In this article, we study constant mean curvature isometric immersions into and and we classify these isometric immersions when the surface has constant intrinsic curvature. As applications, we use the sister surface correspondence to classify the constant mean curvature surfaces with constant intrinsic curvature in the -dimensional homogenous manifolds and we use the Torralbo–Urbano correspondence to classify the parallel mean curvature surfaces in and with constant intrinsic curvature. It is worthwhile to point out that these classifications provide new examples.
Dans cet article, nous étudions les immersions à courbure moyenne constante dans et et nous classifions ces immersions quand la surface est à courbure intrinsèque constante. Comme applications, nous utilisons la correspondance des surfaces sœurs pour classifier les surfaces à courbure moyenne constante et courbure intrinsèque constante dans les variétés de dimension homogènes et nous utilisons la correspondance de Torralbo–Urbano pour classifier les surfaces à courbure moyenne parallèle et courbure intrinsèque constante dans et . Il est important de noter que ces classifications fournissent de nouveaux exemples.
Revised:
Accepted:
Published online:
Keywords: Isometric immersions, constant mean curvature surfaces, parallel mean curvature surfaces, homogenous $3$-manifolds.
Mot clés : Immersions isométriques, surfaces à courbure moyenne constante, surfaces à courbure moyenne parallèle, variétés homogènes de dimension $3$.
Daniel, Benoît 1; Domingos, Iury 1, 2; Vitório, Feliciano 2
@article{AIF_2023__73_1_203_0, author = {Daniel, Beno{\^\i}t and Domingos, Iury and Vit\'orio, Feliciano}, title = {Constant mean curvature {Isometric} {Immersions} into $\protect \mathbb{S}^2 \times \protect \mathbb{R}$ and $\protect \mathbb{H}^2 \times \protect \mathbb{R}$ and related results}, journal = {Annales de l'Institut Fourier}, pages = {203--249}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {1}, year = {2023}, doi = {10.5802/aif.3521}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3521/} }
TY - JOUR AU - Daniel, Benoît AU - Domingos, Iury AU - Vitório, Feliciano TI - Constant mean curvature Isometric Immersions into $\protect \mathbb{S}^2 \times \protect \mathbb{R}$ and $\protect \mathbb{H}^2 \times \protect \mathbb{R}$ and related results JO - Annales de l'Institut Fourier PY - 2023 SP - 203 EP - 249 VL - 73 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3521/ DO - 10.5802/aif.3521 LA - en ID - AIF_2023__73_1_203_0 ER -
%0 Journal Article %A Daniel, Benoît %A Domingos, Iury %A Vitório, Feliciano %T Constant mean curvature Isometric Immersions into $\protect \mathbb{S}^2 \times \protect \mathbb{R}$ and $\protect \mathbb{H}^2 \times \protect \mathbb{R}$ and related results %J Annales de l'Institut Fourier %D 2023 %P 203-249 %V 73 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3521/ %R 10.5802/aif.3521 %G en %F AIF_2023__73_1_203_0
Daniel, Benoît; Domingos, Iury; Vitório, Feliciano. Constant mean curvature Isometric Immersions into $\protect \mathbb{S}^2 \times \protect \mathbb{R}$ and $\protect \mathbb{H}^2 \times \protect \mathbb{R}$ and related results. Annales de l'Institut Fourier, Volume 73 (2023) no. 1, pp. 203-249. doi : 10.5802/aif.3521. https://aif.centre-mersenne.org/articles/10.5802/aif.3521/
[1] A Hopf differential for constant mean curvature surfaces in and , Acta Math., Volume 193 (2004) no. 2, pp. 141-174 | DOI | MR | Zbl
[2] Generalized Hopf differentials, Mat. Contemp., Volume 28 (2005), pp. 1-28 | MR | Zbl
[3] Complete surfaces of constant curvature in and , Calc. Var. Partial Differential Equations, Volume 29 (2007) no. 3, pp. 347-363 | DOI | MR | Zbl
[4] Surfaces with constant curvature in and . Height estimates and representation, Bull. Braz. Math. Soc. (N.S.), Volume 38 (2007) no. 4, pp. 533-554 | DOI | MR | Zbl
[5] Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., Volume 17 (1938) no. 1, pp. 177-191 | DOI | MR | Zbl
[6] Minimal surfaces with constant Gauss curvature, Proc. Amer. Math. Soc., Volume 34 (1972), pp. 504-508 | DOI | MR | Zbl
[7] Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv., Volume 82 (2007) no. 1, pp. 87-131 | DOI | MR | Zbl
[8] Isometric immersions into and and applications to minimal surfaces, Trans. Amer. Math. Soc., Volume 361 (2009) no. 12, pp. 6255-6282 | DOI | MR | Zbl
[9] Minimal isometric immersions into and , Indiana Univ. Math. J., Volume 64 (2015) no. 5, pp. 1425-1445 | DOI | MR | Zbl
[10] Isoparametric surfaces in -spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 22 (2021) no. 1, pp. 269-285 | DOI | MR | Zbl
[11] An Introduction to Differential Geometry, Princeton Mathematical Series, v. 3, Princeton University Press, Princeton, N. J., 1940, x+304 pages | MR | Zbl
[12] Complete constant mean curvature surfaces in homogeneous spaces, Comment. Math. Helv., Volume 86 (2011) no. 3, pp. 659-674 | DOI | MR | Zbl
[13] Constant mean curvature surfaces in 3-dimensional Thurston geometries, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 830-861 | MR | Zbl
[14] Constant Gaussian curvature surfaces with parallel mean curvature vector in two-dimensional complex space forms, Geom. Dedicata, Volume 118 (2006), pp. 229-244 | DOI | MR | Zbl
[15] Surfaces of constant mean curvature in manifolds of constant curvature, J. Differential Geometry, Volume 8 (1973), pp. 161-176 | DOI | MR | Zbl
[16] Minimal surfaces with constant curvature in -dimensional space forms, Proc. Amer. Math. Soc., Volume 89 (1983) no. 1, pp. 133-138 | DOI | MR | Zbl
[17] On minimal surfaces of constant curvature in two-dimensional complex space form, J. Reine Angew. Math., Volume 523 (2000), pp. 69-101 | DOI | MR | Zbl
[18] Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2), Volume 89 (1969), pp. 187-197 | DOI | MR | Zbl
[19] An elementary proof of the Abresch–Rosenberg theorem on constant mean curvature immersed surfaces in and , Q. J. Math., Volume 58 (2007) no. 4, pp. 479-487 | DOI | MR | Zbl
[20] Famiglie di superficie isoparametrische nell’ordinario spacio euclideo, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., Volume 26 (1937), pp. 355-362 | Zbl
[21] Invariant surfaces in and applications, Bull. Braz. Math. Soc. (N.S.), Volume 43 (2012) no. 4, pp. 545-578 | DOI | MR | Zbl
[22] Screw motion surfaces in , Asian J. Math., Volume 19 (2015) no. 2, pp. 265-280 | DOI | MR | Zbl
[23] Screw motion surfaces in and , Illinois J. Math., Volume 49 (2005) no. 4, pp. 1323-1362 | DOI | MR | Zbl
[24] The geometries of -manifolds, Bull. London Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | DOI | MR | Zbl
[25] Surfaces with parallel mean curvature vector in and , Trans. Amer. Math. Soc., Volume 364 (2012) no. 2, pp. 785-813 | DOI | MR | Zbl
[26] Minimal surfaces in , J. Geom. Anal., Volume 25 (2015) no. 2, pp. 1132-1156 | DOI | MR | Zbl
[27] Hypersurfaces with a parallel higher fundamental form, J. Geom., Volume 105 (2014) no. 2, pp. 223-242 | DOI | MR | Zbl
[28] Geometric structures on compact complex analytic surfaces, Topology, Volume 25 (1986) no. 2, pp. 119-153 | DOI | MR | Zbl
Cited by Sources: