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SEMIGROUP-FICATION OF UNIVALENT SELF-MAPS
OF THE UNIT DISC

by Filippo BRACCI & Oliver ROTH (*)

Abstract. — Let f be a univalent self-map of the unit disc. We introduce a
technique, that we call semigroup-fication, which allows to construct a continuous
semigroup (ϕt) of holomorphic self-maps of the unit disc whose time one map ϕ1
is, in a sense, very close to f . The semigroup-fication of f is of the same type as f
(elliptic, hyperbolic, parabolic of positive step or parabolic of zero step) and there
is a one-to-one correspondence between the set of boundary regular fixed points
of f with a given multiplier and the corresponding set for ϕ1. Moreover, in case
f (and hence ϕ1) has no interior fixed points, the slope of the orbits converging
to the Denjoy–Wolff point is the same. The construction is based on holomorphic
models, localization techniques and Gromov hyperbolicity. As an application of
this construction, we prove that in the non-elliptic case, the orbits of f converge
non-tangentially to the Denjoy–Wolff point if and only if the Koenigs domain of f
is “almost symmetric” with respect to vertical lines.

Résumé. — Soit f une application univalente du disque unité dans lui-même. On
introduit une technique, appelée semigroupe-fication, qui nous permet de construire
un semigroupe continu (ϕt) d’applications holomorphes du disque unité dans lui-
même tel que l’application au temps t = 1, (ϕ1), est très proche de f . La “ semigroupe-
fication ” de f est du même type de f (elliptique, hyperbolique, parabolique d’étape
positive, parabolique d’étape zéro) et il existe une correspondance 1 − 1 entre l’en-
semble des points fixes de f qui sont réguliers, au bord et avec un multiplicateur
donné, et le même ensemble pour ϕ1. De plus, si f (et donc ϕ1) n’a pas de points
fixes à l’intérieur, la pente des orbites qui convergent au point de Denjoy–Wolff
est la même. La construction repose sur les modèles holomorphes, les techniques
de localisation et l’hyperbolicité de Gromov. Comme application, on démontre que
dans le cas non-elliptique, les orbites de f convergent au point de Denjoy–Wolff de
façon non-tangentielle si et seulement si le domaine de Koenigs de f est “presque
symétrique” par rapport aux lignes verticales.
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of orbits, iteration theory.
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1. Introduction

Iteration theory in the unit disc and more generally on complex manifolds
has been a subject of study for more than one century, starting from the
work of Schröder in the 1870’s and Koenigs in the 1880’s. We refer the
reader to the book of M. Abate [1] for history and complete bibliography
on the subject (see also [5] and [12, 19], where iteration theory in the unit
disc is developed for applications to composition operators).

One of the most striking results in iteration theory is that every holomor-
phic self-map of the unit disc D := {ζ ∈ C : |ζ| < 1} can be “linearized”.
To be precise, let f : D → D be holomorphic. The Schwarz lemma implies
that f is either the identity map or has at most one fixed point in D. In
case f has no fixed points in D or a fixed point z0 ∈ D such that f ′(z0) ̸= 0,
there exists a holomorphic function h : D → C such that h ◦ f = ψ ◦ h,
where ψ is a suitable automorphism of C. This linearization model was
developed over a period of many decades starting from Koenigs [16], Val-
iron [21], Pommerenke [18], Baker and Pommerenke [3], Cowen [11] and
most recently Arosio and the first named author [2]. It breaks into three
main cases, called elliptic, hyperbolic and parabolic.

If f has a fixed point z0 ∈ D (in this case f is called elliptic) one can
choose ψ(z) = λz (with λ = f ′(z0)) and

⋃
n⩽0 λ

nh(D) equal either to D (if
f is an automorphism of D) or equal to C. In case f is not an automorphism
of D, then the sequence of iterates of f , {f◦n(z)}, converges to z0.

In case f has no fixed point in D, there exists a unique point τ ∈ ∂D,
called the Denjoy–Wolff point of f , such that {f◦n(z)} converges to τ

for all z ∈ D. In addition, the non-tangential limit of f at τ is τ , i.e.,
∠ limz→τ f(z) = τ , and ∠ limz→τ f

′(z) = α ∈ (0, 1]. The map f is called
hyperbolic if α < 1, and parabolic otherwise. In both of these cases, one
can choose ψ(z) = z + i, and

⋃
n⩽0(h(D) − in) equal to either a strip

{w ∈ C : 0 < Rew < a} for some a > 0, or H := {w ∈ C : Rew > 0}, or −H
or C. The set

⋃
n⩽0(h(D) − in) is a strip if and only if f is hyperbolic. The

parabolic case breaks into two subcases. If
⋃

n⩽0(h(D) − in) = H (or −H),
then f is called parabolic of positive hyperbolic step. If

⋃
n⩽0(h(D)− in) =

C, then f is called parabolic of zero hyperbolic step.
If f is univalent (i.e., holomorphic and injective), the holomorphic func-

tion h which realizes the previous linearization model can be chosen to be
univalent as well and is then unique up to post-composition with affine
transformations. In this case, the map h is called the Koenigs function of
f and its image domain Ω := h(D) the Koenigs domain of f . Every other
linearization of f factorizes through h. Since f = h−1 ◦ ψ ◦ h and ψ is
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affine, it is thus the geometry of the Koenigs domain which encapsulates
the dynamical properties of the map f . In particular, it determines the way
the iterates of f converge to the Denjoy–Wolff point of f .

One of the main aims of this paper is to introduce a technique, that we
call semigroup-fication of an univalent self-map f , which allows to define
a continuous semigroup of holomorphic self-maps of D which is, in some
sense, very close to f . We briefly describe the semigroup-fication technique
in case f is non-elliptic. If f : D → D is univalent with no fixed points in D
and h is its Koenigs function, then the Koenigs domain Ω := h(D) of f is
asymptotically starlike at infinity, that is, Ω + i ⊆ Ω and

⋃
n∈N(Ω − in) is

either a strip, a half-plane or C. We define the set Ω∗ ⊆ Ω by considering
the union of all z ∈ Ω such that z + it ∈ Ω for all t > 0. Hence, by
construction, Ω∗ is starlike at infinity, so we call Ω∗ the starlike-fication
of Ω (see Section 7). It is not difficult to show that Ω∗ is a non-empty,
open, connected and simply connected set (Lemma 7.6). Hence, by the
Riemann mapping theorem, there is a Riemann map h∗ : D → Ω∗, and
setting ϕt(z) := (h∗)−1(h∗(z) + it), we obtain a continuous semigroup (ϕt)
of holomorphic self-maps of D (i.e., the flow of a semicomplete holomorphic
vector field in D). A similar construction can be done in case f is elliptic,
using the invariance of the Koenigs domain under the map z 7→ λz. The
semigroup (ϕt) is the semigroup-fication of f .

As a matter of notation, if f : D → D is holomorphic and A ⩾ 1, we let

FixA(f) := {σ ∈ ∂D : ∠ lim
z→σ

f(z) = σ,∠ lim
z→σ

f ′(z) = A},

be the set of boundary regular fixed points of f .
The main result about semigroup-fication is the following:

Theorem 1.1. — Let f : D → D be univalent and let (ϕt) be the
semigroup-fication of f . Then

(1) f is of the same type (elliptic, hyperbolic, parabolic of positive
hyperbolic step or parabolic of zero hyperbolic step) as ϕ1.

(2) If f , and hence ϕ1, is elliptic, then f(z0) = z0 and ϕ1(z0) = z0 for
some z0 ∈ D and f ′(z0) = ϕ′

1(z0),
(3) If f , and hence ϕ1, is non-elliptic, with dilation coefficient α ∈ (0, 1]

at its Denjoy–Wolff point, then ϕ1 has dilation coefficient α ∈ (0, 1]
at its Denjoy–Wolff point.

(4) for every A ⩾ 1 there is a one-to-one correspondence between
FixA(f) and FixA(ϕ1).

(5) If f , and hence ϕ1, is non-elliptic, and {nk} ⊂ N is an increasing
sequence converging to ∞, then the following are equivalent:
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(a) {f◦nk (z)} converges non-tangentially to the Denjoy–Wolff
point of f for some, and hence any, z ∈ D,

(b) {ϕnk
(z)} converges non-tangentially to the Denjoy–Wolff point

of (ϕt) for some, and hence any, z ∈ D.

In case f is hyperbolic (but not necessarily univalent), it is known (see
[11, 21]) that {f◦n(z)} converges non-tangentially to the Denjoy–Wolff
point τ of f for all z ∈ D. If f is parabolic of positive hyperbolic step,
{f◦n(z)} converges tangentially to τ (see [18]). If f is parabolic of zero hy-
perbolic step, then simple examples show that both types of convergence
can occur.

As an application of our semigroup-fication technique, in this paper we
completely characterize the way {f◦n(z)} converges to the Denjoy–Wolff
point in terms of the Euclidean shape of the Koenigs domain of f in the
case of univalent self-maps f of D.

In particular, we show that the non-tangential convergence of {f◦n(z)}
is equivalent to a simple geometric condition on the Koenigs domain when
f is univalent parabolic of zero hyperbolic step. Our argument also leads
to another proof of the tangential convergence in case of univalent para-
bolic maps with positive hyperbolic step ([3, 18]) and of the non-tangential
convergence in case of hyperbolic univalent maps ([21]).

In order to state our result, we introduce a notation: if Ω ⊊ C is a domain,
for p ∈ C and t > 0, we let

δ̃+
Ω,p(t) := inf{|z − (p+ it)| : Re z ⩾ Re p, z ∈ C \ Ω},

δ̃−
Ω,p(t) := inf{|z − (p+ it)| : Re z ⩽ Re p, z ∈ C \ Ω}.

We also let δ±
Ω,p(t) := min{t, δ̃±

Ω,p(t)}.

Theorem 1.2. — Let f : D → D be univalent without fixed points in
D and Denjoy–Wolff point τ ∈ ∂D, and let Ω be the Koenigs domain of f .
Suppose that {nk} ⊂ N := {0, 1, 2, . . .} is an increasing sequence converging
to +∞. Then the following are equivalent:

(1) For some, and hence any, z ∈D, {f◦nk(z)} converges non-tangentially
to τ .

(2) For some, and hence any, p ∈ Ω

0 < lim inf
k→+∞

δ+
Ω,p(nk)
δ−

Ω,p(nk)
⩽ lim sup

k→+∞

δ+
Ω,p(nk)
δ−

Ω,p(nk)
< +∞.

The previous result was proven by the first named author together with
M. Contreras, S. Díaz-Madrigal, H. Gaussier and A. Zimmer in case f
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is the time one flow of a semicomplete holomorphic vector field of the
unit disc (see [8, Theorem 1.1], see also [5, Chapter 17]). Since time one
flows are univalent, but in general univalent self-maps of the unit disc can
not be embedded into a flow of a semicomplete holomorphic vector field,
Theorem 1.2 generalizes [8, Theorem 1.1].

Theorem 1.2 follows from the semigroup-fication technique which, thanks
to Theorem 1.1(5) allows to reduce Theorem 1.2 to the corresponding re-
sult [8, Theorem 1.1] for flows of semicomplete holomorphic vector fields
(see Section 10 for details).

The proofs of our results are mainly based on localization results for the
hyperbolic metric and the hyperbolic distance and, in particular, on Gro-
mov’s hyperbolicity theory. In order to make the paper self-contained, we
recall and partly prove the results of hyperbolicity theory we need in Sec-
tion 3. In Section 4 and Section 5 we briefly review the relevant facts about
canonical models for iteration and semigroups of holomorphic self-maps.
In Section 6 we discuss boundary regular fixed points and their character-
ization through models. In Section 7 we describe the construction and the
properties of the starlike-fication Ω∗ of a domain Ω which is asymptotically
starlike at infinity. The basic technical result of the paper is proved in Sec-
tion 8. It asserts that if Ω is an asymptotically starlike domain of parabolic
type which is Gromov hyperbolic (but not necessarily simply connected),
then there exists a Lipschitz curve in its starlike-fication Ω∗ “escaping to
∞” which is a quasi-geodesic both in Ω and Ω∗ (see Theorem 8.3). Fi-
nally, the proof of Theorem 1.1 and the proof of Theorem 1.2 are given in
Section 10.

2. Right and left distance of a domain

For a given set Ω ⊊ C, we let

δΩ(z) := inf{|z − p| : p ∈ C \ Ω} , z ∈ Ω.

For p ∈ C and t > 0, we define

δ̃+
Ω,p(t) := inf{|z − (p+ it)| : Re z ⩾ Re p, z ∈ C \ Ω},

δ̃−
Ω,p(t) := inf{|z − (p+ it)| : Re z ⩽ Re p, z ∈ C \ Ω}.

Note that δ̃+
Ω,p(t) = δΩ+(p+ it), where Ω+ = Ω ∪ {w ∈ C : Rew < Re p}.

Note also that if p + it ∈ C \ Ω, then δ̃+
Ω,p(t) = δ̃−

Ω,p(t) = 0, while for
p+ it ∈ Ω,

δΩ(p+ it) = min{δ̃+
Ω,p(t), δ̃−

Ω,p(t)}.
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Moreover, for t > 0 we let

δ+
Ω,p(t) := min{δ̃+

Ω,p(t), t}, δ−
Ω,p(t) := min{δ̃−

Ω,p(t), t}.

If Ω is starlike at infinity (i.e., Ω + it ⊆ Ω for all t ⩾ 0), then (0,+∞) ∋
t 7→ δ±

Ω,p(t) is non-decreasing.
Simple geometric considerations allow to prove the following lemma:

Lemma 2.1. — Let Ω ⊊ C be a domain such that for every z ∈ Ω there
exists tz ∈ R such that z + it ∈ Ω for all t > tz. Then for all p, q ∈ Ω there
exist 0 < c < C such that for all t > 0

cδ±
Ω,p(t) ⩽ δ±

Ω,q(t) ⩽ Cδ±
Ω,p(t).

3. Hyperbolic geometry

In this section we recall the notions and results of hyperbolic geometry
we need in the paper. We refer the reader to [1, 5, 9, 14, 15] for details.

Let D ⊂ C be a domain, z ∈ D and v ∈ C. The hyperbolic norm of v at
z in D is

κD(z; v) := inf
{

|v|
|f ′(0)|

∣∣∣∣ f : D → D is holomorphic, f(0) = z

}
.

By Schwarz’s Lemma it follows immediately that if D ⊊ C is a simply
connected domain then for all z ∈ D and v ∈ C we have κD(z; v) = |v|

f ′(0) ,
where f : D → D is the Riemann map such that f(0) = z and f ′(0) > 0.

The hyperbolic distance between z, w ∈ D is defined as

kD(z, w) := inf
∫ 1

0
κD(γ(τ); γ′(τ))dτ,

where the infimum is taken over all piecewise C1-smooth curves γ : [0, 1] →
D such that γ(0) = z and γ(1) = w.

As a consequence of Schwarz’s Lemma, every biholomorphism between
two domains is an isometry for the hyperbolic norm and distance, while
every holomorphic function does not expand the hyperbolic norm and dis-
tance.

It follows from the uniformization theorem that kD(z, w) = 0 for some,
and hence for all, z, w ∈ D if and only if D = C or D = C \ {p} for some
p ∈ C. In all other cases, namely, if D is hyperbolic (i.e., holomorphically
covered by D), (D, kD) is a complete metric space. Note that this implies
in particular that if D ⊂ C is a domain whose complement contains more
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than one point, then limn→∞ kD(zn, z0) = +∞ for all fixed z0 ∈ D and
{zn} ⊂ D such that {zn} lies eventually outside any compacta of D.

The hyperbolic length of an absolutely continuous curve γ : [s, t] → D is

ℓD(γ; [s, t]) =
∫ t

s

κD(γ(τ); γ′(τ))dτ.

An absolutely continuous curve η : I → D defined on an interval I ⊂ R
is a geodesic if

ℓD(η; [s, t]) = kD(η(s), η(t))

for all s ⩽ t belonging to I.
Since (D, kD) is complete, it follows from the Hopf–Rinow theorem that

for every z, w ∈ D there exists a geodesic η : [0, 1] → D in D such that
η(0) = z and η(1) = w. Geodesics joining two different points might not
be unique (up to parameterization) in general, but, as a consequence of
the Riemann mapping theorem and a direct inspection in the unit disc, if
D ⊊ C is simply connected then every two points of D can be joined by a
unique (up to parameterization) geodesic.

Three geodesics γ1, γ2, γ3 : [0, 1] → D such that γ1(0) = γ2(0), γ1(1) =
γ3(0) and γ2(1) = γ3(1) form a geodesic triangle in D. The sets γj([0, 1]),
j = 1, 2, 3, are called the edges of the geodesic triangle.

Given a hyperbolic domain D ⊊ C, we say that (D, kD) is Gromov
hyperbolic if there exists a constant G > 0, called the Gromov constant of
(D, kD), such that for every geodesic triangle {γ1, γ2, γ3}, each point of each
edge stays at hyperbolic distance no more than G from the other two edges
of the geodesic triangle. This is the well known Rips thin triangle definition
of Gromov hyperbolicity for geodesic metric spaces such as (D, kD). For
simplicity, we say that a hyperbolic domain D ⊊ C is Gromov hyperbolic,
if (D, kD) is Gromov hyperbolic.

Since every simply connected domain D ⊊ C is biholomorphic to D,
hence (D, kD) is isometric to (D, kD), and the unit disc is well known to be
Gromov hyperbolic, it follows that every simply connected domain D ⊊ C
is Gromov hyperbolic (with the same Gromov constant as the unit disc).

Definition 3.1. — Let I ⊂ R be an interval, D ⊊ C a hyperbolic
domain and γ : I → D an absolutely continuous curve. Let A ⩾ 1, B ⩾ 0.
We say that γ is a (A,B)-quasi-geodesic if for all s ⩽ t belonging to I,

ℓD(γ; [s, t]) ⩽ AkD(γ(s), γ(t)) +B.

We say that γ is a quasi-geodesic if there exist A ⩾ 1, B ⩾ 0 such that γ
is a (A,B)-quasi-geodesic.

TOME 73 (2023), FASCICULE 1
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We sometimes say that γ : I → D is a (quasi-)geodesic inD when we need
to emphasize the ambient space (D, kD). If this ambient space is Gromov
hyperbolic, then every quasi-geodesic is “shadowed” by a geodesic. This is
the content of Gromov’s shadowing lemma. It says that for any A ⩾ 1 and
B ⩾ 0 there exists M > 0 (which depends only on A,B and the Gromov’s
constant of D) such that if γ : [a, b] → D is a (A,B)-quasi-geodesic, then
there exists a geodesic η : [0, 1] → D such that η(0) = γ(a), η(1) = γ(b)
and for every t ∈ [a, b], s ∈ [0, 1]

(3.1) kD(γ(t), η([0, 1])) < M, kD(η(s), γ([a, b])) < M.

See, for instance, [5, Theorem 6.3.8]) for a proof of the shadowing lemma.
In this paper, quasi-geodesics play a significant role, in particular since

they are very useful for detecting non-tangential convergence. The proof
of the following result is based on Gromov’s shadowing lemma and can be
found e.g. in [7, Proposition 4.5] (or [5, Corollary 6.3.9]).

Proposition 3.2. — Let D ⊊ C be a simply connected domain and let
f : D → D be a Riemann map. Suppose η : [0,+∞) → D is a quasi-geodesic
such that limt→+∞ kD(η(0), η(t)) = +∞. Then

(1) there exists τ ∈ ∂D such that limt→+∞ f−1(η(t)) = τ ,
(2) a sequence {zn} ⊂ D converges non-tangentially to τ if and only if

there exists C > 0 such that for all n ∈ N,

kD(f(zn), η([0,+∞)) = inf{kD(f(zn), η(t)) : t ∈ [0,+∞)} ⩽ C.

If D ⊊ C is a domain, and z ∈ D, R > 0, we let

BD(z,R) := {w ∈ D : kD(z, w) < R}.

We need the following localization lemma:

Lemma 3.3. — Let D ⊊ C be a hyperbolic domain. Then for every
R > 0 there exists c > 1 such that for all z ∈ D and v ∈ C,

κD(z; v) ⩽ κBD(z,R)(z; v) ⩽ cκD(z; v).

One can take c = cosh(R), so 1/c is the euclidean radius of BD(0, R), the
disc in D centered at the origin of hyperbolic radius R.

Proof. — Since BD(z,R) ⊂ D and BD(z,R) ∋ z 7→ z ∈ D is holo-
morphic, the first estimate follows from the non-increasing property of the
hyperbolic norm under holomorphic maps.

In order to prove the second estimate, it is clear from the definition of
hyperbolic norm that it is enough to consider v = 1. Let c := κBD(0,R)(0; 1).
Fix z ∈ D and let f : D → D be a holomorphic function such that f(0) = z.
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Since f : (D, kD) → (D, kD) is distance non-increasing, it maps BD(0, R)
into BD(z,R) again in a nonexpanding way, so

κBD(z,R)(f(ξ); f ′(ξ)) ⩽ κBD(0,R)(ξ; 1) , ξ ∈ BD(0, R) .

Setting ξ = 0, we get κBD(z,R)(z; 1) ⩽ c/|f ′(0)|, which proves the second
estimate. □

Remark 3.4. — Let D ⊊ C be a simply connected domain, z ∈ D and
R > 0. Then BD(z,R) is totally geodesic in D. Namely, for every p, q ∈
BD(z,R), the geodesic in D joining p and q is contained in BD(z,R). This
follows easily since D is isometric to D via a Riemann map, and, since the
group of automorphisms of D acts transitively on D, it is enough to check
the statement for hyperbolic discs centered at the origin.

In case D ⊂ C is hyperbolic but not necessarily simply connected, the
previous remark can be replaced by the following

Lemma 3.5. — Let Ω ⊂ C be a hyperbolic domain. Let z0 ∈ D and
T > 0. Then for every z, w ∈ BD(z0, T ), any geodesic γ : [0, 1] → D in D

such that γ(0) = z, γ(1) = w satisfies γ(t) ∈ BD(z0, 2T ) for all t ∈ [0, 1].

Proof. — Let z, w ∈ BD(z0, T ). By the triangle inequality,

kD(z, w) ⩽ kD(z, z0) + kD(w, z0) < 2T.

Let γ : [0, 1] → D be a geodesic such that γ(0) = z and γ(1) = w and
assume by contradiction that there exists t0 ∈ (0, 1) such that γ(t0) ̸∈
BD(z0, 2T ). Thus, by continuity, we can find 0 < s0 < t0 < s1 < 1 such
that γ(s0), γ(s1) ∈ ∂BD(z0, T ). Since it is clear that

kD(∂BD(z0, T ), ∂BD(z0, 2T )) = T,

we have

2T >kD(z, w)>kD(γ(s0), γ(s1)) = kD(γ(s0), γ(t0))+kD(γ(t0), γ(s1))⩾ 2T,

a contradiction. □

4. Canonical models for iteration

Let f : D → D be a holomorphic map without fixed points in D. The well
known Denjoy–Wolff Theorem (see, e.g., [1, 5]) implies that there exists a
unique point τ ∈ ∂D such that the sequence {f◦n} of iterates of f converges
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uniformly on compacta to the constant map z 7→ τ . Moreover, there exists
α ∈ (0, 1] such that

∠ lim
z→τ

f ′(z) = α,

where ∠ lim denotes the non-tangential limit. The map f is called hyper-
bolic if α < 1 and parabolic if α = 1.

We state the following linearization result for univalent (i.e., injective
and holomorphic) maps. The theorem has a long history, starting with
Valiron [21], Pommerenke [18], Baker and Pommerenke [3], Cowen [11],
and Bourdon and Shapiro [4]. The statement here comes from [2].

Theorem 4.1. — Let f : D → D be univalent and with no fixed points
in D. Then there exists h : D → C univalent such that

(1) h(f(z)) = h(z) + i for all z ∈ D.
(2)

⋃
m∈N(h(D) − im) = Λ, where either Λ = {w ∈ C : 0 < Rew < a}

for some a > 0, or Λ = H := {w ∈ C : Rew > 0}, or Λ = −H or
Λ = C.

(3) If g : D → C is holomorphic and g(f(z)) = g(z)+i for all z ∈ D then
there exists a surjective, holomorphic map ψ : Λ →

⋃
n⩾0(g(D)−ni)

such that g = ψ ◦h and ψ(z+ i) = ψ(z) + i for all z ∈ Λ. Moreover,
if g is univalent, then ψ is a biholomorphism.

(4) limn→∞
kΛ(w,w+in)

n = − 1
2 logα for all w ∈ Λ.

(5) limn→∞ kD(f◦n(z), f◦n(w)) = kΛ(h(z), h(w)) for all z, w ∈ D.

The map h is called the Koenigs function of f (the adjective “the” is due
to the essential uniqueness coming from (3)).

We note that, by (1), h(D)+i ⊂ h(D). Moreover, f◦n(z) = h−1(h(z)+in)
for all z ∈ D and n ∈ N.

Also, a direct computation with (4) and (5) implies that
(a) f is hyperbolic if and only if Λ is a strip,
(b) f is parabolic if and only if Λ = H,−H or C.

Parabolic maps for which
(c) Λ = C are called of zero hyperbolic step and these are exactly

those parabolic maps for which limn→∞ kD(f◦n(z), f◦n(w)) = 0 for
all z, w ∈ D;

(d) Λ = H or Λ = −H are called of positive hyperbolic step and
these are exactly those for which limn→∞ kD(f◦n(z), f◦n(w)) > 0
for some, and hence any, z, w ∈ D, z ̸= w.

It is known (see [5] or [11]) that if f is hyperbolic then {f◦n(z)} con-
verges non-tangentially to the Denjoy–Wolff point for all z ∈ D. It is also
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known that if f is parabolic of positive hyperbolic step, the convergence
is tangential (see [18]). In this paper we show how, in case of univalent
parabolic maps with zero hyperbolic step, the type of convergence can be
determined from the Euclidean shape of the image of the Koenigs map.
Our argument, in fact, gives another proof of the tangential convergence in
case of univalent parabolic maps with positive hyperbolic step and of the
non-tangential convergence in case of univalent hyperbolic maps.

Remark 4.2. — In case f : D → D is univalent and has a fixed point
z0 ∈ D, a statement similar to Theorem 4.1 holds. In particular, if µ ∈ C is
chosen such that e−µ = f ′(z0) (so Reµ ⩾ 0 by Schwarz’s Lemma) one can
find a univalent map h : D → C with h(z0) = 0 and

(1) h(f(z)) = e−µ h(z) for all z ∈ D,
(2)

⋃
m∈N(e−mµ h(D)) = Λ, where Λ = D (this is the case if and only

if f is an automorphism of D) or Λ = C.
(3) If g : D → C is holomorphic and g(f(z)) = e−µ g(z) for all z ∈ D

then there exists a surjective, holomorphic map

ψ : Λ →
⋃

n⩾0
(e−nµ g(D))

such that g = ψ ◦ h and ψ(λz) = λψ(z) for all z ∈ Λ. Moreover, if
g is univalent, then ψ is a biholomorphism.

Note that Reµ = 0 if and only if f is an elliptic automorphism of D.

5. Continuous semigroups of holomorphic self-maps of the
unit disc

Definition 5.1. — A continuous semigroup of holomorphic self-maps
of D, or just a semigroup in D for short, is a semigroup homeomorphism
between the semigroup of real non-negative numbers (with respect to sum),
and the semigroup of holomorphic self-maps of D (with respect to composi-
tion), which is continuous when R+ is endowed with the Euclidean topology
and the space of holomorphic self-maps of D is endowed with the topology
of uniform convergence on compacta.

We refer the reader to the books [1, 5, 13, 20] for more details about and
proofs of the following facts.

Let (ϕt) be a semigroup in D without fixed points in D. For all t > 0, ϕt

has the same Denjoy–Wolff point τ ∈ ∂D. In other words, limt→+∞ ϕt(z) =
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τ ∈ ∂D for all z ∈ D. Also, there exists λ ⩽ 0 such that ∠ limz→τ ϕ
′
t(z) = eλt

for all t ⩾ 0. Moreover, for all t ⩾ 0, ϕt is injective.
In case of semigroups, the Koenigs function of each ϕt can be chosen

to be independent of t, namely, there exists a univalent map h : D → C
such that h(ϕt(z)) = z + it for all t ⩾ 0 and z ∈ D. The function h is the
Koenigs function of ϕ1 and all properties in Theorem 4.1 hold. Note that
h(D) + it ⊆ h(D) for all t ⩾ 0, in other words, in case of a semigroup, h(D)
is starlike at infinity.

Similarly, in case (ϕt) has a fixed point in D, the Koenigs function of
each ϕt can be chosen to be independent of t. In this case, if ϕt(z0) = z0
for all t ⩾ 0, then ϕ′

t(z0) = e−µt for some µ ∈ C, Reµ ⩾ 0 and for all
t ⩾ 0 and the domain h(D) (image of the common Koenigs function of ϕt)
is invariant under the map z 7→ e−µt z for all t ⩾ 0.

6. Boundary regular fixed points

Let f : D → D be holomorphic and σ ∈ ∂D. If ∠ limz→σ f(z) = σ, the
point σ is called a boundary fixed point of f . As a consequence of the
Julia–Wolff–Carathéodory Theorem (see, e.g., [5, Proposition 1.7.4] or [1,
Theorem. 1.2.7]), the non-tangential limit

A := ∠ lim
z→σ

f ′(z)

exists and A ∈ (0,+∞]. Moreover, A ⩽ 1 if and only if σ is the Denjoy–
Wolff point of f (or f(z) ≡ z). A boundary fixed point so that A < +∞
is called a boundary regular fixed point of f with multiplier A. The set
of all boundary regular fixed points of f with multiplier A is denoted by
FixA(f).

In order to state the main connection between boundary regular fixed
points and the canonical model for iteration, we need to introduce a nota-
tion.

Given µ ∈ C, Reµ > 0, α ∈ (0, π] and θ0 ∈ [−π, π), we let

Spir[µ, 2α, θ0] := {etµ+iθ : t ∈ R, θ ∈ (−α+ θ0, α+ θ0)},

a µ-spirallike sector of amplitude 2α. If D ⊂ C is a domain and S :=
Spir[µ, 2α, θ0] ⊂ D, we say that S is a maximal spirallike sector in D

provided there exist no θ1 ∈ [−π, π), β ∈ (0, π] such that Spir[µ, 2α, θ0] ⊊
Spir[µ, 2β, θ1] ⊂ D.

We denote by MSpir(µ, α,D) the set of all maximal µ-spirallike sectors
of amplitude 2α in D.
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A vertical strip of width R > 0 is a set of the form {z ∈ C : a < Re z <
a + R} for some a ∈ R. If D ⊂ C is a domain, a vertical strip S in D is
maximal provided S ⊂ D and there is no other vertical strip contained in
D which properly contains S.

We denote by MStrip(R,D) the set of all maximal vertical strips of width
R in D.

Theorem 6.1. — Let f : D → D be univalent, not an automorphism of
D, with Koenigs function h and let A > 1.

(1) If f is elliptic, f(z0) = z0 and f ′(z0) = e−µ, for some z0 ∈ D and
µ ∈ C with Reµ > 0, then there is a one-to-one correspondence
between FixA(f) and MSpir(µ, |µ|2π

(log A)(Re µ) , h(D)).
(2) If f is non-elliptic then there is a one-to-one correspondence be-

tween FixA(f) and MStrip( π
log A , h(D)).

The proof of the previous result can be found in [17] for the case f is
elliptic and µ ∈ R, and in [10] in case f is the time one map of a continuous
semigroup of holomorphic self-maps of the unit disc. In the general case,
the proof can be adapted from [6, Theorem 5.6] (see also [5, Chapter 13]);
we leave details to the reader.

7. Domains asymptotically starlike at infinity and their
starlike-fication

Definition 7.1. — A domain Ω ⊊ C is asymptotically starlike at in-
finity if

(1) Ω + i ⊆ Ω,
(2) there exist −∞ ⩽ a < b ⩽ +∞ such that

(7.1)
⋃

n∈N
(Ω − in) = (a, b) × R.

Moreover, we say that Ω is asymptotically starlike at infinity of hyperbolic
type if a, b ∈ R, while we say that Ω is asymptotically starlike at infinity
of parabolic type if a = −∞ or b = +∞.

Note that, by definition, a domain asymptotically starlike at infinity
is not required to be simply connected. If h is the Koenigs function of a
univalent self-map f of D, then the Koenigs domain of f is simply connected
and asymptotically starlike at infinity.
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Remark 7.2. — Let Ω ⊂ C be a domain such that Ω + i ⊂ Ω. It is not
hard to show that for every compact set K ⊂

⋃
n∈N(Ω − in) there exists

N ∈ N such that K + iN ⊂ Ω.

Let Ω ⊊ C be a domain asymptotically starlike at infinity, and z ∈ Ω.
Let

τz := inf{s ∈ R : z + ir ∈ Ω for all r > s}.

Lemma 7.3. — Let Ω ⊊ C be a domain asymptotically starlike at infin-
ity. Then τz < +∞ for all z ∈ Ω.

Proof. — Let z ∈ Ω. In order to prove that τz < +∞, by (1) in Defi-
nition 7.1, it is enough to prove that there exist n ∈ N such that ({w ∈
C : Rew = Re z,−1 ⩽ Imw ⩽ 1} + in) ⊂ Ω. This follows at once by
condition (1) in Definition 7.1 and Remark 7.2. □

For z ∈ C and r > 0, we let

D(z, r) := {w ∈ C : |w − z| < r}.

Lemma 7.4. — Let Ω ⊊ C be a domain asymptotically starlike at infin-
ity, and z ∈ Ω. Then

(1) τz ̸= 0.
(2) If δΩ(z) > 1/2 then τz < 0.
(3) If τz > 0 there exists p ∈ C \ Ω such that Re p = Re z and |z − p| ⩽

1/2.

Proof. — (1) Let z ∈ Ω. By (1) of Definition 7.1,

D(z, δΩ(z)) + in = D(z + in, δΩ(z)) ⊂ Ω

for all n ∈ N. Since Ω is open, hence δΩ(z) > 0, this implies that τz ̸= 0.
(2) If δΩ(z) > 1/2, then {w ∈ C : Rew = Re z, Im z − 1/2 ⩽ Imw ⩽

Im z + 1/2} ⊂ Ω, hence, z + it ∈ Ω for all t ⩾ 0, and τz < 0.
(3) Let r := inf{|z − Re z − it| : t ∈ R,Re z + it ̸∈ Ω}. By (1) of Defini-

tion 7.1, {Re z + it+N, t ∈ (−r, r)} ⊂ Ω for all N ∈ N. Hence, if r > 1/2,
z + it ∈ Ω for all t ⩾ 0 and τz < 0. □

Definition 7.5. — Let Ω ⊊ C be a domain asymptotically starlike at
infinity. The starlike-fication of Ω is the set Ω∗ defined by

Ω∗ := {z ∈ Ω : τz < 0}.

Lemma 7.6. — Let Ω ⊊ C be a domain asymptotically starlike at infin-
ity and Ω∗ its starlike-fication. Then Ω∗ ̸= ∅ is a simply connected domain
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starlike at infinity, Ω∗ ⊆ Ω and

(7.2)
⋃

n∈N
(Ω − in) =

⋃
t⩾0

(Ω∗ − it)

Proof. — If z ∈ Ω, by Lemma 7.3, τz < +∞. Hence, for every t > τz,
z + it ∈ Ω, which implies that τz+it < 0 for all t > τz, that is, z + it ∈ Ω∗

for all t > τz, proving that Ω∗ is non-empty.
If z ∈ Ω∗, then by definition of τz, z + it ∈ Ω for all t ⩾ 0. In particular,

τz+it < 0 for all t ⩾ 0, hence z + it ∈ Ω∗ for all t ⩾ 0. Thus Ω∗ is starlike
at infinity.

We show that Ω∗ is open. For w0 ∈ C and a, b > 0 let

D(w0, a, b) := {z ∈ C : |Re z − Rew0| < a, |Im z − Imw0| < b}.

Let z0 ∈ Ω∗. Assume by contradiction that there exists a sequence {zn} ⊂
C \ Ω∗ such that limn→∞ zn = z0.

Since, in particular, z0 ∈ Ω, there exist 0 < ϵ1, ϵ2 < 1 such that

(7.3) D(z0, ϵ1, ϵ2) ⊂ Ω.

Without loss of generality, we can assume that {zn} ⊂ D(z0, ϵ1, ϵ2), which
means that zn ∈ Ω \ Ω∗ for every n ∈ N. In particular, for every n ∈ N
there exists tn > 0 such that zn + itn ̸∈ Ω.

By Remark 7.2 and (7.3), there exists N0 ∈ N such that D(z0, ϵ1, 2) +
iN0 ⊂ Ω. Thus, by (1) in Definition 7.1,

D(z0 + it, ϵ1, 2) = D(z0, ϵ1, 2) + it ⊂ Ω

for all t ⩾ N0. Since zn + itn ∈ D(z0 + itn, ϵ1, ϵ2) ⊂ D(z0 + itn, ϵ1, 2), it
follows that supn∈N tn < +∞. Thus, up to extracting subsequences, we can
assume that {tn} converges to some t0 ⩾ 0. Therefore, limn→∞(zn + itn) =
z0 + it0. Since zn + itn ∈ C \ Ω, which is closed, it follows that z0 + it0 ̸∈ Ω.
But then, by definition of Ω∗, we have z0 ̸∈ Ω∗, a contradiction.

Next, it is easy to see that Ω∗ is a simply connected domain. In fact, by
a similar argument which we have used to show that Ω∗ is open, one can
prove that for any z, w ∈ Ω∗ there is L ∈ N such that the line segment
joining z + iL and w + iL is contained in Ω∗. This immediately yields the
pathconnectedness of Ω∗. If Γ is a closed curve in Ω∗ and z ∈ C \ Γ such
that Γ has nonvanishing winding number around z, then there is a point
p ∈ Γ ⊂ Ω∗ with Re p = Re z and Im p < Im z, so z ∈ Ω∗. Hence Ω∗ is
simply connected.

Finally, (7.2) follows at once because, by Remark 7.2, for every z ∈ Ω
there exists t0 ⩾ 0 such that z + it ∈ Ω for all t ⩾ t0. □
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Let Ω ⊊ C be a domain which is parabolic asymptotically starlike at
infinity. We aim to localize the hyperbolic metric of Ω with respect to that
of Ω∗, and start with a definition:

Definition 7.7. — If D ⊂ C is a domain and r > 0, we let

Dr := {z ∈ D : δD(z) > r}.

Lemma 7.8. — Let Ω ⊊ C be a domain asymptotically starlike at infin-
ity of parabolic type. Then Ωr ̸= ∅ for all r > 0.

Proof. — Let a, b as in (2) of Definition 7.1. Since Ω is parabolic, we have
a = −∞ or b = +∞. This implies that for any r > 0 there exists x ∈ R
such that D(x, r) ⊂ (a, b)×R. By Remark 7.2, there exists n ∈ N such that
D(x, r) + in ⊂ Ω. Therefore, δΩ(x+ in) > r and Ωr is non-empty. □

Remark 7.9. — Let Ω ⊊ C be a domain asymptotically starlike at infinity
of parabolic type. Then, by Lemma 7.4, Ωr ⊂ Ω∗ for all r ⩾ 1/2. Hence
the starlike-fication Ω∗ is in a sense a “large” subset of Ω.

Proposition 7.10. — Let Ω ⊊ C be a domain starlike at infinity of
parabolic type. Then for every R > 0 there exists r > 1 such that for every
z ∈ Ωr,

BΩ(z,R) ⊂ Ω1 ⊂ Ω∗.

Proof. — Assume by contradiction that there exists R > 0 such that for
every n ∈ N there exist zn ∈ Ωn and qn ∈ Ω, such that δΩ(qn) ⩽ 1 and
kΩ(zn, qn) < R.

Let q̃n ∈ ∂Ω be such that |qn−q̃n| ⩽ 1. By (1) of Definition 7.1, q̃n−i ̸∈ Ω.
Let Tn : C → C be the translation defined by Tn(z) = z− q̃n + i. Note that
Tn(q̃n) = i, Tn(q̃n − i) = 0 and

|Tn(qn) − i| = |qn − q̃n| ⩽ 1.

Moreover, let V := C\{0, i}. Taking into account that Ω ⊂ C\{q̃n, q̃n − i},
we have

δV (Tn(zn)) = δC\{q̃n,q̃n−i}(zn) ⩾ δΩ(zn) > n.

Finally, note that Ω is biholomorphic to Tn(Ω) via Tn. Therefore, since
Tn(Ω) ⊂ V ,

R > kΩ(qn, zn) = kTn(Ω)(Tn(qn), Tn(zn)) ⩾ kV (Tn(qn), Tn(zn)).

Let A := ∂D(i, 1) and Bn := ∂(D(0, n) ∪D(i, n)). Let

kn := kV (A,Bn) := inf{kV (z, w) : z ∈ A \ {0}, w ∈ Bn}.
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Since V is complete hyperbolic, limn→∞ kn = +∞ (otherwise we would
find a sequence in V converging to infinity which stays at finite hyperbolic
distance from a compact subset of V ).

By the previous considerations, Tn(qn) ∈ D(i, 1), while Tn(zn) ∈ C \
(D(0, n) ∪D(i, n)). Therefore,

kn = kV (A,Bn) ⩽ kV (Tn(qn), Tn(zn)) < R,

a contradiction. □

The next result is a sort of converse of the previous one:

Proposition 7.11. — Let Ω ⊊ C be a domain asymptotically starlike
at infinity of parabolic type. Then there exists S > 0 such that for every
z ∈ Ω1,

BΩ(z, S) ⊂ Ω∗.

Proof. — The argument is similar to the one used in Proposition 7.10,
so we just sketch the proof.

Assume by contradiction that for every n ∈ N there exist zn ∈ Ω1 and
qn ∈ Ω \ Ω∗ such that kΩ(zn, qn) < 1

n . By Lemma 7.4, δΩ(qn) ⩽ 1/2.
Therefore, using the translation Tn as in the proof of Proposition 7.10, and
keeping the same notation, we have

1
n
> kΩ(qn, zn) = kTn(Ω)(Tn(qn), Tn(zn)) ⩾ kV (Tn(qn), Tn(zn)).

Since δV (Tn(zn)) > 1 and δV (Tn(qn)) ⩽ 1/2 (see again the proof of Propo-
sition 7.10), we obtain a contradiction for n → ∞. □

Now we are ready to show that in Ω1, the (infinitesimal) hyperbolic
metrics of Ω and Ω∗ are equivalent:

Theorem 7.12. — Let Ω ⊊ C be a domain asymptotically starlike at
infinity of parabolic type. Then there exists c > 1 such that for every z ∈ Ω1
and v ∈ C,

κΩ(z; v) ⩽ κΩ∗(z; v) ⩽ cκΩ(z; v).

Proof. — Let S > 0 be given by Proposition 7.11. Hence, for every z ∈
Ω1, BΩ(z, S) ⊂ Ω∗ ⊂ Ω, from which we get for all v ∈ C

κΩ(z; v) ⩽ κΩ∗(z; v) ⩽ κBΩ(z,S)(z; v).

The result then follows from Lemma 3.3. □

As an immediate consequence of Theorem 7.12, we have:
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Corollary 7.13. — Let Ω ⊊ C be a domain asymptotically starlike
at infinity of parabolic type. Then for every absolutely continuous curve
γ : [0, 1] → Ω1,

ℓΩ(γ) ⩽ ℓΩ∗(γ) ⩽ cℓΩ(γ),
where c > 1 is given by Theorem 7.12. In particular, if z, w ∈ Ω1 are two
points such that a geodesic in Ω joining z with w is contained in Ω1, then

kΩ(z, w) ⩽ kΩ∗(z, w) ⩽ ckΩ(z, w).

8. Gromov hyperbolic domains asymptotically starlike at
infinity of parabolic type

In this section we assume that Ω ⊊ C is a Gromov hyperbolic domain
asymptotically starlike at infinity of parabolic type. In particular, our dis-
cussion includes the case when Ω is the Koenigs domain of a parabolic
univalent self-map of the unit disc.

Theorem 8.1. — Let Ω ⊊ C be a Gromov hyperbolic domain asymp-
totically starlike at infinity of parabolic type. Assume that ω : [1,+∞) →
Ω∗ is an absolutely continuous curve such that

lim
t→+∞

δΩ(ω(t)) = +∞ .

Then ω is a quasi-geodesic in Ω if and only if ω is a quasi-geodesic in Ω∗.

Proof. — The proof of the only-if part is straightforward. In fact, by
assumption, there is t1 ⩾ 0 such that ω(t) ∈ Ω1 for all t ⩾ t1. If c > 1
denotes the constant from Theorem 7.12 and if ω : [1,+∞) → Ω∗ is a
(A,B)-quasi-geodesic in Ω, then it follows directly from the definitions and
Corollary 7.13 that ω : [t1,+∞) is a (Ac,Bc)-quasi-geodesic in Ω∗, so ω :
[1,+∞) is a (Ac,B′)-quasi-geodesic in Ω∗ with B′ = (1+Ac)ℓΩ∗(ω; [1, t1])+
Bc. We next prove the if-part, which is more difficult to handle. Let ω :
[1,+∞) → Ω∗ be a (A,B)-quasi-geodesic in Ω∗, that is,

(8.1) ℓΩ∗(ω; [s, t]) ⩽ AkΩ∗(ω(s), ω(t)) +B

for all s ⩽ t in [1,+∞). Let G > 0 be the Gromov constant of Ω and
let c > 1 be given by Theorem 7.12. By M > 0 we denote the constant
given by the Gromov shadowing lemma for the (Ac,B)-quasi-geodesics of
Ω (see (3.1)).

Finally, let R′ ⩾ G + M , R = 2R′ and let r > 1 be given by Proposi-
tion 7.10. Since δΩ(ω(t)) → +∞ as t → +∞, there exists tr > 0 such that
ω(t) ∈ Ωr for every t ⩾ tr.
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By (8.1), taking into account that Ω∗ ⊂ Ω, we have for all s ⩽ t in
[1,+∞),

(8.2) ℓΩ(ω; [s, t]) ⩽ ℓΩ∗(ω; [s, t]) ⩽ AkΩ∗(ω(s), ω(t)) +B.

Now, take s0 ⩾ tr and let t0 > s0 be such that ω(t) ∈ BΩ(ω(s0), R′) for all
t ∈ [s0, t0]. By Proposition 7.10, BΩ(ω(s0), R) ⊂ Ω1. By Lemma 3.5, since
for every z, w ∈ BΩ(ω(s0), R′) the geodesic in Ω joining z to w is contained
in BΩ(ω(s0), R), it follows from Corollary 7.13 that

kΩ∗(ω(s), ω(t)) ⩽ ckΩ(ω(s), ω(t))

for all s, t ∈ [s0, t0]. Therefore, by (8.2), ω|[s0,t0] is an (Ac,B)-quasi-geodesic
in Ω for every tr ⩽ s0 < t0 such that ω(t) ∈ BΩ(ω(s0), R′) for all t ∈ [s0, t0].

Now, we prove the following statement for all N ∈ N, N ⩾ 1:

(AN ) if tr ⩽ a < b and there exist a = s0 < s1 < . . . < sN = b, such that
ω(t) ∈ BΩ(ω(sj), R′) for all t ∈ [sj , sj+1], j = 0, . . . , N − 1 then ω|[a,b] is a
(Ac,B)-quasi-geodesic in Ω.

We argue by induction. We already proved that (A1) holds. Assuming
that (Aj) holds for j = 1, . . . , N , we have to prove that (AN+1) holds as
well.

Let then tr ⩽ a < b and assume there exist a = s0 < s1 < . . . < sN+1 = b

such that ω(t) ∈ BΩ(ω(sj), R′) for all t ∈ [sj , sj+1], j = 0, . . . , N . We have
to show that for every a ⩽ s ⩽ t ⩽ b,

ℓΩ(ω; [s, t]) ⩽ AckΩ(ω(s), ω(t)) +B.

By induction, if t ⩽ sN , or s ⩾ sN , the result is true. So we can assume that
s ∈ [s0, sN ) and t ∈ (sN , sN+1]. By (8.2), and arguing as before, it is enough
to prove that a geodesic γ : [0, 1] → Ω in Ω such that γ(0) = ω(s) and
γ(1) = ω(t), is contained in Ω1. To this aim, let γ1 : [0, 1] → Ω be a geodesic
in Ω such that γ1(0) = ω(s) and γ1(1) = ω(sN ) and let γ2 : [0, 1] → Ω be
a geodesic in Ω such that γ2(0) = ω(sN ) and γ2(1) = ω(t). Since ω|[s,sN ]
and ω|[sN ,t] are (Ac,B)-quasi-geodesics in Ω by induction hypothesis, it
follows from Gromov’s shadowing lemma that for each u ∈ [0, 1], there
exist u1 ∈ [s, sN ] and u2 ∈ [sN , t] such that

(8.3) kΩ(γj(u), ω(uj)) < M, j = 1, 2.

Let now w ∈ [0, 1]. Since Ω is Gromov hyperbolic, and {γ, γ1, γ2} is a
geodesic triangle in Ω, γ(w) stays at hyperbolic distance less than G from
γ1 ∪ γ2. Thus, there exists u ∈ [0, 1] such that

min
j=1,2

kΩ(γ(w), γj(u)) < G.
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We can assume that kΩ(γ(w), γ1(u)) < G (the case kΩ(γ(w), γ2(u)) < G is
similar).

Therefore, if u1 is the point given by (8.3), we have

kΩ(γ(w), ω(u1)) ⩽ kΩ(γ(w), γ1(u)) + kΩ(γ1(u), ω(u1)) < G+M.

Since R > G + M and ω(u1) ∈ Ωr, it follows from Proposition 7.10 that
γ(w) ∈ Ω1, and hence, by the arbitrariness of w ∈ [0, 1], (AN+1) holds.

Now, since by compactness for every tr ⩽ a ⩽ b one can cover ω([a, b])
with a finite number of hyperbolic balls of radius R′ centered at points
of ω([a, b]), it follows from (AN ) that ω|[tr,+∞) is a (Ac,B)-quasi-geodesic
in Ω. Therefore, taking B′ := (1 + Ac)ℓΩ(ω; [1, tr]) + B, we see that ω :
[1,+∞) → Ω is a (Ac,B′)-quasi-geodesic in Ω. □

We are now in a position to construct from the euclidean shape of Ω a
curve σ : [1,+∞) → Ω, which is a quasi-geodesic both in Ω and Ω∗.

Assumption. — We assume that 0 ̸∈ Ω and it ∈ Ω for all t > 0.

Note that, since Ω is asymptotically starlike at infinity of parabolic type
and Ω ̸= C, unless Ω is a vertical half-plane (and hence it is simply con-
nected and starlike at infinity), there always exists p ∈ C such that p ̸∈ Ω
and p+ it ∈ Ω for all t > 0, so Ω − p satisfies the previous Assumption.

Note also that if Ω satisfies the Assumption, then 0 ̸∈ Ω∗ and it ∈ Ω for
all t > 0. We define σ : [1,+∞) → Ω∗ by

(8.4) σ(t) :=
δ+

Ω∗,0(t) − δ−
Ω∗,0(t)

2 + it.

In [8, Lemma 4.1], it is proved that σ is 2-Lipschitz and in [8, Theorem 4.2]
it is shown that σ is a quasi-geodesic in Ω∗. Our aim is to show that σ is
a quasi-geodesic in Ω.

Lemma 8.2. — Let Ω ⊊ C be a domain asymptotically starlike at in-
finity of parabolic type such that 0 ̸∈ Ω and it ∈ Ω for all t > 0. Then for
every t > 0,

δ±
Ω∗,0(t) ⩽ δ±

Ω,0(t) ⩽ δ±
Ω∗,0(t) + 1

2 .

In particular, lim
t→+∞

δΩ(σ(t)) = +∞.

Proof. — Since Ω∗ ⊂ Ω, it is clear that δ±
Ω∗,0(t) ⩽ δ±

Ω,0(t) for every t > 0.
In order to prove the other inequality, let t > 0 and let p ∈ C\Ω∗, Re p ⩾ 0,
be such that δ+

Ω∗,0(t) = |t − p|. If p ̸∈ Ω, then δ+
Ω∗,0(t) = δ+

Ω,0(t). In case
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p ∈ Ω \ Ω∗, then τp > 0 and, by Lemma 7.4(3), there exists q ∈ C \ Ω,
Re q = Re p such that |p− q| ⩽ 1/2. Therefore,

δ+
Ω∗,0(t) = |it− p| ⩾ |it− q| − |p− q| ⩾ δ+

Ω,0(t) − 1
2 .

A similar argument leads to the corresponding inequality for δ−
Ω,0(t).

Finally, a simple geometric argument as in [8, Lemma 4.3] and using
δ±

Ω∗,0(t) ⩽ δ±
Ω,0(t) shows

(8.5) δΩ(σ(t)) ⩾ 1
2
√

2

(
δ+

Ω∗,0(t) + δ−
Ω∗,0(t)

)
, t ⩾ 1 .

Since Ω is parabolic, Lemma 7.6 implies that⋃
t⩾0

(Ω∗ − it)

contains a vertical half-plane, so δ+
Ω∗,0(t) → +∞ or δ−

Ω∗,0(t) → +∞ as
t → +∞. □

Theorem 8.3. — Let Ω ⊊ C be a Gromov hyperbolic domain asymp-
totically starlike at infinity of parabolic type. Assume that 0 ̸∈ Ω and it ∈ Ω
for all t > 0. Then σ : [1,+∞) → Ω defined by (8.4) is a quasi-geodesic in Ω.

Proof. — By Lemma 8.2, this follows from Theorem 8.1 and [8, Theo-
rem 4.2]. □

9. Simply connected domains asymptotically starlike at
infinity of parabolic type

Let Ω ⊊ C be a simply connected domain asymptotically starlike at
infinity of parabolic type. We assume also that 0 ̸∈ Ω and it ∈ Ω for all
t > 0.

Let h : D → Ω be a Riemann map. Up to precomposing h with a rotation
we can assume that limt→+∞ h−1(it) = 1.

Let Ω∗ be the starlike-fication of Ω and let h∗ : D → Ω∗ be a Riemann
map such that limt→+∞(h∗)−1(it) = 1. Finally, let σ be the curve defined
by (8.4).

Proposition 9.1. — Let {zn} ⊂ D be a sequence converging to 1. Then
the following are equivalent:

(1) {zn} converges non-tangentially to 1.
(2) There exists C1 > 0 such that kΩ(σ([1,+∞)), h(zn)) < C1 for all

n ∈ N.
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(3) There exists C2 > 0 such that kΩ∗(σ([1,+∞)), h∗(zn)) < C2 for all
n ∈ N.

Proof. — By [8, Lemma 5.2],

lim
t→+∞

(h∗)−1(σ(t)) = 1.

The same argument used in such a lemma can be applied to show that
limt→+∞ h−1(σ(t)) = 1 as well; very sketchy, if this were not the case, the
horizontal segments joining σ(n) to in, n ∈ N would form a sequence of
Koebe’s arcs for h, contradicting the no Koebe’s arcs Theorem.

Now, Ω is simply connected, hence (Ω, kΩ) is Gromov hyperbolic. By
Theorem 8.3, σ is a quasi-geodesic both in Ω and Ω∗, and hence the result
follows from Proposition 3.2. □

Theorem 9.2. — Let {wn} ⊂ Ω. Then the following are equivalent:
(1) {h−1(wn)} converges non-tangentially to 1.
(2) {wn} is eventually contained in Ω∗ and {(h∗)−1(wn)} converges

non-tangentially to 1.

Proof. — If (1) holds, then by Proposition 9.1, there exists C > 0 such
that kΩ(σ([1,+∞), wn) < C for all n ∈ N. Thus, for each n ∈ N, we can
find sn ∈ [1,+∞) such that

kΩ(σ(sn), wn) < C.

On the other hand, since for every T > 1 the set σ([1, T ]) is compact and
{wn} eventually exits all compacta of Ω, it follows that

lim
n→+∞

kΩ(σ([1, T ]), wn) = +∞.

Therefore, {sn} eventually leaves each compact interval [1, T ], and by
Lemma 8.2, for every r > 0 there exists nr ∈ N such that σ(sn) ∈ Ωr

for all n ⩾ nr.
Let R := C and let r > 0 be given by Proposition 7.10. Then, for each

n ⩾ nr, σ(sn) ∈ Ωr and, by Proposition 7.10, BΩ(σ(sn), C) ⊂ Ω1 ⊂ Ω∗.
In particular, wn ∈ Ω∗ for all n ⩾ nr. Moreover, since wn ∈ BΩ(σ(sn), C)

and BΩ(σ(sn), C) is totally geodesic in Ω (see Remark 3.4), the geodesic in
Ω joining σ(sn) to wn is contained in Ω1. It therefore follows from Corol-
lary 7.13 that for all n ⩾ nr,

kΩ∗(σ(sn), wn) ⩽ ckΩ(σ(sn), wn) < cC.

Therefore, by Proposition 9.1, {(h∗)−1(wn)} converges non-tangentially
to 1, and (2) holds.
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If (2) holds, then by Proposition 9.1, there exists C > 0 such that
kΩ∗(σ([1,+∞)), wn) ⩽ C for all n ⩾ n0. Therefore,

kΩ(σ([1,+∞)), wn) ⩽ kΩ∗(σ([1,+∞)), wn) < C,

and, again by Proposition 9.1, {h−1(wn)} converges non-tangentially
to 1. □

10. Semigroup-fication and the proofs of Theorem 1.1 and
Theorem 1.2

Let f : D → D be univalent with no fixed points in D. Up to conjugation
with a rotation, we can assume that 1 is the Denjoy–Wolff point of f .
Let h : D → C be the Koenigs function of f given by Theorem 4.1 and
Ω := h(D) the Koenigs domain of f .

Note that Ω is simply connected and asymptotically starlike at infinity.
Moreover, Ω is parabolic if and only if f is parabolic. Let Ω∗ ⊂ Ω be the
starlike-fication of Ω. By Lemma 7.6, Ω∗ is a non-empty simply connected
domain which is starlike at infinity. Let h∗ : D → Ω∗ be a Riemann map
and, for t ⩾ 0 and z ∈ D, let

ϕt(z) := (h∗)−1(h∗(z) + it).

It is easy to see that (ϕt) is a continuous semigroup of holomorphic self-
maps in D and h∗ is the Koenigs function of (ϕt). In view of (7.2), f is
hyperbolic (respectively, parabolic of positive/zero hyperbolic step) if and
only if (ϕt) is hyperbolic (resp., parabolic of positive/zero hyperbolic step).
Up to conjugation with a rotation, we can assume that 1 is the Denjoy–
Wolff point of (ϕt).

Remark 10.1. — It follows from Theorem 4.1(4) and (7.2), that if f is
hyperbolic (namely, α = ∠ limz→1 f

′(z) ∈ (0, 1)), then, setting λ := logα,

∠ lim
z→1

ϕ′
t(z) = eλt .

In other words, f and ϕ1 have the same dilation coefficient at the Denjoy–
Wolff point.

In case f fixes a point z0 ∈ D, f ′(z0) = e−µ for some µ ∈ C, Reµ ⩾ 0,
and h is the Koenigs function of f (see Remark 4.2) we denote Ω := h(D).
In this case, we can define a µ-spirallike domain Ω∗ starting from Ω by
declaring z ∈ Ω∗ if and only if e−µt z ∈ Ω for all t ⩾ 0. Arguing in a similar
fashion as we did before, one can easily prove that Ω∗ is a simply connected
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domain, different from C, µ-spirallike (i.e., e−tµ Ω∗ ⊆ Ω∗ for all t ⩾ 0) and
contains 0. Let h∗ : D → Ω∗ be a Riemann map and, for t ⩾ 0 and z ∈ D,
let

ϕt(z) := (h∗)−1(e−µt h∗(z)).
As before, it is easy to see that (ϕt) is a continuous semigroup of holomor-
phic self-maps in D, ϕt(z0) = z0 and h∗ is the Koenigs function of (ϕt).
Moreover, f ′(z0) = e−µ = ϕ′

1(z0).

Definition 10.2. — The semigroup (ϕt) is called the semigroup-fication
of f .

Lemma 10.3. — Let f : D → D be univalent without fixed points in D
and let (ϕt) be the semigroup-fication of f . Suppose that {nk} ⊂ N is an
increasing sequence converging to ∞. Then the following are equivalent:

(1) {f◦nk (z)} converges non-tangentially to the Denjoy–Wolff point of
f for some –and hence any – z ∈ D,

(2) {ϕnk
(z)} converges non-tangentially to the Denjoy–Wolff point of

(ϕt) for some, and hence any, z ∈ D.

Proof. — As remarked before, we can assume that 1 is the Denjoy–Wolff
point of both f and (ϕt).

(i) We first note that for all z, w ∈ D and k ∈ N

kD(f◦nk (z), f◦nk (w)) ⩽ kD(z, w).

Therefore, the sequences {f◦nk (z)} and {f◦nk (w)} stay at finite
hyperbolic distance. By [7, Proposition 4.5] (see also [5, Corol-
lary 6.2.6]), a sequence {zn} ⊂ D converges non-tangentially to 1 if
and only if it stays at finite hyperbolic distance from [0, 1). There-
fore, by the triangle inequality, it follows that {f◦nk (z)} converges
to 1 non-tangentially if and only if so does {f◦nk (w)}. A similar
argument shows that {ϕnk

(z)} converges to 1 non-tangentially if
and only if so does {ϕnk

(w)} for any w ∈ D.
(ii) We now prove Lemma 10.3 in case f is parabolic, that is, Ω is a

simply connected domain which is asymptotically starlike at infinity
of parabolic type. If Ω = Ω∗, there is nothing to prove. Otherwise
there exists p ∈ C \ Ω such that p + it ∈ Ω for all t > 0. Up to
a translation, we can assume p = 0. Let wk := i + nki. Note that
{wk} ⊂ Ω∗ for all k ∈ N. By Theorem 9.2, {h−1(wk)} converges
non-tangentially to 1 if and only if so does {(h∗)−1(wk)}. Since

h−1(wk) = f◦nk (h−1(i)), (h∗)−1(wk) = ϕnk
((h∗)−1(i)),

the equivalence of (1) and (2) follows from part (i).
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(iii) Finally, we assume that f is hyperbolic, so that (ϕt) is hyperbolic.
As we already remarked, it is known that in this case both {f◦n(z)}
and {ϕn(z)} converge non-tangentially to 1, so that “(1) ⇔ (2)”
is trivially true. However, there is also a way to prove this last
statement along the same lines as in the parabolic case above. We
sketch it here.

Let Λ := {0 < Rew < a} =
⋃

n∈N(Ω − in), a > 0. Up to trans-
lation, we can assume that a

2 + it ∈ Ω for all t > 0. Then let
η : (0,+∞) → Ω be defined as η(t) = a

2 + it. Using standard es-
timates for the hyperbolic metric (see, e.g. [7, Theorem 3.4] or [5,
Theorem 5.2.2]), we have for all 1 ⩽ s ⩽ t

ℓΩ(η; [s, t]) =
∫ t

s

κΩ(η(r); η′(r))dr ⩽
∫ t

s

dr
δΩ(η(r)) ⩽

1
C

(t− s),

where C := min{δΩ(η(t)), t ∈ [1,+∞)} > 0.
On the other hand (see, e.g. [7, Proposition 5.2] or [5, Proposi-

tion 6.7.2])

kΩ

(a
2 + is,

a

2 + it
)
⩾ kΛ

(a
2 + is,

a

2 + it
)

= π

2a (t− s).

From these inequalities, it follows that η|[1,+∞)] is a ( 2a
πC , 0)-quasi-

geodesic in Ω (and, by the same argument, it is a quasi-geodesic in
Ω∗). In particular, h−1(η(t)) and (h∗)−1(η(t)) converge to 1 non-
tangentially (see, e.g. [8, Remark 3.3] or [5, Corollary 6.3.9]). From
this, we obtain as before that both {f◦n(z)} and {ϕn(z)} converge
non-tangentially to 1. □

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. — Statements (1), (2) and (3) follow directly
from the previous considerations, while statement (5) is just Lemma 10.3.

Statement (4) follows from Theorem 6.1, since every maximal µ-spirallike
sector (respectively, maximal vertical strip) for Ω is clearly a maximal µ-
spirallike sector (resp., maximal vertical strip) for Ω∗, and vice-versa. □

Finally, we have

Proof of Theorem 1.2. — If f is hyperbolic, the result is known, as we
already explained. If f is parabolic, let (ϕt) be the semigroup-fication of
f . By Theorem 1.1(5) and Lemma 8.2, the statement of the theorem holds
if and only if the same statement holds for the semigroup (ϕt). But for
semigroups the result has been proved in [8, Theorem 1.1]. □
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