Let be a univalent self-map of the unit disc. We introduce a technique, that we call semigroup-fication, which allows to construct a continuous semigroup of holomorphic self-maps of the unit disc whose time one map is, in a sense, very close to . The semigroup-fication of is of the same type as (elliptic, hyperbolic, parabolic of positive step or parabolic of zero step) and there is a one-to-one correspondence between the set of boundary regular fixed points of with a given multiplier and the corresponding set for . Moreover, in case (and hence ) has no interior fixed points, the slope of the orbits converging to the Denjoy–Wolff point is the same. The construction is based on holomorphic models, localization techniques and Gromov hyperbolicity. As an application of this construction, we prove that in the non-elliptic case, the orbits of converge non-tangentially to the Denjoy–Wolff point if and only if the Koenigs domain of is “almost symmetric” with respect to vertical lines.
Soit une application univalente du disque unité dans lui-même. On introduit une technique, appelée semigroupe-fication, qui nous permet de construire un semigroupe continu d’applications holomorphes du disque unité dans lui-même tel que l’application au temps , , est très proche de . La “ semigroupe-fication ” de est du même type de (elliptique, hyperbolique, parabolique d’étape positive, parabolique d’étape zéro) et il existe une correspondance entre l’ensemble des points fixes de qui sont réguliers, au bord et avec un multiplicateur donné, et le même ensemble pour . De plus, si (et donc ) n’a pas de points fixes à l’intérieur, la pente des orbites qui convergent au point de Denjoy–Wolff est la même. La construction repose sur les modèles holomorphes, les techniques de localisation et l’hyperbolicité de Gromov. Comme application, on démontre que dans le cas non-elliptique, les orbites de convergent au point de Denjoy–Wolff de façon non-tangentielle si et seulement si le domaine de Koenigs de est “presque symétrique” par rapport aux lignes verticales.
Revised:
Accepted:
Published online:
Keywords: Semigroups of holomorphics maps, univalent functions, asymptotic behavior of orbits, iteration theory.
Mot clés : Semigroupes des applications holomorphes, fonctions univalentes, comportement asymptotique des orbites, théorie de l’itération.
@article{AIF_2023__73_1_251_0, author = {Bracci, Filippo and Roth, Oliver}, title = {Semigroup-fication of univalent self-maps of the unit disc}, journal = {Annales de l'Institut Fourier}, pages = {251--277}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {1}, year = {2023}, doi = {10.5802/aif.3517}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3517/} }
TY - JOUR AU - Bracci, Filippo AU - Roth, Oliver TI - Semigroup-fication of univalent self-maps of the unit disc JO - Annales de l'Institut Fourier PY - 2023 SP - 251 EP - 277 VL - 73 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3517/ DO - 10.5802/aif.3517 LA - en ID - AIF_2023__73_1_251_0 ER -
%0 Journal Article %A Bracci, Filippo %A Roth, Oliver %T Semigroup-fication of univalent self-maps of the unit disc %J Annales de l'Institut Fourier %D 2023 %P 251-277 %V 73 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3517/ %R 10.5802/aif.3517 %G en %F AIF_2023__73_1_251_0
Bracci, Filippo; Roth, Oliver. Semigroup-fication of univalent self-maps of the unit disc. Annales de l'Institut Fourier, Volume 73 (2023) no. 1, pp. 251-277. doi : 10.5802/aif.3517. https://aif.centre-mersenne.org/articles/10.5802/aif.3517/
[1] Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989, xvii+417 pages | Zbl
[2] Canonical models for holomorphic iteration, Trans. Amer. Math. Soc., Volume 368 (2016) no. 5, pp. 3305-3339 | DOI | MR | Zbl
[3] On the iteration of analytic functions in a halfplane. II, J. London Math. Soc. (2), Volume 20 (1979) no. 2, pp. 255-258 | DOI | MR | Zbl
[4] Cyclic phenomena for composition operators, Mem. Amer. Math. Soc., Volume 125 (1997) no. 596, p. x+105 | DOI | MR | Zbl
[5] Continuous semigroups of holomorphic self-maps of the unit disc, Springer Monographs in Mathematics, Springer, Cham, 2020, 566 pages | DOI | Zbl
[6] Backward orbits and petals of semigroups of holomorphic self-maps of the unit disc, Ann. Mat. Pura Appl. (4), Volume 198 (2019) no. 2, pp. 411-441 | DOI | MR | Zbl
[7] Non-tangential limits and the slope of trajectories of holomorphic semigroups of the unit disc, Trans. Amer. Math. Soc., Volume 373 (2020) no. 2, pp. 939-969 | DOI | MR | Zbl
[8] Asymptotic behavior of orbits of holomorphic semigroups, J. Math. Pures Appl. (9), Volume 133 (2020), pp. 263-286 | DOI | MR | Zbl
[9] Nonpositive curvature and complex analysis, Five lectures in complex analysis (Contemp. Math.), Volume 525, Amer. Math. Soc., Providence, RI, 2010, pp. 43-83 | DOI | MR | Zbl
[10] Analytic flows on the unit disk: angular derivatives and boundary fixed points, Pacific J. Math., Volume 222 (2005) no. 2, pp. 253-286 | DOI | MR | Zbl
[11] Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc., Volume 265 (1981) no. 1, pp. 69-95 | DOI | MR | Zbl
[12] Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995, xii+388 pages | Zbl
[13] Linearization models for complex dynamical systems, Operator Theory: Advances and Applications, 208, Birkhäuser Verlag, Basel, 2010, xii+265 pages (Topics in univalent functions, functional equations and semigroup theory, Linear Operators and Linear Systems) | DOI | Zbl
[14] Panorama, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progr. Math.), Volume 83, Birkhäuser Boston, Boston, MA, 1990, pp. 1-25 | DOI | MR
[15] Hyperbolic complex spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 318, Springer-Verlag, Berlin, 1998, xiv+471 pages | DOI | Zbl
[16] Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. École Norm. Sup. (3), Volume 1 (1884), pp. 3-41 | DOI | Numdam | MR | Zbl
[17] Angular derivatives at boundary fixed points for self-maps of the disk, Proc. Amer. Math. Soc., Volume 126 (1998) no. 6, pp. 1697-1708 | DOI | MR | Zbl
[18] On the iteration of analytic functions in a halfplane, J. London Math. Soc. (2), Volume 19 (1979) no. 3, pp. 439-447 | DOI | MR | Zbl
[19] Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993, xvi+223 pages | DOI | Zbl
[20] Semigroups in geometrical function theory, Kluwer Academic Publishers, Dordrecht, 2001, xii+222 pages | DOI | Zbl
[21] Sur l’itération des fonctions holomorphes dans un demi-plan, Bull. Soc. Math. France, Volume 57 (1929), pp. 195-203 | DOI | MR | Zbl
Cited by Sources: