We prove that for “most” closed -dimensional manifolds , the existence of a closed non singular one-form in a given cohomology class is equivalent to the fact that every twisted Alexander polynomial associated to a normal subgroup with finite index has a unitary -minimal term.
Nous prouvons que pour « la plupart » des variétés fermées de dimension trois, l’existence d’une forme fermée non singulière dans une classe de cohomologie donnée équivaut au fait que tout polynôme d’Alexander tordu associé à un sous-groupe distingué d’indice fini a un terme -minimal unitaire.
Revised:
Accepted:
Online First:
Keywords: Three-manifolds, fibrations, Alexander polynomials, Novikov homology
@unpublished{AIF_0__0_0_A100_0, author = {Sikorav, Jean-Claude}, title = {Fibered cohomology classes in dimension three, twisted {Alexander} polynomials and {Novikov} homology}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2022}, doi = {10.5802/aif.3531}, language = {en}, note = {Online first}, }
TY - UNPB AU - Sikorav, Jean-Claude TI - Fibered cohomology classes in dimension three, twisted Alexander polynomials and Novikov homology JO - Annales de l'Institut Fourier PY - 2022 DA - 2022/// PB - Association des Annales de l’institut Fourier N1 - Online first UR - https://doi.org/10.5802/aif.3531 DO - 10.5802/aif.3531 LA - en ID - AIF_0__0_0_A100_0 ER -
%0 Unpublished Work %A Sikorav, Jean-Claude %T Fibered cohomology classes in dimension three, twisted Alexander polynomials and Novikov homology %J Annales de l'Institut Fourier %D 2022 %I Association des Annales de l’institut Fourier %Z Online first %U https://doi.org/10.5802/aif.3531 %R 10.5802/aif.3531 %G en %F AIF_0__0_0_A100_0
Sikorav, Jean-Claude. Fibered cohomology classes in dimension three, twisted Alexander polynomials and Novikov homology. Annales de l'Institut Fourier, Online first, 28 p.
[1] The virtual Haken conjecture, with an appendix by Agol, I., D. Groves, J. Mannings, Doc. Math., Volume 18 (2013), pp. 1045-1087 | Zbl
[2] A geometric invariant of discrete groups, Invent. Math., Volume 90 (1987), pp. 451-477 | DOI | MR | Zbl
[3] Commutative Algebra. With a View Towards Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer, 1995 | Zbl
[4] On embedding of group rings of residually torsion-free nilpotent groups into division rings, Trans. Am. Math. Soc., Volume 299 (1987), pp. 373-386 | DOI | Zbl
[5] , The Mathematics of Knots: Theory and Application (Contributions in Mathematical and Computational Sciences), Volume 1 (2008), pp. 45-94
[6] Twisted Alexander polynomials and symplectic structures, Am. J. Math., Volume 130 (2008) no. 2, pp. 455-484 | DOI | MR | Zbl
[7] A vanishing theorem for twisted Alexander polynomials with applications to symplectic -manifolds, J. Eur. Math. Soc., Volume 15 (2013), pp. 2027-2041 | MR | Zbl
[8] The structure of prime rings under ascending chain conditions, Proc. Lond. Math. Soc., Volume 8 (1958), pp. 589-608 | DOI | MR | Zbl
[9] Finiteness conditions for soluble groups, Proc. Lond. Math. Soc., Volume 4 (1954), pp. 419-436 | DOI | MR | Zbl
[10] On the finiteness of certain soluble groups, Proc. Lond. Math. Soc., Volume 9 (1959), pp. 595-622 | DOI | MR | Zbl
[11] Fundamentals of the theory of groups. Translated from the second Russian edition by Robert G. Burns, Graduate Texts in Mathematics, 62, Springer, 1979
[12] Residually finite rationally solvable groups and virtual fibring, J. Am. Math. Soc., Volume 33 (2020) no. 2, pp. 451-486 | DOI | MR | Zbl
[13] Residual properties of fibered and hyperbolic manifolds, Topology Appl., Volume 160 (2013) no. 7, pp. 857-886 | MR | Zbl
[14] Some Novikov rings that are von Neumann finite, Comment. Math. Helv., Volume 81 (2006) no. 4, pp. 931-943 | DOI | Zbl
[15] Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, 1998
[16] , Conference on the Topology of Manifolds. E. Lansing, 1967 (The Prindle, Weber and Schmidt Complementary Series in Mathematics), Volume 13 (1968), pp. 115-133 | Zbl
[17] The algebraic structure of group rings, John Wiley & Sons, 1977 | MR
[18] A Course in the Theory of Groups. Second Edition, Graduate Texts in Mathematics, 80, Springer, 1995
[19] Homologie de Novikov associée à une classe de cohomologie de degré un (quatrième partie de la thèse), Ph. D. Thesis, Université Paris-Sud (1987)
[20] Novikov homology, http://perso.ens-lyon.fr/jean-claude.sikorav/textes.html, 2017
[21] , Topology of 3-manifolds and related topics (1962), pp. 95-100 | MR | Zbl
[22] A norm for the homology of -manifolds, Two papers: Genera of the arborescent links and A norm for the homology of 3-manifolds (Memoirs of the American Mathematical Society), Volume 339, American Mathematical Society, 1986, p. i-vi and 99–130 | Zbl
[23] On fibering certain foliated manifolds over , Topology, Volume 9 (1970), pp. 153-154 | DOI | MR | Zbl
Cited by Sources: