In this note, we provide the first non-trivial examples of deformed -instantons, originally called deformed Donaldson–Thomas connections. As a consequence, we see how deformed -instantons can be used to distinguish between nearly parallel -structures and isometric -structures on 3-Sasakian 7-manifolds. Our examples give non-trivial deformed -instantons with obstructed deformation theory and situations where the moduli space of deformed -instantons has components of different dimensions. We finally study the relation between our examples and a Chern–Simons type functional which has deformed -instantons as critical points.
Dans cette note, nous fournissons les premiers exemples non triviaux de -instantons déformés, initialement appelés connexions Donaldson–Thomas déformées. En conséquence, on peut utiliser -instantons déformés pour faire la distinction entre des -structures presque parallèles et des -structures isométriques sur des 7-variétés 3-Sasakiennes. Nos exemples donnent des -instantons déformés non triviaux avec une théorie de la déformation obstruée et des situations où l’espace des modules des -instantons déformés a des composantes de dimensions différentes. Nous étudions enfin la relation entre nos exemples et une fonctionnelle de type Chern–Simons qui a les -instantons déformés en points critiques.
Revised:
Accepted:
Published online:
Keywords: Deformed $\mathrm{G}_2$-instantons, deformed Donaldson–Thomas connections, nearly parallel $\mathrm{G}_2$-structures, isometric $\mathrm{G}_2$-structures, 3-Sasakian.
Mot clés : $\mathrm{G}_2$-instantons déformés, connexions Donaldson–Thomas déformés, $\mathrm{G}_2$-structures presque parallèles, $\mathrm{G}_2$-structures isométriques, 3-Sasakien.
Lotay, Jason D. 1; Oliveira, Gonçalo 2
@article{AIF_2022__72_1_339_0, author = {Lotay, Jason D. and Oliveira, Gon\c{c}alo}, title = {Examples of deformed {G\protect\textsubscript{2}-instantons/Donaldson{\textendash}Thomas} connections}, journal = {Annales de l'Institut Fourier}, pages = {339--366}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {1}, year = {2022}, doi = {10.5802/aif.3465}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3465/} }
TY - JOUR AU - Lotay, Jason D. AU - Oliveira, Gonçalo TI - Examples of deformed G2-instantons/Donaldson–Thomas connections JO - Annales de l'Institut Fourier PY - 2022 SP - 339 EP - 366 VL - 72 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3465/ DO - 10.5802/aif.3465 LA - en ID - AIF_2022__72_1_339_0 ER -
%0 Journal Article %A Lotay, Jason D. %A Oliveira, Gonçalo %T Examples of deformed G2-instantons/Donaldson–Thomas connections %J Annales de l'Institut Fourier %D 2022 %P 339-366 %V 72 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3465/ %R 10.5802/aif.3465 %G en %F AIF_2022__72_1_339_0
Lotay, Jason D.; Oliveira, Gonçalo. Examples of deformed G2-instantons/Donaldson–Thomas connections. Annales de l'Institut Fourier, Volume 72 (2022) no. 1, pp. 339-366. doi : 10.5802/aif.3465. https://aif.centre-mersenne.org/articles/10.5802/aif.3465/
[1] Gauge theory on Aloff–Wallach spaces, Geom. Topol., Volume 23 (2019) no. 2, pp. 685-743 | DOI | MR | Zbl
[2] -Sasaki manifolds, Surveys in Differential Geometry, Vol. 6; Essays on Einstein Manifolds, Volume 6, International Press, 2001
[3] The geometry and topology of -Sasakian manifolds, J. Reine Angew. Math., Volume 455 (1994), pp. 183-220 | MR | Zbl
[4] Gauge theory and -geometry on Calabi–Yau links, Rev. Mat. Iberoam., Volume 36 (2020) no. 6, pp. 1753-1778 | DOI | MR | Zbl
[5] Supercritical deformed Hermitian-Yang–Mills equation (2020) (https://arxiv.org/abs/2005.12202)
[6] -Dual solutions and infinitesimal moduli of the -Strominger system (2020) (https://arxiv.org/abs/2005.09977)
[7] -instantons from evolution equations, J. Geom. Anal., Volume 31 (2021) no. 4, pp. 4328-4355 | DOI | MR | Zbl
[8] Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern (Nankai Tracts Math.), Volume 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 153-172 | DOI | MR | Zbl
[9] Hypersymplectic 4-manifolds, the -Laplacian flow, and extension assuming bounded scalar curvature, Duke Math. J., Volume 167 (2018) no. 18, pp. 3533-3589 | DOI | MR | Zbl
[10] On nearly parallel -structures, J. Geom. Phys., Volume 23 (1997) no. 3-4, pp. 259-286 | DOI | MR | Zbl
[11] Positively curved cohomogeneity one manifolds and 3-Sasakian geometry, J. Differential Geom., Volume 78 (2008) no. 1, pp. 33-111 | DOI | MR | Zbl
[12] Hodge theory for -manifolds: intermediate Jacobians and Abel–Jacobi maps, Proc. Lond. Math. Soc. (3), Volume 99 (2009) no. 2, pp. 297-325 | DOI | MR | Zbl
[13] Lectures and surveys on -manifolds and related topics (Karigiannis, S.; Leung, N. C.; Lotay, J. D., eds.), Fields Institute Communications, 84, Springer, New York, 2020, xxii+382 pages (Extended papers from the Minischool and Workshop held as part of the Major Thematic Program on Geometric Analysis at the Fields Institute, Toronto, August 19–25, 2017) | DOI | MR
[14] Deformation theory of deformed Hermitian Yang–Mills connections and deformed Donaldson–Thomas connections (2020) (arxiv.org/abs/2004.00532)
[15] Geometric structures on and -manifolds, Adv. Theor. Math. Phys., Volume 13 (2009) no. 1, pp. 1-31 | DOI | MR | Zbl
[16] From special Lagrangian to Hermitian-Yang–Mills via Fourier–Mukai transform, Adv. Theor. Math. Phys., Volume 4 (2000) no. 6, pp. 1319-1341 | DOI | MR | Zbl
[17] Nonlinear instantons from supersymmetric -branes, J. High Energy Phys. (2000) no. 1, 5, 32 pages | DOI | MR | Zbl
[18] Moduli spaces of and -instantons on product manifolds, Ann. Henri Poincaré, Volume 21 (2020) no. 9, pp. 2997-3033 | DOI | MR | Zbl
Cited by Sources: