We prove that the natural -structure on an Inoue surface is the unique -structure, generalizing a result of Bruno Klingler which asserts that the natural -structure is the unique -structure.
Nous prouvons que la -structure naturelle sur une surface d’Inoue est l’unique -structure. Ceci généralise un résultat de Bruno Klingler qui affirme que la -structure est l’unique -structure.
Revised:
Accepted:
Published online:
Keywords: Inoue surfaces, birational structures, Cremona group
Mot clés : surfaces d’Inoue, structures birationnelles, groupe de Cremona
Zhao, Shengyuan 1
@article{AIF_2023__73_2_873_0, author = {Zhao, Shengyuan}, title = {Uniqueness of birational structures on {Inoue} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {873--917}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {2}, year = {2023}, doi = {10.5802/aif.3537}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3537/} }
TY - JOUR AU - Zhao, Shengyuan TI - Uniqueness of birational structures on Inoue surfaces JO - Annales de l'Institut Fourier PY - 2023 SP - 873 EP - 917 VL - 73 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3537/ DO - 10.5802/aif.3537 LA - en ID - AIF_2023__73_2_873_0 ER -
%0 Journal Article %A Zhao, Shengyuan %T Uniqueness of birational structures on Inoue surfaces %J Annales de l'Institut Fourier %D 2023 %P 873-917 %V 73 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3537/ %R 10.5802/aif.3537 %G en %F AIF_2023__73_2_873_0
Zhao, Shengyuan. Uniqueness of birational structures on Inoue surfaces. Annales de l'Institut Fourier, Volume 73 (2023) no. 2, pp. 873-917. doi : 10.5802/aif.3537. https://aif.centre-mersenne.org/articles/10.5802/aif.3537/
[1] Zur Theorie der Überlagerungsflächen, Acta Math., Volume 65 (1935) no. 1, pp. 157-194 | DOI | MR | Zbl
[2] Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (2015) no. 2, pp. 507-533 | MR | Zbl
[3] Topologies and structures of the Cremona groups, Ann. Math., Volume 178 (2013) no. 3, pp. 1173-1198 | DOI | MR | Zbl
[4] Quotients of groups of birational transformations of cubic del Pezzo fibrations (2020) (preprint, https://arxiv.org/abs/1907.04696)
[5] On uniformly rational varieties, Topology, geometry, integrable systems and mathematical physics. Novikov’s seminar: 2012–2014. Selected papers of the seminar, Moscow, Russia, 2012–2014. Dedicated to S. P. Novikov on the occasion of his 75th birthday, American Mathematical Society, 2014, pp. 33-48 | Zbl
[6] Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 5, pp. 569-594 | DOI | Numdam | MR | Zbl
[7] Courbes entières et feuilletages holomorphes, Enseign. Math., Volume 45 (1999) no. 1-2, pp. 195-216 | MR | Zbl
[8] Birational geometry of foliations, Monografías de Matemática, IMPA - Instituto de Matemática Pura e Aplicada, 2000, 138 pages | MR | Zbl
[9] Dynamique des automorphismes des surfaces , Acta Math., Volume 187 (2001) no. 1, pp. 1-57 | DOI | MR | Zbl
[10] Sur les groupes de transformations birationnelles des surfaces, Ann. Math., Volume 174 (2011) no. 1, pp. 299-340 | DOI | MR | Zbl
[11] Dynamics of automorphisms of compact complex surfaces, Frontiers in complex dynamics (Princeton Mathematical Series), Volume 51, Princeton University Press, 2014, pp. 463-514 | DOI | MR | Zbl
[12] The Cremona group, Algebraic geometry: Salt Lake City 2015 (de Fernex, Tommaso et al., eds.) (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018, pp. 101-142 | MR | Zbl
[13] Symétries birationnelles des surfaces feuilletées, J. Reine Angew. Math., Volume 561 (2003), pp. 199-235 | DOI | MR | Zbl
[14] Kähler groups, real hyperbolic spaces and the Cremona group. with an appendix by Serge Cantat, Compos. Math., Volume 148 (2012) no. 1, pp. 153-184 | DOI | MR | Zbl
[15] Variétés hyperboliques et équations différentielles algébriques, Gaz. Math., Soc. Math. Fr. (1997) no. 73, pp. 3-23 | MR | Zbl
[16] Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 1, pp. 57-75 | DOI | Numdam | MR | Zbl
[17] On solvable subgroups of the Cremona group, Ill. J. Math., Volume 59 (2015) no. 2, pp. 345-358 | MR | Zbl
[18] Dynamics of bimeromorphic maps of surfaces, Am. J. Math., Volume 123 (2001) no. 6, pp. 1135-1169 | DOI | MR | Zbl
[19] Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Am. Math. Soc., Volume 18 (2005) no. 2, pp. 291-312 | DOI | MR | Zbl
[20] Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebr. Geom., Volume 19 (2010) no. 3, pp. 473-529 | DOI | MR | Zbl
[21] Special birational structures on non-Kählerian complex surfaces, J. Math. Pures Appl., Volume 106 (2016) no. 1, pp. 76-122 | DOI | MR | Zbl
[22] Sur les espaces localement homogènes, Enseign. Math., Volume 35 (1936), pp. 317-333 | Zbl
[23] Riemann surface laminations with singularities, J. Geom. Anal., Volume 18 (2008) no. 2, pp. 400-442 | DOI | MR | Zbl
[24] Laminations par surfaces de Riemann, Dynamique et géométrie complexes (Lyon, 1997) (Cerveau, Dominique et al., eds.) (Panoramas et Synthèses), Volume 8, Société Mathématique de France, 1999, pp. ix, xi, 49-95 | MR | Zbl
[25] Oka’s principle for holomorphic sections of elliptic bundles, J. Am. Math. Soc., Volume 2 (1989) no. 4, pp. 851-897 | MR | Zbl
[26] On surfaces of Class , Invent. Math., Volume 24 (1974), pp. 269-310 | DOI | MR | Zbl
[27] Structures affines et projectives sur les surfaces complexes, Ann. Inst. Fourier, Volume 48 (1998) no. 2, pp. 441-477 | DOI | Numdam | MR | Zbl
[28] Geometry on all prime Three Manifolds (2020) (preprint, https://arxiv.org/abs/1906.10820)
[29] Diophantine approximations and foliations, Publ. Math., Inst. Hautes Étud. Sci. (1998) no. 87, pp. 121-174 | DOI | Numdam | MR | Zbl
[30] Géométrie et dynamique sur les surfaces algébriques réelles, Ph. D. Thesis, Université de Rennes 1, Rennes, France (2012)
[31] Foliations with measure preserving holonomy, Ann. Math., Volume 102 (1975) no. 2, pp. 327-361 | DOI | MR | Zbl
[32] Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., Volume 36 (1976), pp. 225-255 | DOI | MR | Zbl
[33] Projectively flat surfaces and Bogomolov’s theorem on class surfaces, Int. J. Math., Volume 5 (1994) no. 2, pp. 253-264 | DOI | MR | Zbl
[34] Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, 439, Springer, 1975 | DOI | Zbl
[35] Subgroups of elliptic elements of the Cremona group, J. Reine Angew. Math., Volume 770 (2021), pp. 27-57 | DOI | MR | Zbl
[36] Birational Kleinian groups (2021) (to appear, https://arxiv.org/abs/2103.09350)
[37] Centralizers of elements of infinite order in plane Cremona groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 23 (2022) no. 2, pp. 915-957 | DOI | MR | Zbl
Cited by Sources: