pairs (L, ξ) where L is a locally free sheaf
of p−1

2 OT -modules of rank r on Xan × T , together with an isomorphism
L|x0×T

∼−→ O⊕r
T , see [23, Lemma 7.3] which holds in the quasi-projective

case as well.
The analytification RDR(X/D, x0, P )an is also a fine analytic moduli

space, representing the functor associating to a complex analytic space T

the equivalence classes of families (ET , ∇T , ξT ) over T of framed holomor-
phic semistable logarithmic connections with Hilbert polynomial P , where
the latter notions are defined in manner similar to the case of a scheme T ,
see [22, Lemma 5.7].

An analytic family (ET , ∇T , ξT ) of framed holomorphic semistable
logarithmic connections gives rise to the analytic family
(ker(∇T |Xan×T ), ξT |Xan×T ) of framed local systems. This association, to-
gether with the properties of being fine analytic moduli, gives an ana-
lytic morphism RH : RDR(X/D, x0, r)an → RB(X, x0, r)an. Since RH is
GLr(C)-equivariant and since MDR(X/D, r)an and MB(X, r)an are univer-
sal categorical quotients in the category of analytic spaces as well by [22,
Proposition 5.5], there is a unique well-defined analytic morphism RH :
MDR(X/D, r)an → MB(X, r)an making the diagram (5.1) commute. Point-
wise, this last morphism sends the class of a direct sum of stable logarithmic
connections on (X, D) obtained as successive quotients of a Jordan-Hölder
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series for a semistable logarithmic connection, to the class of the direct sum
of the semi-simplifications of the associated local systems on X.

Associated to (5.1) is a commutative diagram of analytic morphisms
between the reduced analytic moduli

(5.2)

RDR(X/D, x0, r)(C)

qDR
����

RH // RB(X, x0, r)(C)

qB

����
MDR(X/D, r)(C) RH // MB(X, r)(C).

The maps qDR and qB are surjective as we have already seen. The
question of surjectivity of the maps RH can be considered as a higher-
dimensional version of Hilbert’s 21st problem. In this direction, one has
the following:

Theorem 5.2.
(1) The two maps RH from (5.2) are surjective if:

(a) (cf. Lemma 5.4) the rank r is 1 or,
(b) ([23]) X is projective.

(2) ([11]) If dim X = 1 the map

RH : MDR(X/D, P )(C) → MB(X, r)(C)

is surjective, where P (t) = r((deg H)t+1−g) is the Hilbert polyno-
mial of the trivial rank r vector bundle on X, H is the fixed ample
line bundle on X, and g is the genus of X.

The following questions are open:

Question 5.3. — Are the two maps RH in (5.2) surjective? Or, at least,
are their images Zariski constructible?

The main reason behind Theorem 5.2 is the following:

Lemma 5.4.
(1) ([5], see also [12, Ch. 5]) The Deligne extensions of a local system

L on X are locally free logarithmic connections giving rise to L.
(2) ([17, Proposition 2.3]) Any logarithmic connection on (X, D) giving

rise to a simple local system on X is stable.
(3) ([22, page 89]) The category of semistable logarithmic connections

of given normalized Hilbert polynomial p0, i.e. p0(t) = p(E, t)/rk(E),
is abelian.

A consequence is the surjectivity of RH onto the simple locus.
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Definition 5.5. — Define Rs
DR(X/D, x0, r)(C) and Ms

DR(X/D, r)(C)
to be the subsets of Rst

DR(X/D, x0, r)(C) and Mst
DR(X/D, r)(C), respec-

tively, corresponding to stable logarithmic connections whose associated
local systems on X are simple. That is,

Rs
DR(X/D, x0, r)(C) = RH−1(Rs

B(X, x0, r)(C)),

Ms
DR(X/D, r)(C) = RH−1(Ms

B(X, r)(C)) = qDR(Rs
DR(X/D, x0, r)(C)).

Lemma 5.6. — The subsets Rs
DR(X/D, x0, r)(C) and Ms

DR(X/D, r)(C)
are Zariski open subsets of RDR(X/D, x0, r)(C) and MDR(X/D, r)(C), re-
spectively.

Proof. — For a logarithmic connection (E, ∇), the condition that the
associated local system on X is simple is equivalent to the algebraic con-
dition that the restriction of (E, ∇) to X is irreducible. This is a Zariski
closed open condition. To see this, one can adapt the proof of openness
of the (semi)stable locus in a family of logarithmic connections from [17,
Proposition 2.15], [22, Lemma 3.7]. This shows that Rs

DR(X/D, x0, r)(C)
is Zariski open, by the fine moduli space property of RDR(X/D, x0, r)(C).
It follows that its image, Ms

DR(X/D, r)(C) is also Zariski open, since
Rs

DR(X/D, x0, r)(C) is GLr(C)-invariant. □

Lemma 5.7. — The diagram (5.2) induces a commutative diagram of
surjective maps of complex analytic spaces

(5.3)

Rs
DR(X/D, x0, r)an

qDR
����

RH // // Rs
B(X, x0, r)an

qB

����
Ms

DR(X/D, r)an RH // // Ms
B(X, r)an.

The Riemann–Hilbert morphisms are easier to understand when re-
stricted to a smaller complex analytic open subset.

Definition 5.8. — Define Rgood
DR (X/D, x0, r)(C) and Mgood

DR (X/D, r)(C)
to be the subsets of Rs

DR(X/D, x0, r)(C) and Ms
DR(X/D, r)(C), respec-

tively, corresponding to stable locally free logarithmic connections whose
associated local systems on X are simple and such that for each irreducible
component Di of D no two eigenvalues of the residue map Γi differ by a
nonzero integer. We call these good logarithmic connections.

It can be easily seen that Rgood
DR (X/D, x0, r)(C) and Mgood

DR (X/D, r)(C)
are open analytic subsets of RDR(X/D, x0, r)(C) and MDR(X/D, r)(C), re-
spectively, obtained as the complement of a locally finite countable union
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of Zariski closed subsets of Rs
DR(X/D, x0, r)(C) and Ms

DR(X/D, r)(C), re-
spectively. In particular they underlie complex analytic open subspaces of
RDR(X/D, x0, r)an and MDR(X/D, r)an, respectively.

Proposition 5.9.
(1) ([19, §8], [18, 7.2]) The diagram (5.1) induces a commutative dia-

gram of surjective maps of complex analytic spaces

(5.4)

Rgood
DR (X/D, x0, r)an

qDR
����

RH // // Rs
B(X, x0, r)an

qB

����
Mgood

DR (X/D, r)an RH // // Ms
B(X, r)an

such that the horizontal maps RH are local analytic isomorphisms.
(2) ([23, Theorem 7.1, Proposition 7.8]) If X is projective, the horizon-

tal maps RH in the diagram (5.1) are analytic isomorphisms.

5.3. Moduli-absolute sets

Absoluteness for a set of local systems is an abstract categorical notion,
and absolute sets are subject to the Special Varieties Package Conjecture.
Moduli-absoluteness is a more concrete notion introduced in [3, Section 7]
via de Rham moduli spaces, in order to make the conjecture on absolute sets
of local systems more approachable. The definition of moduli-absoluteness
of [3, Section 7] needs a slight correction. While we give in 5.6 a short
list of corrections, we go however in this subsection into the details of the
comparison between moduli-absoluteness with absoluteness.

We keep the setup and notation from the previous subsection. We let
K ⊂ C be a field. For each σ ∈ Gal(C/Q), the base change Xσ → X of X

via σ is compatible with the base changes for X, D, and we denote by

(5.5) pσ : MDR(X/D, r)(C) → MDR(Xσ/Dσ, r)(C)

the map induced by base-changing logarithmic connections. The map pσ

is also the base change of the underlying reduced closed C-subscheme of
MDR(X/D, r) via σ, and hence it is also a homeomorphism for the Zariski
topology. In particular pσ is bijective. We consider the diagram of maps

(5.6)

MDR(X/D, r)(C)

RH
��

pσ // MDR(Xσ/Dσ, r)(C)

RH
��

MB(X, r)(C) MB(Xσ, r)(C).
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The following is clear:

Lemma 5.10. — If S ⊂ MB(X, r)(C) is contained in the image of the
analytic RH map, σ ∈ Gal(C/Q), and Sσ is defined as in (4.3), then Sσ

also equals RH ◦ pσ ◦ RH−1(S) with RH, pσ as in (5.6).

Definition 5.11.

(1) A moduli-absolute K-constructible (respectively, moduli-absolute
K-closed) subset of MB(X, r)(C) is a subset S contained in the
image of the analytic RH map from (5.6) and such that for every
σ ∈ Gal(C/Q), Sσ is K-constructible (respectively, K-closed) in
MB(Xσ, r)(C).

(2) More generally, if M ⊂ MB(X, r)(C) is absolute K-constructible, a
moduli-absolute K-constructible (respectively, moduli-absolute K-
closed) subset of M is a subset S contained in the intersection of
the image of RH with M , such that for every σ ∈ Gal(C/Q), Sσ is
K-constructible (respectively, K-closed) in Mσ.

Remark 5.12.

(1) The first definition is a slightly adjusted version of [3, Defini-
tion 7.4.1] which needed a correction, cf. 5.6.

(2) If in the second part of the definition M lies in Ms
B(X, r)(C), then

we know that it lies in the image of RH already.
(3) If the analytic map RH is not surjective onto MB(X, r)(C), then

MDR(X/D, r) is not the right moduli to capture all absolute subsets
of MB(X, r).

Proposition 5.13.

(1) If S ⊂ MB(X, r)(C) is contained in the image of the analytic RH
map from (5.6), then: S is moduli-absolute K-constructible (respec-
tively, moduli-absolute K-closed) iff it is absolute K-constructible
(respectively, absolute K-closed).

(2) More generally, if M ⊂ MB(X, r)(C) is absolute K-constructible,
and if S ⊂ M is contained in the image of the analytic RH map
from (5.6), then: S is moduli-absolute K-constructible (respectively,
moduli-absolute K-closed) in M iff it is absolute K-constructible
(respectively, absolute K-closed) in M .

Proof. — This follows directly from Proposition 4.3 and
Lemma 5.10. □
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Remark 5.14.
(1) If the analytic RH map from (5.6) and its version from

RDR(X/D, x0, r)(C) to RB(X, x0, r)(C) are both surjective, part (1)
was proved in [3, Proposition 7.4.4], if the correction as in cf. 5.6 is
taken into account.

(2) At least in the case M ⊂ Ms
B(X, r)(C), the definition of moduli-

absolute subsets of M does not depend on the choice of good com-
pactification (X, D) of X used to define the de Rham moduli space.

The analytic RH map can have non-trivial fibers. However, since the
Riemann–Hilbert correspondence is an equivalence of categories, the fibers
satisfy some constraints:

Lemma 5.15. — For all subsets S ⊂ MB(X, r)(C) contained in the
image of the analytic RH map, and all σ ∈ Gal(C/Q), the following hold:

(1) pσ sends any fiber of RH : MDR(X/D, r)(C) → MB(X, r)(C) bijec-
tively onto a fiber of RH : MDR(Xσ/Dσ, r)(C) → MB(Xσ, r)(C).

(2) RH−1(Sσ) = pσ(RH−1(S)).

Remark 5.16. — The analog of Lemma 4.5 holds for moduli-absolute sets
in M , for all absolute K-constructible subsets M of MB(X)(C).

Moduli-absoluteness is closely related to bi-algebraicity:

Proposition 5.17 ([3, Proposition 7.4.5], cf. 5.6). — Let X be a smooth
complex quasi-projective algebraic variety defined over a countable subfield
K of C. Let X, D, x0 be as above and assume all of them are defined over K.
Let S be a moduli-absolute K-constructible subset of MB(X, r)(C). Then
the Euclidean closure of any analytic irreducible component of RH−1(S) is
a Zariski closed subset of MDR(X/D, r)(C).

Remark 5.18. — If S is as above, there could be infinitely, but at most
countable, many analytic irreducible components T of RH−1(S).

Let us spell out what this proposition implies for absolute closed subsets.

Lemma 5.19. — Let X, X, D, x0 be as above, all of them defined
over a countable subfield K of C. Let S be a moduli-absolute K-closed
subset of MB(X, r)(C). Let S =

⋃
i∈I Si be the decomposition into Zariski

irreducible components, with I a finite set. Let RH−1(S) =
⋃

j∈J Tj be
the decomposition into analytic irreducible components, where J can be
infinite. Then:

(1) For all j ∈ J , Tj is Zariski closed and is an analytic irreducible
component of RH−1(Si) for some i ∈ I depending on j.
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(2) Conversely, if T ′ is an analytic irreducible component of RH−1(Si)
for some i ∈ I, such that RH(T ′) is Zariski dense in Si (such com-
ponents always exists for every i), then T ′ = Tj for some j ∈ J

depending on T ′.
(3) If σ ∈ Gal(C/Q), then pσ induces a bijection between the irreducible

components of RH−1(S) and those of RH−1(Sσ) = pσ(RH−1(S)).

Proof. — (1) is a direct application of Proposition 5.17. (2) holds since
RH is an analytic map. (3) follows from the first assertion in (1) together
with the fact that pσ is a homeomorphism for the Zariski topology. □

The first two assertions say that every analytic irreducible component of
RH−1(Si) which is not algebraic is contained in some irreducible compo-
nent, necessarily algebraic, of RH−1(S).

If K = Q it is expected that Sσ =
⋃

i∈I Sσ
i is the Zariski irreducible

decomposition of Sσ, see Question 4.13, cf. Conjecture 1.1. Even showing
that Sσ

i are constructible is at the moment open. For this, it would be
useful to know if the analytic morphism RH is special enough to allow one
to write each Si in terms of the components Tj .

5.4. The submoduli of simple local systems

We keep the setup from Section 5.1.

Proposition 5.20.
(1) For σ ∈ Gal(C/Q),

(Ms
B(X, r)(C))σ = Ms

B(Xσ, r)(C),

pσ(Ms
DR(X/D, r)(C)) = Ms

DR(Xσ/Dσ, r)(C),

pσ(Mgood
DR (X/D, r)(C)) = Mgood

DR (Xσ/Dσ, r)(C).

In particular, Ms
B(X, r)(C) is absolute Q-constructible in

MB(X, r)(C). Its complement is absolute Q-closed.
(2) Ms

B(X, r)(C) is moduli-absolute Q-constructible in MB(X, r)(C).
(3) If Si with i ∈ I denote the irreducible components of Ms

B(X, r)(C),
then Sσ

i are the irreducible components of Ms
B(Xσ, r)(C) for all

σ ∈ Gal(C/Q). Hence Si are (moduli-) absolute Q-constructible.

Proof.
(1). — The Riemann–Hilbert correspondence between regular holonomic

DX -modules and perverse sheaves on X preserves simplicity. This implies
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the first equality. The second equality follows from the first together with
Lemma 5.15(2) since Ms

DR(X/D, r)(C) = RH−1(Ms
B(X, r)(C)). The sec-

ond equality implies the third since pσ preserves the good property for
logarithmic connections.

The last claim follows from the first equality since Ms
B(Xσ, r)(C) is a

Zariski open subset of MB(Xσ, r)(C) defined over Q.
(2). — By Lemma 5.7, Ms

B(X, r)(C) lies in the image of the analytic
RH map.

(3). — This will follow from Theorem 5.29 below. □

Remark 5.21. — Since there is no difference between moduli-absolute
and absolute subsets of Ms

B(X, r)(C), we stop using the terminology
“moduli-absolute” for such sets.

For the rest of this subsection the goal is to prove Theorem 1.2. Before
we can give the proof, we need a few lemmas. Denote for simplicity for the
rest of this section

MX/D
:= Mgood

DR (X/D, r)(C).

Recall that the restriction of the analytic RH map

RH0 : MX/D ↠ Ms
B(X, r)(C)

is a surjective analytic local isomorphism by Proposition 5.9.

Lemma 5.22. — Let S be a Zariski constructible subset of Ms
B(X, r)(C).

Let S be the Zariski closure (or equivalently, the Euclidean closure) of S

in Ms
B(X, r)(C). Let A = RH−1(S) be the inverse image, and A be the

Euclidean closure of A in MDR(X/D, r)(C). Then RH−1
0 (S) = A ∩ MX/D.

Proof. — The inverse image RH−1(S) of S is an analytic closed set con-
taining A, so A ⊂ RH−1(S) and

A ∩ MX/D ⊂ RH−1(S) ∩ MX/D = RH−1
0 (S).

In particular, S ⊂ RH(A ∩ MX/D) ⊂ S. If RH−1
0 (S) ̸= A ∩ MX/D, then

we can find a point P ∈ RH−1
0 (S) \ (A ∩ MX/D). Put Q = RH(P ), and

then Q ∈ S \ S. Since RH0 is a surjective analytic local isomorphism,
there exists an open neighborhood UP ⊂ MX/D of P with respect to the
Euclidean topology, such that UP ∩ (A ∩ MX/D) = ∅ and RH0 : UP →
VQ = RH0(UP ) is an analytic isomorphism. Since UP ∩ (A ∩ MX/D) = ∅,
we have VQ ∩ S = ∅. This is impossible, because Q is a point in S. Hence,
RH−1

0 (S) = A ∩ MX/D. □
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Next, recall that an analytically constructible subset of an analytic space
is an element of the smallest family of subsets that contains all analytic
subsets and is closed with respect to the operations of taking the finite
union of sets and the complement of a set. Since every analytic space can
be represented uniquely as a union of a locally finite family of irreducible
analytic subspaces, the family of analytic irreducible components of an
analytically constructible set is also locally finite.

Lemma 5.23. — Let A be an analytically constructible subset of an
analytic space M , and let A =

⋃
j∈J Aj be the decomposition into analytic

irreducible components. Then the Euclidean closure A of A satisfies

A =
⋃
j∈J

Aj ,

where Aj is the Euclidean closure of Aj for every j ∈ J .

Proof. — The set A is an Euclidean closed set containing every Aj , so
Aj ⊂ A for all j ∈ J . Thus

⋃
j∈J Aj ⊂ A. Since A is an analytically

constructible subset of M , the union
⋃

j∈J Aj is locally a finite union, and
hence it is analytic. Thus the set

⋃
j∈J Aj is an Euclidean closed subset

containing A and so A ⊂
⋃

j∈J Aj . Therefore, A =
⋃

j∈J Aj as we expected.
□

Lemma 5.24. — Let S be an absolute Q-constructible subset of
Ms

B(X, r)(C). Let σ ∈ Gal(C/Q) and Sσ = RH ◦ pσ ◦ RH−1(S). Let

A = RH−1(S) =
⋃
j∈J

Aj and B = RH−1(Sσ) =
⋃

k∈K

Bk

be the decompositions into analytic irreducible components in
MDR(X/D, r)(C). Let Aj , Bk be the Euclidean closures in MDR(X/D, r)(C)
and MDR(Xσ/Dσ, r)(C), respectively. Then:

(1) For every j ∈ J , we have that

pσ(Aj) = Bk(j),

for some k(j) ∈ K depending only on j.
(2) The map pσ induces a bijection between the set {Aj} of Euclidean

closures of analytic irreducible components of A and the set {Bk}
of Euclidean closures of analytic irreducible components of B.

(3) If A, B denote the Euclidean closures, then B = pσ(A).

Proof. — The set Sσ is also an absolute Q-constructible subset of
MB(Xσ, r)(C), by Proposition 5.13. By the absoluteness of S, Sσ, and
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Proposition 5.17, Aj and Bk are irreducible Zariski closed sets for every
j ∈ J , k ∈ K. The map pσ and its inverse p−1

σ = pσ−1 preserve Zariski
closed subsets and irreducibility with respect to the Zariski topology. In
particular, pσ(Aj), p−1

σ (Bk) are irreducible Zariski closed sets for every
j ∈ J , k ∈ K. Since Sσ is also absolute, (2) follows from (1) by inter-
changing the roles of S and Sσ. Then (3) follows from (2) by applying
Lemma 5.23. Thus it remains to prove (1).

By Lemma 5.15, B = pσ(A), so the following holds⋃
j∈J

Aj = A = p−1
σ (B) ⊂ p−1

σ (B) =
⋃

k∈K

p−1
σ (Bk).

The component Aj is analytic irreducible, so Aj ⊂ p−1
σ (Bk(j)) for some

k(j) ∈ K depending only on j, and for all j ∈ J . Fix j ∈ J . As p−1
σ (Bk(j))

is a Zariski closed set containing Aj , we get that

Aj ⊂ p−1
σ (Bk(j)).

Acting on both sides by pσ thus gives

(5.7) pσ(Aj) ⊂ pσ ◦ p−1
σ (Bk(j)) = Bk(j).

We also show that p−1
σ (Bk(j)) ⊂ Aj so that p−1

σ (Bk(j)) = Aj . Denote
k = k(j) for simplicity. Similarly as before, there exists ℓ(k) ∈ J depending
only on k such that p−1

σ (Bk) = pσ−1(Bk) ⊂ Aℓ(k). Together with (5.7) this
implies that

Aj = p−1
σ ◦ pσ(Aj) ⊂ p−1

σ (Bk) ⊂ Aℓ(k).

As Aj and Aℓ(k) are the Euclidean closures in MDR(X/D, r)(C) of two an-
alytic irreducible components Aj respectively Aℓ(k) of A, we have that
Aj = A ∩ Aj ⊂ A ∩ Aℓ(k) = Aℓ(k). The uniqueness of decomposition
into irreducible components thus tells us that Aj = Aℓ(k), and so Aj ⊂
p−1

σ (Bk(j)) = p−1
σ (Bk) ⊂ Aj . It further implies, by taking image via pσ,

that pσ(Aj) ⊂ Bk(j) ⊂ pσ(Aj). Therefore, pσ(Aj) = Bk(j). As an immedi-
ate consequence, we also have an induced bijection between J and K, as
claimed. □

Lemma 5.25. — The Euclidean (or equivalently, the Zariski) closure
S in Ms

B(X, r)(C) of an absolute Q-constructible subset S is an absolute
Q-closed subset in Ms

B(X, r)(C).

Proof. — We keep the notation from Lemma 5.22 and Lemma 5.24. Let
σ ∈ Gal(C/Q). By the previous lemma, we have B = pσ(A) together with
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an identification of decompositions into analytic irreducible components

B =
⋃

k∈K

Bk =
⋃
j∈J

pσ(Aj) = pσ(A).

By Lemma 5.22, RH−1
0 (S) = A ∩ MX/D. Since RH0 is surjective, one also

has

(5.8) Sσ = RH0 ◦pσ ◦ RH−1
0 (S).

By Lemma 5.22 applied to Sσ, it then follows that

RH−1
0 (Sσ) = B ∩ MXσ/Dσ = pσ(A) ∩ pσ(MX/D) = pσ(RH−1

0 (S)).

Together with the surjectivity of RH0 it implies that S is an absolute Q-
closed subset of Ms

B(X, r)(C). □

Lemma 5.26. — Every absolute Q-constructible subset S in
Ms

B(X, r)(C) is a Boolean combination of absolute Q-closed subsets in
Ms

B(X, r)(C).

Proof. — For a subset of dimension 0 this is clear since the assign-
ment P 7→ P σ = RH ◦ pσ ◦ RH−1(P ) is a bijection Ms

B(X, r)(C) →
Ms

B(Xσ, r)(C). If dim S > 0 consider the complement T of S in S. It
is a Zariski constructible subset defined over Q in Ms

B(X, r)(C) and T σ =
Sσ \Sσ. Thus the set T σ is a Zariski constructible subset defined over Q, so
T is absolute Q-constructible in Ms

B(X, r)(C). Moreover dim T < dim S =
dim S. By induction on dimension, T is a Boolean combination of absolute
closed Q-subsets in Ms

B(X, r)(C). Hence the same holds for S. □

Denote by Sing(_) the singular locus of a complex analytic space or of
a C-scheme locally of finite type. We will need the following, essentially
suggested to us by the referee:

Lemma 5.27. — Let M be a C-scheme locally of finite type. Let N ⊂
M(C) be the complement of a locally finite countable union of Zariski closed
subsets. Let σ ∈ Gal(C/Q) and let pσ : M → Mσ be the morphism of
schemes induced by base change along σ. Let A ⊂ M(C) be an analytically
constructible subset such that the Euclidean closure of every irreducible
component of A is Zariski closed. Let A be the Euclidean closure of A in
M(C). Then pσ(Sing(A ∩ N)) = Sing(pσ(A ∩ N)).

Proof. — Let us first check that both sides of the claimed equality are
well-defined.

If A =
⋃

j∈J Aj is the decomposition into analytic irreducible compo-
nents, then A =

⋃
j∈J Aj , where Aj is the Euclidean closure, by Lemma 5.23.
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By assumption Aj is Zariski closed. Since J is locally finite it follows that
A∩N is a complex analytic space and hence its singular locus is well-defined.

Let
⋃

k∈K Nk be the complement of N , which by assumption is a locally
finite countable union of Zariski closed subsets of M(C). Then A ∩ N =⋃

j ∩kAj \Nk. Since pσ is a homeomorphism of Zariski topologies, it follows
that pσ(A ∩ N) =

⋃
j ∩kpσ(Aj) \ pσ(Nk), with pσ(Aj) and pσ(Nk) Zariski

closed. Thus pσ(A ∩ N) is also a complex analytic space and its singular
locus is well-defined.

Let x be a point of A ∩ N . Then there exists a finite subset J(x) ⊂ J

and a small Euclidean open neighborhood B(x) of x in M(C) such that
A ∩ N ∩ B(x) =

⋃
j∈J(x) Aj ∩ B(x). Hence x is a singular point of A ∩ N if

and only if it is a singular point of the C-scheme Z(x) =
⋃

j∈J(x) Aj . Since
M is locally of finite type, Sing(Z(x)) is Zariski closed. Since conjugation
by σ preserves algebraic singular loci, pσ(Sing(Z(x))) = Sing(pσ(Z(x))) =
Sing(

⋃
j∈J(x) pσ(Aj)). Moreover,

⋃
j∈J(x) pσ(Aj) agrees with pσ(A ∩ N) on

a small Euclidean open neighborhood of pσ(x). This implies the claimed
equality. □

We will apply this to obtain:

Lemma 5.28. — If S is absolute Q-closed in Ms
B(X, r)(C), then every

Zariski irreducible component of S is also absolute Q-closed.

Proof. — Since RH0 is an analytic local isomorphism, Sing(RH−1
0 (S)) =

RH−1
0 (Sing(S)). By Lemma 5.22 we have RH−1

0 (S) = A ∩ MX/D with
A = RH−1(S). We apply Lemma 5.27 with M = MDR(X/D, r)(C), N =
MX/D. Recall that MX/D is the complement of a locally finite countable
union of Zariski closed subsets of MDR(X/D, r)(C), and that by Propo-
sition 5.17 the Euclidean closure of all analytic irreducible component
of A are Zariski closed. Hence Lemma 5.27 can be applied. The con-
sequence is that pσ(Sing(RH−1

0 (S))) = Sing(pσ(RH−1
0 (S))) for all σ ∈

Gal(C/Q). Since Sing(pσ(RH−1
0 (S))) = RH−1

0 (Sing(Sσ)), we have obtained
that (Sing(S))σ = Sing(Sσ) and so Sing(S) is absolute Q-locally closed in
Ms

B(X, r)(C). Thus the smooth locus Ssm = S \ Sing(S) is absolute Q-
locally closed in Ms

B(X, r)(C), and smoothness is an absolute notion, that
is Sσ

sm = (Sσ)sm. There is a bijection between the analytic irreducible
components of S (and therefore Zariski irreducible components since S is
algebraic) and the connected components of Ssm, see [6, II.5.3]. The bi-
jection is given by taking the closure of the latter in S, or equivalently in
Ms

B(X, r)(C) since S is closed. Hence it suffices to show that if S is smooth
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absolute Q-locally closed in Ms
B(X, r)(C), then every connected component

of S is also absolute Q-locally closed.
Let S be smooth absolute Q-locally closed in Ms

B(X, r)(C). Let Sj with
j ∈ J be the connected components of S. Let Th with h ∈ H be the
connected components of RH−1

0 (S). Using the almost-algebraicity of Th

as above, we have that pσ(Th) with h ∈ H are the connected compo-
nents of RH−1

0 (Sσ). Thus the restriction of RH0 gives analytic local iso-
morphisms Th → S and pσ(Th) → Sσ, in particular these are open maps
in the Euclidean topology. Let H(j) = {h ∈ H | RH0(Th) ⊂ Sj}. Then⋃

h∈H(j) RH0(Th) = Sj . Moreover, RH0(pσ(Th)) is an analytic open subset
of Sσ. Thus Sσ

j =
⋃

h∈H(j) RH0(pσ(Th)) is an analytic open subset of Sσ

for every σ.
To conclude that Sj is absolute Q-locally closed, it is enough to show

that Sσ
j is also Zariski open. It is thus enough to prove that

Sσ
j :=

⋃
h∈H(j)

RH0(pσ(Th))

is a Euclidean connected component of Sσ, since Zariski and Euclidean
connectedness are equivalent properties. First, we prove it is connected.
Pick two points x, y ∈ Sσ

j and let x′, y′ ∈ Sj be the corresponding points
in S. By considering a covering of a path between x′, y′ ∈ Sj by opens
RH0(Th), one can see that there is a sequence h1, . . . , hs ∈ H(j) such that
x′ ∈ RH0(Th1), y′ ∈ RH0(Ths) and with RH0(Thl

) ∩ RH0(Thl+1) ̸= ∅, for
l = 1, . . . , s − 1. Applying pσ and noting that pσ sends fibers of RH0 to
fibers of RH0, we have that x ∈ RH0(pσ(Th1)), y ∈ RH0(pσ(Ths

)) and
RH0(pσ(Thl

))∩RH0(pσ(Thl+1)) ̸= ∅, for l = 1, . . . , s−1. It follows that x, y

lie in the same connected component of Sσ.
On the other hand, if Sσ

j would not be a connected component there
would exist an index j′ ∈ J , j′ ̸= j and indices h′ ∈ H(j′), h ∈ H(j) such
that RH0(pσ(Th)) ∩ RH0(pσ(Th′)) ̸= ∅. But then we would have RH0(Th) ∩
RH0(Th′) ̸= ∅ which is a contradiction since RH0(Th) and RH0(Th′) lie in
different connected components. □

Theorem 5.29 (= Theorem 1.2). — Conjecture (1) holds in
Ms

B(X, r)(C). That is: the Euclidean (or equivalently, the Zariski) clo-
sure in Ms

B(X, r)(C) of an absolute Q-constructible set is an absolute Q-
closed subset of Ms

B(X, r)(C); the collection of absolute Q-constructible
subsets of Ms

B(X, r)(C) is generated from the absolute Q-closed subsets of
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Ms
B(X, r)(C) via finite sequences of taking unions, intersections, and com-

plements; and, every irreducible component of an absolute Q-closed subset
in Ms

B(X, r)(C) is absolute Q-closed.

Proof. — The claims were proved in Lemma 5.25, Lemma 5.26, and
Lemma 5.28. □

5.5. Monodromy at infinity and determinant

We keep the notation of this section, namely X is a smooth complex
quasi-projective variety, X a smooth compactification, the complement D

is a simple normal crossing divisor. Let D =
⋃s

i=1 Di be the irreducible
decomposition. Denote by MDR(X/D, r)lf(C) subset of MDR(X/D, r)(C)
consisting of polystable logarithmic connections such that each stable direct
summand is a locally free OX -module. Then MDR(X/D, r)lf(C) is the set
of closed points of a Zariski open subscheme of MDR(X/D, r), by [18,
Proposition 5.21]. Consider the diagram:
(5.9)

MDR(X/D, r)lf(C) Crs Crs

MB(X, r)(C) (Cr−1 × C∗)s = ((C∗)(r))s (C∗)rs

RH

res

f Exp

root

mon
root

defined as follows. Here

res = (res1, . . . , ress)

and resi : MDR(X/D, r)lf(C) → Cr is the algebraic map which associates
to (E, ∇) the r-tuple of coefficients, excluding the top degree, of the char-
acteristic polynomial of the residue homomorphism Γi ∈ Hom(E|Di

, E|Di
).

This is well-defined, since over a point of Di the residue homomorphism de-
termines a conjugacy class in GLr(C) which remains constant as the point
varies. Similarly, mon = (mon1, . . . , mons) and moni : MB(X, r)(C) →
Cr−1 × C∗ is the morphism defined over Q that associates to a represen-
tation ρ : π1(X, x0) → GLr(C) the coefficients of the characteristic poly-
nomial of the matrix associated to a small loop around Di. The constant
term coefficient is nonzero. By identifying a monic polynomial with the
unordered set of its roots, one identifies Cr−1 ×C∗ with the r-th symmetric
product (C∗)r/Sr denoted (C∗)(r). Each of two maps root is the product s

times of the quotient maps by the action of the symmetric group Sr. The
quotient map is a finite map of algebraic varieties, given by the symmetric
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polynomials, such that the fiber over (a0, . . . , ar−1) is the set of roots of
the polynomial tr + ar−1tr−1 + · · · + a0 and their distinct permutations.
The map Exp takes z to e2π i z component-wise. The map f is the unique
map that makes the diagram commutative.

Lemma 5.30. — Let M be one of the following:
(a) M = MB(X, r), in which case we also assume that

RH : MDR(X/D, r)lf(C) → MB(X, r)(C)

is surjective; or,
(b) M = Ms

B(X, r), in which case mon will denote the restriction
mon |M .

We have:
(1) If S ⊂ M is an absolute Q-constructible subset, then root−1(mon(S))

is generated from torsion-translated algebraic subtori of (C∗)rs via
a finite sequence of taking unions, intersections, and complements.

(2) Conversely, let S′ ⊂ (C∗)rs be a constructible subset generated
from torsion-translated algebraic subtori of (C∗)rs via a finite se-
quence of taking unions, intersections, and complements. Then
mon−1(root(S′)) is an absolute Q-constructible subset of M .

Proof.
(1). — Let T := RH−1(S) ∩ MDR(X/D, r)lf(C). The assumptions guar-

antee that RH(T ) = S. Let S1 = root−1(mon(S)) and T1 = root−1(res(T )).
Then Exp(T1) = S1.

Let σ ∈ Gal(C/Q). Since S is absolute, RH(pσ(T)) = Sσ is Q-constructible.
Applying σ coordinate-wise to points of Crs one obtains

σ(T1) = root−1(res(pσ(T ))),

and therefore Exp(σ(T1)) = root−1(mon(Sσ)) equals σ(S1) and is Q-con-
structible.

One can identify Exp : C → C∗ with the RH map from the moduli
of logarithmic connections on (P1, B = {0, ∞}) on the trivial rank 1 line
bundle to the Betti moduli of rank 1 local systems on C∗. Taking the
product coordinate-wise rs-times corresponds to taking external product
of logarithmic connections and local systems, respectively. The previous
discussion implies then that S1 is an absolute Q-constructible subset of the
Betti moduli of rank 1 local systems on (C∗)rs. By Theorem 4.11, it follows
that S1 is obtained from finitely many torsion-translated algebraic subtori
via a finite sequence of taking unions, intersections, and complements, as
claimed.
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(2). — It is enough to prove that S0 = mon−1(root(S′)) is absolute Q-
constructible if S′ is a torsion-translated algebraic subtorus of (C∗)rs. Let
T ′ = Exp−1(S′). Then T ′ consists of all Zrs-translates of a linear subvariety
of Crs defined over Q. Define T0 = RH−1(S0) ∩ MDR(X/D, r)lf(C). Then
T0 = res−1(root(T ′)). Let σ ∈ Gal(C/Q). Then

Sσ
0 = RH(pσ(T0))

= RH(res−1(root(σ(T ′))))

= RH(res−1(root(T ′)))

= mon−1(root(S′)),

where the maps RH, res, mon are the ones defined for (Xσ, Dσ), Xσ, and
the first equality holds because of the assumptions (a), or(b). In particular,
S0 is absolute Q-closed. □

Next we consider the morphism det : MB(X, r)(C) → MB(X, 1)(C) de-
fined over Q given by the top exterior power of local systems.

Lemma 5.31.

(1) If S ⊂ MB(X, r)(C) is an absolute Q-constructible subset, then
det(S) is absolute Q-constructible in MB(X, 1)(C).

(2) Conversely, let S′ ⊂ MB(X, 1)(C) be an absolute Q-closed subset.
Then det−1(S′) is an absolute Q-closed subset of MB(X, r)(C).

Proof.

(1). — It follows from the fact that det(Sσ) = (det(S))σ for all σ ∈
Gal(C/Q), together with the fact that det(Sσ) is Q-constructible by the
assumption on S.

(2). — Similarly, (det−1(S′))σ = det−1((S′)σ), and det is a morphism
of Q-schemes. □

One can extend (5.9) to include det and yield a commutative diagram
(5.10)

MDR(X/D, r)lf(C)

RH
��

det × res// MDR(X/D, 1)(C) × Crs

RH ×f

��

MDR(X/D, 1)(C) × Crsid × rootoo

id × Exp
��

MB(X, r)(C) det × mon // MB(X, 1)(C) × ((C∗)(r))s MB(X, 1)(C) × (C∗)rs.
id × rootoo

The proofs of the previous lemmas easily combine to give:
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Proposition 5.32. — Let M be one of the following:
(a) M = MB(X, r), in which case we also assume that

RH : MDR(X/D, r)lf(C) → MB(X, r)(C)

is surjective (e.g. if X is a curve); or,
(b) M = Ms

B(X, r), in which case det × mon will denote the restriction
(det × mon)|M .

We have:
(1) If S ⊂ M is an absolute Q-constructible subset, then

(id × root)−1((det × mon)(S)) is generated as a subset of
MB(X, 1)(C) × (C∗)rs from torsion-translated algebraic subtori via
a finite sequence of taking unions, intersections, and complements.

(2) Conversely, let S′ ⊂ MB(X, 1)(C) × (C∗)rs be a torsion-translated
algebraic subtorus. Then (det × mon)−1((id × root)(S′)) is an abso-
lute Q-closed subset of M .

5.6. Appendix: Corrections to [3]

In [3] the surjection of the two Riemann–Hilbert morphisms from (5.2)
was taken for granted. This is still an open question. For the lack of a proof,
the definition on moduli-absoluteness and its relation with absoluteness
from [3, Section 7] need to be changed in order to be correct. These changes
are only necessary if the two RH maps from (5.2) are not surjective.

None of the main results and none of the conjectures, all being contained
in the Introduction and Sections 9–11 of [3], need any changes. This is
because they are either about absolute subsets of MB(X, r) if there are
no additional conditions on X, or about moduli-absolute subsets in cases
when both maps RH are surjective, cf. Theorem 5.2.

Corrections to [3]:
(1) [3, Definition 7.4.1]: in the definition of moduli-absoluteness for a

subset S of RB(X, x0, r)(C) (respectively, of MB(X, r)(C)), one has
to assume that S is contained in the image of RH, so that S = Sσ

if σ is the identity.
(2) [3, Lemma 7.4.3] should begin with: Let T be a subset of the image

of RH in MB(X, r)(C) such that q−1
B (T ) is a subset of the image of

RH in RB(X, x0, r)(C). Then the equivalence as stated there holds.
(3) [3, Proposition 7.4.4]: S, T , and q−1

B (T ) are assumed to be subsets
of the images of the two maps RH.
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(4) [3, Proposition 7.4.5] remains true, but the proof of (1) for MB is
exactly like the proof for RB , and does not follow from the result
for RB .

6. Rigid local systems

We address Conjecture A for absolute sets of cohomologically rigid simple
local systems and give the proofs of the remaining results from Introduc-
tion. We keep the setup from the previous section. Namely, X is a smooth
quasi-projective complex variety, x0 a base point, j : X ↪−→ X an open em-
bedding into a smooth projective variety such that D = X − X is a normal
crossings divisor. Let Di with 1 ⩽ i ⩽ s be the irreducible components of D.

Definition 6.1. — Let L be a simple complex local system on X.
(1) L is rigid if it is an isolated point of the moduli subspace

MB(X, r, {C1, . . . , Cs}, E) of simple local systems with determi-
nant isomorphic to E = det L and local monodromy around Di

contained in the conjugacy class Ci in GLr(C) determined by the
monodromy representation of L. We denote by M rig

B (X, r)(C) the
subset of MB(X, r)(C) consisting of rigid local systems.

(2) L is cohomologically rigid if H1(X, j!∗End0(L)) = 0 where End0(L)
denotes the local system of traceless endomorphisms of L and j!∗ is
the intermediate extension functor. We denote by M cohrig

B (X, r)(C)
the subset of MB(X, r)(C) consisting of cohomologically rigid local
systems.

The first important properties of rigidity are:

Proposition 6.2. — Let X be as above and L ∈ Ms
B(X, r)(C).

(1) Each fiber of the map det × mon from (5.10) contains at most
finitely many rigid local systems.

(2) M cohrig
B (X, r)(C) is an absolute Q-constructible subset of

MB(X, r)(C).
(3) L is cohomologically rigid if and only if L is a reduced isolated

point of MB(X, r, {Ci}, E), with Ci and E as in Definition 6.1. In
particular, M cohrig

B (X, r)(C) ⊂ M rig
B (X, r)(C).

(4) If dim X = 1, then M cohrig
B (X, r)(C) = M rig

B (X, r)(C). Moreover, if
X has non-trivial rigid local systems, then X is P1 minus at least
3 points.

Proof.
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(1). — The claim is equivalent to saying there exist only finitely many
isomorphism classes of rigid local systems with fixed determinant whose
local monodromy along the irreducible components of D have fixed eigen-
values. Since MB(X, r, {Ci}, E) are C-schemes of finite type, see [7], each
MB(X, r, {Ci}, E)(C) contains at most finitely many rigid local systems.
Since E is fixed, it is enough to show that there are only finitely many
ordered sets {C1, . . . , Cs} of conjugacy classes of GLr(C) such that the set
of eigenvalue sets {eig(C1), . . . , eig(Cs)} ∈ ((C∗)r)s is prescribed. This fol-
lows from the fact that there are only finitely many Jordan normal forms
corresponding to a fixed set of eigenvalues with multiplicities.

(2). — All the functors involved in the definition of cohomological rigid-
ity are on the list of absolute Q-constructible functors from [3, Theo-
rem 6.4.3], hence the cohomologically rigid simple local systems form an ab-
solute Q-constructible subset of Ms

B(X, r)(C), from which the claim follows.

(3) and (4). — are well-known, see for example [7] and [13], respec-
tively. □

Remark 6.3. — It is not clear if M rig
B (X, r)(C) is even Zariski con-

structible. In fact it is still open if there exist rigid but not cohomologically
rigid local systems.

We prove now the remaining results mentioned in Introduction.

Proof of Theorem 1.3.

(1). — It follows from the fact that A1 holds already for the moduli of
simple local systems by Theorem 1.2.

(3). — If L is an absolute Q-point of M cohrig
B (X, r)(C), then

(det×mon)(L) is the image under id × root of a torsion point, by Propo-
sition 5.32(1). This is equivalent to det(L) and Ci being quasi-unipotent.
Conversely, if L is a point of M cohrig

B (X, r)(C) and (det × mon)(L) is the im-
age of a torsion point under id × root, then (det × mon)−1(det × mon)(L) is
an absolute Q-closed subset of M cohrig

B (X, r)(C) consisting of finitely many
points and containing L, by Proposition 5.32(2) and Proposition 6.2(1).
Hence L is also an absolute Q-point by (1). This shows that (3) is equiva-
lent with Simpson’s conjecture in this case.

(2). — Since (1) holds for M cohrig
B (X, r)(C), the property (2) is equiv-

alent to: let S be a non-empty irreducible absolute Q-closed subset of
M cohrig

B (X, r)(C), then the subset S′ of absolute Q-points of S is Zariski
dense in S. Let S′ be the Zariski closure of S′. Consider the Q-constructible
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subsets in MB(X, 1)(C) × ((C∗)(r))s,

T = (det × mon)(S), T ′ = (det × mon)(S′).

By Proposition 5.32, T is the image under id × root of a subset obtained
from some torsion-translated affine algebraic subtori of MB(X, 1)(C) ×
(C∗)rs via a finite sequence of taking finite union, intersection, complement.
By the equivalence from (3), T ′ ⊂ T contains all points in T of the form
(id × root)(λ) with λ ∈ MB(X, 1)(C) × (C∗)rs torsion, hence it is Zariski
dense in T . Recall that (det × mon) has finite fibers in M cohrig

B (X, r)(C) by
Proposition 6.2(1). Thus dim(S′) = dim(T ′) = dim(T ) = dim(S). Since S

is irreducible and closed, it follows that S = S′.

(4). — Let S be an irreducible component of the Zariski closure in
M cohrig

B (X, r)(C) of an infinite subset of absolute Q-points. By Proposi-
tion 6.2(2), M cohrig

B (X, r)(C) is defined over Q, hence S is also defined over
Q. Then T = (det × mon)(S) is Q-constructible and irreducible. If S con-
tains only finitely many absolute Q-points, then it is 0-dimensional and
hence absolute Q-closed. We may assume that S contains infinitely many
absolute Q-points. It then follows by the equivalence from (3) that the set
(id × root)−1(T ) is the Zariski closure in MB(X, 1)(C)×(C∗)rs of an infinite
set of torsion points. In particular, it is an Sr-equivariant finite union of
torsion-translated algebraic subtori by Theorem 4.11. Thanks to Proposi-
tion 5.32, (det × mon)−1(T ) is absolute Q-closed in M cohrig

B (X, r)(C). Using
again that det × mon is a quasi-finite morphism, we have that

dim((det × mon)−1(T )) = dim(T ) = dim(S).

Thus S is an irreducible component of (det × mon)−1(T ), and by (1) it
follows that S itself is absolute Q-closed. □

Remark 6.4. — Conjecture (3) for M cohrig
B (X, r) would also hold for rank

r = 3 if [14, Theorem 1.3] can be extended to the quasi-projective case,
since the integrality conjecture is proved in the quasi-projective case by [7].

Proof of Theorem 1.5. — Since the map mon is a closed embedding in
this case by Example 3.1, the claim follows from Lemma 5.30. □

At the intersection of the two cases considered in Theorem 1.4 we give
an explicit description of the moduli of rigid local systems. We can assume
that X = P1 \ D where D = {D1, . . . , Ds} is a finite set of s ⩾ 3 distinct
points, by Proposition 6.2(4).
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Proposition 6.5. — Let X = P1 \ D with |D| = s ⩾ 3.
(1) Let L ∈ Ms

B(X, 2)(C). The following are equivalent:
• L ∈ M rig

B (X, 2)(C);
• there are exactly 3 points in D around which the local mon-

odromy of L is not a nonzero scalar matrix.
(2) M rig

B (X, 2)(C) are the complex points of an open subscheme
M rig

B (X, 2) of MB(X, 2) defined over Q and there is a decompo-
sition

M rig
B (X, 2) =

s(s−1)(s−2)/6⊔
i=1

Mi

into
(

s
3
)

disjoint closed subvarieties Mi of M rig
B (X, 2), such that

each Mi is absolute Q-closed in M rig
B (X, 2) and the morphism mon

from (5.9) induces an isomorphism from Mi to the complement of

V

 ∏
j,k,l,m=1,2

(x1jx2kx3lx4mx5m . . . xsm − 1)


in V (x11x12x21x22 . . . xs1xs2 − 1, x41 − x42, . . . , xs1 − xs2) as subva-
rieties of

[
G(2)

m

]×s

.

(3) If s = 3 one has M rig
B (P1 \ {0, 1, ∞}, 2) = Ms

B(P1 \ {0, 1, ∞}, 2) =
M1.

Proof.

(1). — Let ρ : π1(X, x0) → GL2(C) represent L. We calculate the di-
mension of the centralizer Zi of the local monodromy ρ(γi) of L around
each Di. The possible Jordan canonical forms of a rank 2 invertible matrix
are

J1 =
(

α 0
0 β

)
, J2 =

(
α 0
0 α

)
, J3 =

(
α 1
0 α

)
,

where α, β ∈ C∗, α ̸= β. Then the dimensions of their centralizers are 2,
4, 2, respectively.

Let N0 be the cardinality of the set

{i ∈ {1, . . . , s} | ρ(γi) = αI, for some α ∈ C∗}.

Then
∑s

i=1 dim Zi = 4N0 + 2(s − N0) = 2(N0 + s). Moreover L is rigid
if and only if 2(N0 + s) = 4(s − 2) + 2 by Proposition 6.6. Equivalently,
N0 = s − 3.
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(3). — For the first equality, by (1) it remains to show that the local
monodromy matrices ρ(γi) are not scalar matrices for any simple repre-
sentation ρ and all i = 1, 2, 3. Suppose to the contrary that one of the
three matrices, say ρ(γ1), is a scalar matrix, equal to αI for some α ∈ C∗.
Then ρ(γ3) = α−1ρ(γ2)−1. It then follows that all eigenvectors of ρ(γ2) are
eigenvectors of ρ(γ1) and ρ(γ3) as well. This implies that ρ is not a sim-
ple representation, which is a contradiction. The second equality follows
already from Example 3.1.

(2). — We regard MB(X, 2) as the closed subvariety V (X1 . . . Xs − I)
of GL2(C)×s < GL2(C) as in Example 3.1. Let V ⊂ MB(X, 2)(C) be the
subset defined by

V =
{

[(g1, . . . , gs)] ∈ MB(X, 2)(C)

∣∣∣∣∣ g4 = α4I, . . . , gs = αsI,

(α4, . . . , αs) ∈ (C∗)s−3

}
.

Note that the set of scalar matrices in GL2(C) is GL2(C)-invariant Zariski
closed and defined over Q. It follows that V is also an algebraic closed
subset defined over Q, because it is the GIT quotient of a GL2(C)-invariant
algebraic closed subset of GL2(C)×s defined over Q.

Let V s = V ∩Ms
B(X, 2)(C), then we claim that V s = V ∩M rig

B (X, 2)(C).
This is similar to the proof of (3). To this end, let L be a simple local system
corresponding to a point [(g1, . . . , gs)] ∈ V s. If g1, . . . , gs are nonzero scalar
matrices, then L would not be simple. If exactly one of g1, g2, g3 is not a
nonzero scalar matrices, say g1, then g1 = (g2 . . . gs)−1 is a nonzero scalar
matrix, a contradiction. If exactly two of g1, g2, g3 are not nonzero scalar
matrices, say g1 and g2, then g1g2 = (g3 . . . gs)−1 = αI for some α ∈ C∗.
Then α−1g1g2 = I. Thus α−1g1 and g2 have common nonzero eigenvectors,
and these are then common eigenvectors for all gi. In particular, L is not
simple in this case, a contradiction again. Thus part (1) implies the claim.

We set M1 = V s. One defines the other Mi by redefining V to choose
other s−3 points among D1, . . . , Ds for which the local monodromy should
be scalar. All Mi are mutually isomorphic, mutually disjoint, and cover
M rig

B (X, 2)(C).
Next we show Mi are absolute Q-closed in M rig

B (X, 2)(C). It is enough
to show that V is absolute Q-closed in MB(X, 2)(C). Let L ∈ V . Then
the Deligne canonical extension gives a logarithmic connection (E, ∇) in
RH−1(L) whose residue along Dj is aj · I, where aj ∈ C satisfies that
e2π i aj = αj and the real part of aj lies in [0, 1), for j = 4, . . . , s. It is easy
to see that RH ◦pσ(E, ∇) is the isomorphism class of a local system whose
local monodromy around Dσ

j is e2π i σ(aj) ·I for j = 4, . . . , s. This shows
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that for every σ ∈ Gal(C/Q), the set V σ, which equals RH ◦pσ ◦ RH(V ) by
Lemma 5.10, has a similar description to V :

V σ =
{

[(g1, . . . , gs)] ∈ MB(Xσ, 2)(C)

∣∣∣∣∣ g4 = α′
4I, . . . , gs = α′

sI,

(α′
4, . . . , α′

s) ∈ (C∗)s−3

}
.

Hence V is absolute Q-closed in MB(X, 2)(C).
For g ∈ GL2(C) and (g1, g2, g3, α4I, . . . , αsI) ∈ GL2(C)×s, the action of

GL2(C) yields

g · (g1, g2, g3, α4I, . . . , αsI) = (gg1g−1, gg2g−1, gg3g−1, α4I, . . . , αsI).

Hence there is an isomorphism V ≃
(
GL2(C)×2 <GL2(C)

)
×(C∗)s−3 send-

ing a point [(g1, g2, g3, α4I, . . . , αsI)] to ([(g2, g3)], α4, . . . , αs). Note that
g1 = (α4 . . . αsg2g3)−1, g2, g3, α4I, . . . , αsI have a common nonzero eigen-
vector if and only if g2, g3 have a common nonzero eigenvector, so above
isomorphism identifies the subspaces of non-simple points:

V \ M1 = V \ V s ={([(g2, g3)], α4, . . . , αs) ∈ V |
g2, g3 have a common nonzero eigenvector}.

Recall that by Example 3.1,

GL2(C)×2 <GL2(C)
∼−→ V (x11x12x21x22x31x32 − 1) ⊂ ((C∗)(2))3

(x11,x12,x21,x22,x31,x32).

Hence,
V ≃ V (x11x12x21x22x31x32 − 1) × (C∗)s−3,

[(g1, g2, g3, α4I, . . . , αsI)] 7→ (eig((g2g3)−1), eig(g2), eig(g3), α4, . . . , αs).

As t 7→ (t, t) gives a closed embedding C∗ ≃ V (x − y) ⊂ (C∗)(2), above
isomorphism is equivalent to

V ≃ V (x11x12x21x22x31x32 − 1, x41 − x42, . . . , xs1 − xs2)
⊂ ((C∗)(2))s

(x11,x12,...,xs1,xs2),

[(g1, . . . , gs)] 7→ (eig((g2g3)−1), eig(g2), eig(g3), eig(g4), . . . , eig(gs)).

Since (g4 . . . gs)−1 = (α4 . . . αs)−1I for any [(g1, . . . , gs)] ∈ V , we have
eig((g2 . . . gm)−1) = (α4 . . . αs)−1 · eig((g2g3)−1). Therefore, the previous
isomorphism is given by

mon: V → V (x11x12x21x22 . . . xs1xs2−1, x41−x42, . . . , xs1−xs2) ⊂ ((C∗)(2))s,

[(g1, . . . , gs)] 7→ (eig(g1) = eig((g2 . . . gs)−1), eig(g2), . . . , eig(gs)).
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Moreover, similarly as in Example 3.1, the subspace of non-simple points
is identified via mon with

V \ M1 = V

 ∏
j,k,l,m=1,2

(x1jx2kx3lx4mx5m . . . xsm − 1)

 ∩ V.

Since MB(X, 2) is reduced and irreducible, it can be easily seen that V and
M1, and hence all Mi, are also reduced and irreducible. □

In the above proof we used:

Proposition 6.6 ([13, Theorem 1.1.2]). — Let L be a rank r simple
local system on X = P1 \ D where D = {D1, . . . , Ds} is a finite set of
s ⩾ 3 distinct points. Let Zi be the centralizer in Matr(C) of the local
monodromy of L around Di, and regard Zi as a complex linear subspace.
Then L is rigid if and only if

∑s
i=1 dim Zi = (s − 2)r2 + 2.

Remark 6.7. — An explicit description of M rig
B (P1 \ {0, 1, ∞}, 3) is given

in [24] based on Proposition 6.6.
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