We prove that for “most” closed -dimensional manifolds , the existence of a closed non singular one-form in a given cohomology class is equivalent to the fact that every twisted Alexander polynomial associated to a normal subgroup with finite index has a unitary -minimal term.
Nous prouvons que pour « la plupart » des variétés fermées de dimension trois, l’existence d’une forme fermée non singulière dans une classe de cohomologie donnée équivaut au fait que tout polynôme d’Alexander tordu associé à un sous-groupe distingué d’indice fini a un terme -minimal unitaire.
Revised:
Accepted:
Published online:
Keywords: Three-manifolds, fibrations, Alexander polynomials, Novikov homology
Mots-clés : Variétés de dimension trois, polynômes d’Alexander, homologie de Novikov
Sikorav, Jean-Claude 1

@article{AIF_2023__73_1_279_0, author = {Sikorav, Jean-Claude}, title = {Fibered cohomology classes in dimension three, twisted {Alexander} polynomials and {Novikov} homology}, journal = {Annales de l'Institut Fourier}, pages = {279--306}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {1}, year = {2023}, doi = {10.5802/aif.3531}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3531/} }
TY - JOUR AU - Sikorav, Jean-Claude TI - Fibered cohomology classes in dimension three, twisted Alexander polynomials and Novikov homology JO - Annales de l'Institut Fourier PY - 2023 SP - 279 EP - 306 VL - 73 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3531/ DO - 10.5802/aif.3531 LA - en ID - AIF_2023__73_1_279_0 ER -
%0 Journal Article %A Sikorav, Jean-Claude %T Fibered cohomology classes in dimension three, twisted Alexander polynomials and Novikov homology %J Annales de l'Institut Fourier %D 2023 %P 279-306 %V 73 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3531/ %R 10.5802/aif.3531 %G en %F AIF_2023__73_1_279_0
Sikorav, Jean-Claude. Fibered cohomology classes in dimension three, twisted Alexander polynomials and Novikov homology. Annales de l'Institut Fourier, Volume 73 (2023) no. 1, pp. 279-306. doi : 10.5802/aif.3531. https://aif.centre-mersenne.org/articles/10.5802/aif.3531/
[1] The virtual Haken conjecture, with an appendix by Agol, I., D. Groves, J. Mannings, Doc. Math., Volume 18 (2013), pp. 1045-1087 | Zbl
[2] A geometric invariant of discrete groups, Invent. Math., Volume 90 (1987), pp. 451-477 | DOI | MR | Zbl
[3] Commutative Algebra. With a View Towards Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer, 1995 | Zbl
[4] On embedding of group rings of residually torsion-free nilpotent groups into division rings, Trans. Am. Math. Soc., Volume 299 (1987), pp. 373-386 | DOI | Zbl
[5] A survey of twisted Alexander polynomials, The Mathematics of Knots: Theory and Application (Contributions in Mathematical and Computational Sciences), Volume 1, Springer (2008), pp. 45-94 | Zbl
[6] Twisted Alexander polynomials and symplectic structures, Am. J. Math., Volume 130 (2008) no. 2, pp. 455-484 | DOI | MR | Zbl
[7] A vanishing theorem for twisted Alexander polynomials with applications to symplectic -manifolds, J. Eur. Math. Soc., Volume 15 (2013), pp. 2027-2041 | MR | Zbl
[8] The structure of prime rings under ascending chain conditions, Proc. Lond. Math. Soc., Volume 8 (1958), pp. 589-608 | DOI | MR | Zbl
[9] Finiteness conditions for soluble groups, Proc. Lond. Math. Soc., Volume 4 (1954), pp. 419-436 | DOI | MR | Zbl
[10] On the finiteness of certain soluble groups, Proc. Lond. Math. Soc., Volume 9 (1959), pp. 595-622 | DOI | MR | Zbl
[11] Fundamentals of the theory of groups. Translated from the second Russian edition by Robert G. Burns, Graduate Texts in Mathematics, 62, Springer, 1979
[12] Residually finite rationally solvable groups and virtual fibring, J. Am. Math. Soc., Volume 33 (2020) no. 2, pp. 451-486 | DOI | MR | Zbl
[13] Residual properties of fibered and hyperbolic manifolds, Topology Appl., Volume 160 (2013) no. 7, pp. 857-886 | MR | Zbl
[14] Some Novikov rings that are von Neumann finite, Comment. Math. Helv., Volume 81 (2006) no. 4, pp. 931-943 | DOI | Zbl
[15] Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, 1998
[16] Infinite cyclic coverings, Conference on the Topology of Manifolds. E. Lansing, 1967 (The Prindle, Weber and Schmidt Complementary Series in Mathematics), Volume 13, Prindle Weber and Schmidt, Inc. (1968), pp. 115-133 | MR | Zbl
[17] The algebraic structure of group rings, John Wiley & Sons, 1977 | MR
[18] A Course in the Theory of Groups. Second Edition, Graduate Texts in Mathematics, 80, Springer, 1995
[19] Homologie de Novikov associée à une classe de cohomologie de degré un (quatrième partie de la thèse), Ph. D. Thesis, Université Paris-Sud (1987)
[20] Novikov homology, http://perso.ens-lyon.fr/jean-claude.sikorav/textes.html, 2017
[21] On fibering certain 3-manifolds, Topology of 3-manifolds and related topics, Prentice Hall (1962), pp. 95-100 | MR | Zbl
[22] A norm for the homology of -manifolds, Two papers: Genera of the arborescent links and A norm for the homology of 3-manifolds (Memoirs of the American Mathematical Society), Volume 339, American Mathematical Society, 1986, p. i-vi and 99–130 | Zbl
[23] On fibering certain foliated manifolds over , Topology, Volume 9 (1970), pp. 153-154 | DOI | MR | Zbl
Cited by Sources: