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EXAMPLES OF DEFORMED
G2-INSTANTONS/DONALDSON–THOMAS

CONNECTIONS

by Jason D. LOTAY & Gonçalo OLIVEIRA (*)

Abstract. — In this note, we provide the first non-trivial examples of de-
formed G2-instantons, originally called deformed Donaldson–Thomas connections.
As a consequence, we see how deformed G2-instantons can be used to distin-
guish between nearly parallel G2-structures and isometric G2-structures on 3-
Sasakian 7-manifolds. Our examples give non-trivial deformed G2-instantons with
obstructed deformation theory and situations where the moduli space of deformed
G2-instantons has components of different dimensions. We finally study the relation
between our examples and a Chern–Simons type functional which has deformed
G2-instantons as critical points.
Résumé. — Dans cette note, nous fournissons les premiers exemples non

triviaux de G2-instantons déformés, initialement appelés connexions
Donaldson–Thomas déformées. En conséquence, on peut utiliser G2-instantons dé-
formés pour faire la distinction entre des G2-structures presque parallèles et des
G2-structures isométriques sur des 7-variétés 3-Sasakiennes. Nos exemples donnent
des G2-instantons déformés non triviaux avec une théorie de la déformation obs-
truée et des situations où l’espace des modules des G2-instantons déformés a des
composantes de dimensions différentes. Nous étudions enfin la relation entre nos
exemples et une fonctionnelle de type Chern–Simons qui a les G2 -instantons dé-
formés en points critiques.

1. Introduction

Gauge theory and calibrated geometry are central topics of study in
the context of G2 geometry, and they are intimately related. Based on
Keywords: Deformed G2-instantons, deformed Donaldson–Thomas connections, nearly
parallel G2-structures, isometric G2-structures, 3-Sasakian.
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ideas stemming from Mirror Symmetry, particularly SYZ fibrations, and
the real Fourier–Mukai transform, the authors of [15] introduced the fol-
lowing gauge-theoretic equation (in the context of complex line bundles
over G2-manifolds) as a proposed mirror to certain calibrated cycles in
G2-manifolds.

Definition 1.1. — Let (X7, ϕ) be a 7-manifold with a coclosed G2
structure ϕ, let ψ = ∗ϕϕ be the dual of ϕ, and let L be a Hermitian
complex line bundle on X. A unitary connection A on L is a deformed
G2-instanton if its curvature FA satisfies

(1.1) 1
6F

3
A + FA ∧ ψ = 0.

The definition can obviously be extended to higher rank vector bundles
and principal bundles but, based on [15], one is primarily interested in the
case of complex line bundles. When (X,ϕ) is additionally a G2-manifold,
deformed G2-instantons are, in a certain sense, “mirror” to (co)associative
cycles.

Remark 1.2. — In [15], deformed G2-instantons are called deformed
Donaldson–Thomas connections. However, since A is a G2-instanton on
(X7, ϕ) if and only if

(1.2) FA ∧ ψ = 0,

the authors feel it is more appropriate that solutions of (1.1) are called
deformed G2-instantons. Moreover, there is a natural relationship between
deformed G2-instantons and deformed Hermitian-Yang–Mills connections,
which is parallel to the relationship between G2-instantons and Hermitian-
Yang–Mills connections, that gives further rationale for the nomenclature.

1.1. Main results

The main results of this article are the first constructions of non-trivial
solutions to the deformed G2-instanton equation (1.1). Here, by non-trivial,
we mean deformed G2-instantons that are not flat and do not arise via pull-
back from lower-dimensional constructions. Our construction takes place on
compact 7-manifolds equipped with G2-structures related to the existence
of a 3-Sasakian structure. This is a setting where interesting families of G2-
structures can be found and at the same time symmetries can be used to
turn the problem of finding deformed G2-instantons into a more tractable
one.

ANNALES DE L’INSTITUT FOURIER



EXAMPLES OF DEFORMED G2-INSTANTONS 341

As an application of our construction we have the following result (Corol-
lary 4.5).

Theorem 1.3. — Let X7 be a compact 3-Sasakian 7-manifold and let
L0 be the trivial complex line bundle on X. Let ϕts be the standard nearly
parallel G2-structure onX inducing the 3-Sasakian Einstein metric gts, and
let ϕnp be the second (strictly) nearly parallel G2-structure on X inducing
the “squashed” Einstein metric gnp.

• There is a circle of non-trivial deformed G2-instantons on L0 for
ϕts.

• There is a 2-sphere of non-trivial deformed G2-instantons on L0 for
ϕnp.

Remark 1.4. — There are infinitely many compact 3-Sasakian 7-mani-
folds X7 [3,11]. Key examples are giving by the 7-sphere S7 and the Aloff–
Wallach space SU(3)/U(1)1,1 (cf. Example 3.8), which is the SO(3)-frame
bundle of Λ2

+CP
2.

Remark 1.5. — We recall that, if X7 is a compact 3-Sasakian 7-manifold,
then the metric cone on (X7, gts) is hyperkähler, and has holonomy Sp(2)
if it is not flat, whilst the metric cone on (X7, gnp) has holonomy Spin(7).

Remark 1.6. — Theorem 1.3 shows how non-trivial deformed G2-instan-
tons distinguish between the two nearly parallel G2-structures ϕnp and ϕts.
We shall also see that non-trivial deformed G2-instantons can discriminate
between two coclosed G2-structures inducing the same metric, including
the Einstein metrics gts and gnp (cf. Corollary 4.7).

We can also apply our results to non-trivial complex line bundles when
X7 is the 3-Sasakian Aloff–Wallach space (Corollary 4.12).

Theorem 1.7. — Let π : X → CP2 be the SO(3)-frame bundle of
Λ2

+CP
2 and let k ∈ Z.
• There is a circle of non-trivial deformed G2-instantons on π∗O(k)
for ϕts.

• There is a 2-sphere of non-trivial deformed G2-instantons on π∗O(k)
for ϕnp.

More generally, we give examples of deformed G2-instantons for fami-
lies of coclosed G2-structures ϕt,ε on a compact 3-Sasakian 7-manifold X
depending on two parameters: t > 0 and ε ∈ {±1}. Our ansatz depends
on a1, a2, a3 ∈ R, where a1 = a2 = a3 = 0 yields the trivial flat con-
nection in the case of the trivial complex line bundle L0. Hence, if we let
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r =
√
a2

1 + a2
2 + a2

3, which can be viewed as the distance to the trivial
connection on L0, we can represent our main result (Proposition 4.4) in
Figure 1.1 below. The overall picture for the non-trivial line bundles on the
3-Sasakian Aloff–Wallach space (Proposition 4.10) is the same.

ε = +1

t

r

S2

point
1√
2

ε = −1

t

r

2 points

point

S1

1√
2

Figure 1.1. The space of deformed G2-instantons for ϕt,ε on L0.

Remark 1.8. — In particular, we observe in Figure 1.1 how deformed
G2-instantons die as t varies from 0 to 1/

√
2 in both the cases ε = ±1,

but when ε = −1 we have a circle that lives for all t > 0. For context, we
mention that ϕnp corresponds to (t, ε) = (1/

√
5,+1) and ϕts corresponds

to (t, ε) = (1,−1). We also note that ϕt,ε induce the same metric for a
fixed value of t; it is an interesting feature resulting from our work that the
space of deformed G2-instantons differs for these isometric G2-structures.

Remark 1.9. — The parameter t in Figure 1.1 corresponds to the size of
the fibres for the canonical SU(2) or SO(3) fibration of the 3-Sasakian 7-
manifold X over a 4-orbifold. We see that we have non-trivial deformed G2-
instantons which tend to a non-trivial limit connection as t→ 0 (i.e. as the
3-dimensional fibres collapse), even though the norms of their curvatures
are blowing up (with respect to the t-dependent metric). This suggests
possible links of our study to adiabatic limits and compactness issues for
deformed G2-instantons.

We may also relate our examples to the recently developed moduli space
theory for deformed G2-instantons in [14]. We refer the reader to Defi-
nition 4.14 for the formal definition for a deformed G2-instanton to be
obstructed in the sense of deformation theory.
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Theorem 1.10. — Let X be a compact 3-Sasakian 7-manifold and let
L0 be the trivial complex line bundle on X. The non-trivial deformed
G2-instantons given by Theorem 1.3 are obstructed. Moreover, the mod-
uli spaces of deformed G2-instantons on L0 for the nearly parallel G2-
structures ϕnp and ϕts both contain at least two components of different
dimensions.

A Chern–Simons type functional was introduced in [12] whose critical
points are deformed G2-instantons. We study this functional in our setting
and, in particular, deduce the following (cf. Lemma 4.19 and Corollary 5.7),
which reflects the fact that non-trivial deformed G2-instantons coalesce
with the trivial connection at t = 1/

√
2.

Theorem 1.11. — Let X be a compact 3-Sasakian 7-manifold with the
trivial complex line bundle L0, and let A0 be the trivial flat connection on
L0. Then A0 is unobstructed (and hence rigid and locally isolated) as a
deformed G2-instanton with respect to ϕnp = ϕ1/

√
5,+1 and ϕts = ϕ1,−1,

but obstructed as a deformed G2-instanton with respect to ϕ1/
√

2,ε for
ε = ±1.

1.2. Summary

This article is organized as follows. Section 2 introduces some background
on 3-Sasakian geometry which will later be of use in constructing the exam-
ples of deformed G2-instantons. In section 3 we give some simple examples
of deformed G2-instantons which arise from pulling back connections in 6
and 4 dimensions. The non-trivial examples which constitute the main con-
tribution of this article are constructed and presented in section 4. Finally,
in section 5, this article concludes with a discussion of the Chern–Simons
type functional mentioned above; in particular, the functional is explicitly
computed and analyzed in some of the cases developed in this article.

Remark 1.12. — We shall use summation convention over repeated in-
dices throughout the article.

2. 3-Sasakian geometry

We shall now give a short introduction to some aspects of 3-Sasakian
geometry and its relation to G2 geometry. We refer the reader to the sur-
vey article [2] and references therein for more information on 3-Sasakian
geometry.

TOME 72 (2022), FASCICULE 1
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Definition 2.1. — A complete 7-dimensional Riemannian manifold
(X7, gts) is 3-Sasakian if it has three orthonormal Killing vector fields
{ξi}3

i=1 satisfying the relations [ξi, ξj ] = 2εijkξk, for εijk the sign of the
permutation taking (1, 2, 3) to (i, j, k), such that each ξi induces a Sasakian
structure on (X7, gts).

As a consequence of this definition, for a 3-Sasakian 7-manifold (X7, gts),
the complete metric gts is Einstein with positive scalar curvature and its
metric cone has holonomy contained in Sp(2). In particular, X7 is compact
by Myers’ theorem.

2.1. SU(2) leaf space

For a 3-Sasakian manifold (X7, gts) as in Definition 2.1, the Killing vector
fields {ξi}3

i=1 generate a locally free action of SU(2). The leaf space of this
SU(2) action, denoted Z4, can be endowed with a metric gZ so that the
canonical projection

(2.1) π : X → Z

is an orbifold Riemannian submersion. This metric is anti-self-dual and
Einstein of positive scalar curvature s > 0. For convenience, we will scale
the metric gts so that s = 48: this fits with the canonical example of S7 with
its constant curvature 1 metric. In the particular case when Z is spin, we
shall regard (2.1) as the lift to SU(2) = Spin(3) of an SO(3)-(orbi)bundle
of frames of Λ2

+Z, the bundle of self-dual 2-forms on Z.
The Levi-Civita connection of Z induces a connection η on the bun-

dle (2.1) which, seen as a 1-form on X with values in su(2), can be written
as

(2.2) η = ηi ⊗ Ti,

where the Ti are a standard basis of su(2) satisfying [Ti, Tj ] = 2εijkTk,
and the ηi are 1-forms on X. The horizontal space of the connection is
H = ker(η). Knowing that Z is anti-self-dual Einstein means that the
curvature of the connection η in (2.2) is given by

(2.3) Fη = d η + 1
2[η ∧ η] = −2ωi ⊗ Ti,

with the triple of 2-forms ω1, ω2, ω3 forming an orthogonal basis of
(Λ2

+H, g
ts|H) with |ωi| =

√
2. Notice that we have the relations

(2.4) ωi ∧ ωj = 2δijπ∗ volZ ,

where volZ is the Riemannian volume form on (Z, gZ).
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2.2. Metrics and G2-structures

The 3-Sasakian metric gts can be written

(2.5) gts = ηi ⊗ ηi + π∗gZ

and it is well-known to be Einstein. In fact, there is a second Einstein metric
on X for which π is a Riemannian submersion. This can be obtained from
gts by squashing the fibers of π by a factor which reduces the length of any
ξi-orbit by

√
5. This yields the metric

(2.6) gnp = 1
5ηi ⊗ ηi + π∗gZ .

The metrics gts in (2.5) and gnp in (2.6) are induced by natural distin-
guished G2-structures ϕts and ϕnp on X7. (For details on G2-structures we
refer the reader to [13], for example.) Using (2.2) and (2.3), it is convenient
to consider two 1-parameter families, depending on t ∈ R+ and ε ∈ {±1},
of G2-structures on X7 determined by the 3-forms

(2.7) ϕt,ε = εt3η123 − t(η1 ∧ ω1 + η2 ∧ ω2 + εη3 ∧ ω3),

where we have used the notation η123 = η1 ∧ η2 ∧ η3 for brevity. Each ϕt,ε
determines the metric

(2.8) gt = t2ηi ⊗ ηi + π∗gZ ,

which is independent of ε, and the associated 4-forms ψt,ε = ∗gt
ϕt,ε are

(2.9) ψt,ε = π∗ volZ −t2 (εη23 ∧ ω1 + εη31 ∧ ω2 + η12 ∧ ω3) ,

where we write ηij = ηi ∧ ηj for short. Note that if we set

(2.10) ϕts = ϕ1,−1 and ϕnp = ϕ1/
√

5,+1,

then (2.8) shows that ϕts induces gts in (2.5) and ϕnp induces gnp in (2.6).

Remark 2.2. — Changing the sign of the parameter ε corresponds to the
change η3 7→ −η3, which gives a change of orientation on the vertical space
in the projection (2.1). However, since we have fixed the structure equations
on SU(2), we are not free to change η3 → −η3, and so ε represents a genuine
parameter.

We now recall a notable class of G2-structures in this setting.

Definition 2.3. — A G2-structure determined by a 3-form ϕ, with dual
4-form ψ, is nearly parallel if dϕ = λψ for some λ ∈ R \ {0}. By possibly
changing orientation, we can always ensure that λ > 0.

TOME 72 (2022), FASCICULE 1
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Using the equation (2.3) for the curvature of η, we find the following
structure equations:

d ηi = −2ωi − 2ηj ∧ ηk,(2.11)
dωi = 2ωj ∧ ηk − 2ηj ∧ ωk,(2.12)

for (i, j, k) a cyclic permutation of (1, 2, 3). Equations (2.11)-(2.12) imme-
diately show that

(2.13) dψt,ε = 0

for all t, ε. Using (2.11)–(2.12) we compute from (2.7) and (2.9) that the
equation

(2.14) dϕt,ε = λψt,ε

only has solutions when

(2.15) (t, ε, λ) =
(

1√
5
,+1, 12√

5

)
and (t, ε, λ) = (1,−1, 4) .

By Definition 2.3, (t, ε) = (1/
√

5,+1) and (t, ε) = (1,−1) are the only
values for which ϕt,ε is nearly parallel [10]. We see from (2.5), (2.6) and (2.8)
that g1/

√
5 = gnp and g1 = gts, and (2.10), (2.14) and (2.15) show that ϕnp

and ϕts are nearly parallel.
We conclude this section with a familiar concrete example.

Example 2.4. — The standard 7-sphere S7 with its round constant cur-
vature 1 metric gS7 is 3-Sasakian, and its SU(2) leaf space is Z = S4,
naturally endowed with its round constant curvature 4 metric gZ . It is
well-known that S7 admits two homogeneous Einstein metrics: gS7 (which
is gts in (2.5)) and its “squashed” metric (which is gnp in (2.6)). Each of
these Einstein metrics is induced by a homogeneous nearly parallel G2-
structure, given in (2.10) by ϕts and ϕnp respectively.

3. Deformed Hermitian-Yang–Mills connections and ASD
instantons

In this section we provide examples of deformed G2-instantons arising
from lower-dimensional geometries: specifically, deformed Hermitian-Yang–
Mills connections on Calabi–Yau 3-folds and anti-self-dual instantons on
anti-self-dual Einstein 4-orbifolds and hypersymplectic 4-manifolds.
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3.1. Deformed Hermitian-Yang–Mills connections

We recall the following definition, which originated in [16,17].

Definition 3.1. — Let (Y, ω) be a Kähler n-fold, where ω is the Käh-
ler form, and let L be a Hermitian complex line bundle on Y . A unitary
connection A on L is a deformed Hermitian-Yang–Mills connection (with
phase eiα) if

(3.1) F
(0,2)
A = 0 and =(e− iα(ω + FA)n) = 0.

When Y is a Calabi–Yau manifold, deformed Hermitian-Yang–Mills con-
nections are, in a sense, “mirror” to special Lagrangian n-folds.

We are interested in the case where (Y, ω,Ω) is a Calabi–Yau 3-fold, with
holomorphic volume form Ω, and A is a deformed Hermitian-Yang–Mills
connection with phase 1. In this case (3.1) can be rewritten as

(3.2) FA ∧ =Ω = 0 and 1
6F

3
A + FA ∧

1
2ω

2 = 0.

The analogy between (1.1) and (3.2) should be clear. We then provide an
observation which extends Lemma 5.5 in [14].

Lemma 3.2. — Let (Y, ω,Ω) be a Calabi–Yau 3-fold and let L be a
Hermitian complex line bundle on Y . Let π : X7 → Y be an S1-bundle over
Y with a connection 1-form η, which is Hermitian-Yang–Mills, endowed
with the standard G2-structure

(3.3) ϕ = η ∧ π∗ω + π∗<Ω and ψ = 1
2π
∗ω2 − η ∧ π∗=Ω.

Note that as η is Hermitian-Yang–Mills we have dψ = 0.
Then A is a deformed Hermitian-Yang–Mills connection with phase 1 on

L if and only if π∗A is a deformed G2-instanton on π∗L.

Proof. — The proof follows immediately from (1.1), (3.2) and (3.3), just
as in the proof of Lemma 5.5 in [14]. �

Remark 3.3. — Lemma 3.2 has a well-known analogue where deformed
Hermitian-Yang–Mills connections and deformed G2-instantons are replaced
by Hermitian-Yang–Mills conections and G2-instantons. When X7 = S1 ×
Y with the product G2-structure and η = d θ for θ the coordinate on S1,
G2-instantons on π∗L are related via a “broken gauge” with the pullback
of Hermitian-Yang–Mills connections over Y [18]. In particular, this im-
plies that π∗A is a G2-instanton if and only if A is a Hermitian-Yang–Mills
connection.

TOME 72 (2022), FASCICULE 1



348 Jason D. LOTAY & Gonçalo OLIVEIRA

There are now many examples of deformed Hermitian-Yang–Mills con-
nections, in particular provided by the recent relationship between existence
of such connections and stability proved in [5]. We may construct a simple
example of a G2-manifold, i.e. X7 with a torsion-free G2-structure ϕ (sat-
isfying dϕ = 0 and dψ = 0), with a non-trivial line bundle admitting a
deformed G2-instanton which is not a G2-instanton as follows.

Example 3.4. — Suppose that (Y, ω,Ω) is a Calabi–Yau 3-fold such that
[
√

3ω] is an integral class inH2(Y ), and so defines a Hermitian complex line
bundle L with a unitary connection A such that FA = i

√
3ω. Then (3.2)

is satisfied and so A is a deformed Hermitian-Yang–Mills connection with
phase 1.

If we let X = S1 × Y with the product torsion-free G2-structure as
in (3.3), where π : X → Y is the natural projection and η = d θ for θ
the coordinate on S1, then π∗A is a deformed G2-instanton on π∗L by
Lemma 3.2. Notice that π∗F 3

A 6= 0 and so π∗A is not a G2-instanton on
X = S1 × Y .

Remark 3.5. — One can perform a similar construction to Example 3.4
for so-called Calabi–Yau links X7 in S9, which are nontrivial S1-bundles
over Calabi–Yau 3-(orbi)folds Y arising as hypersurfaces in CP4, to obtain
deformed G2-instantons which are not G2-instantons on X. The study of
G2-instantons on Calabi–Yau links was initiated in [4], using Hermitian-
Yang–Mills connections on Y .

3.2. ASD instantons on anti-self-dual Einstein 4-orbifolds

Let X7 be a 3-Sasakian 7-manifold as in Definition 2.1 and let (Z4, gZ)
as in (2.1) be the SU(2) leaf space. Recall that (Z4, gZ) is an anti-self-dual
Einstein 4-orbifold, and recall the G2-structures on X whose 4-forms are
given by ψt,ε in (2.9). In particular, recall the forms ωi in (2.3), which are
pullbacks of self-dual 2-forms on Z, used to construct ψt,ε.

We now have the following simple observation concerning anti-self-dual
(ASD) instantons on Z, i.e. connections A on Z whose curvature satisfies

(3.4) FA = − ∗ FA.

Since π∗F 3
A = 0 automatically for dimension reasons, for any connection

A on Z, we see from (1.1) that the notions of deformed G2-instanton and
G2-instanton coincide for π∗A. We may thus obtain trivial examples of
deformed G2-instantons as follows.

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.6. — Let X7 be a 3-Sasakian 7-manifold and let Z be its
SU(2) leaf space as in (2.1). Let L be a Hermitian complex line bundle on
Z, and let A be a unitary connection on L.
Then π∗A is a (deformed) G2-instanton on π∗L over X, with respect to

some (and hence all) ψt,ε in (2.9) if and only if A is an ASD instanton.

Proof. — First, let A be an anti-self-dual (ASD) instanton on Z. Then,
since FA is anti-self-dual and the forms ωi appearing in (2.9) are self-dual on
the horizontal space H for the projection (2.1), we see that π∗FA∧ψt,ε = 0,
i.e. that π∗A is a G2-instanton.

Conversely, if π∗FA ∧ ψt,ε = 0 for some t and ε, then we must have

(3.5) π∗FA ∧ ωi = 0 for all i.

Since the ωi span the self-dual 2-forms on H, (3.5) implies that (3.4) holds,
i.e. A is an ASD instanton. �

Remark 3.7. — Lemma 3.6 has some overlap with Proposition 18 in [1].

We now give an example of using Lemma 3.6 which will be useful later.

Example 3.8. — Let X be the 7-dimensional Aloff–Wallach space
SU(3)/U(1)1,1 where

(3.6) U(1)1,1 =


ei θ 0 0

0 ei θ 0
0 0 e−2 i θ

 ∈ SU(3) : θ ∈ R

 .

Then X is a homogeneous 3-Sasakian 7-manifold whose SU(2) leaf space
is Z = CP2. Let L = O(k) on Z for k ∈ Z. The connection A on L

with harmonic curvature will be unitary and have the property that FA
is a multiple of the Fubini–Study form, and so will be an ASD instanton
(since CP2 has the opposite orientation). Moreover, A will be non-trivial
whenever k 6= 0. Lemma 3.6 then gives a deformed G2-instanton (which is
a non-trivial G2-instanton for k 6= 0) on π∗L with respect to both of the
homogeneous nearly parallel G2-structures ϕts and ϕnp in (2.10) on X.

Remark 3.9. — Gauge theory on X = SU(3)/U(1)1,1, in particular G2-
instantons with respect to the two homogeneous nearly parallel G2-structu-
res, is studied in some detail in [1].

3.3. ASD instantons on hypersymplectic 4-manifolds

We shall now give some simple examples arising from pull-backs of anti-
self-dual connections on a hypersymplectic 4-dimensional manifold. As we
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shall see, this is directly analogous to the construction arising from anti-
self-dual Einstein 4-orbifolds considered in the previous subsection.

Definition 3.10. — A hypersymplectic structure on an oriented 4-
manifold Z4 is a triple of closed 2-forms (ω1, ω2, ω3) on Z so that, for
a volume form volZ on Z,

(3.7) ωi ∧ ωj = 2Qij volZ ,

where the matrix Qij is positive definite. We may choose volZ in (3.7) so
that the matrix Qij has determinant one. In this manner, the hypersym-
plectic structure determines a Riemannian metric gZ on Z whose bundle
of self-dual two forms is spanned by {ω1, ω2, ω3} and whose Riemannian
volume form is volZ .

Example 3.11. — If (Z4, gZ) is a K3 surface with (ω1, ω2, ω3) a hyper-
kähler triple, then (3.7) is satisfied with Qij = δij and gZ in Definition 3.10
is the associated Ricci-flat Kähler metric. See [8] for more about hypersym-
pletic structures and their relation to kyperkähler geometry.

Consider a 3-torus bundle π : X → Z over such a hypersymplectic 4-
manifold Z with an anti-self-dual connection η. We regard the connection
η = (η1, η2, η3) ∈ Ω1(X,R3) as three 1-forms on the total space whose
curvatures d ηi are the pullback of anti-self-dual 2-forms on (Z, gZ). Then,
we consider G2-structures on X whose corresponding 4-forms are

(3.8) ψt = π∗ volZ −t2 (η23 ∧ π∗ω1 + η31 ∧ π∗ω2 + η12 ∧ π∗ω3) ,

for some constant t > 0. (For more details on the relation between G2-
structures and hypersympletic structures see [9].) We see that dψt = 0 as
the d ηi are assumed to be the pull-back of anti-self-dual 2-forms and thus
d ηi ∧ωj = 0 for all i, j. This is the only point for which the condition that
η is anti-self-dual is used.
We now construct some simple deformed G2-instantons with respect to

ψt in (3.8). We regard these as being trivial examples since, as in Lemma 3.6
above, they are G2-instantons for which the cubic term in the curvature
vanishes. The proof is almost identical to Lemma 3.6 so we omit it.

Lemma 3.12. — Let Z be a hypersymplectic 4-manifold, let L be a
Hermitian complex line bundle on Z and let A be a unitary connection on
L. Let π : X → Z be a T 3-bundle over Z with anti-self-dual connection η
and let ψt be as in (3.8).

Then π∗A is a (deformed) G2-instanton on π∗L with respect to some
(and hence all) ψt if and only if A is an ASD instanton.
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Example 3.13. — Let Z be a K3 surface and ω1, ω2, ω3 a hyperkähler
triple, and let X = T 3 × Z so that η is the trivial flat connection on
π : X → Z. Note that in this case X is a G2-manifold with the product
G2-structure whose 4-form is ψ = ψ1 in (3.8).
Denote by H+ = 〈ω1, ω2, ω3〉 the space of self-dual harmonic 2-forms

and by H− that of anti-self-dual ones. Then H2(X,R) ∼= H+ ⊕ H− and
suppose thatH−∩H2(X,Z) 6= 0. Then, for any complex line bundle so that
c1(L) ∈ H− ∩H2(X,Z), Lemma 3.12 applies and we obtain a connection
A which is both a G2-instanton and a deformed G2-instanton for ψ on the
G2-manifold X = T 3 × Z.

Remark 3.14. — Similar constructions of G2-instantons to Example 3.13,
also performed in the higher rank case, can be found in [6].

4. Examples

We now turn to the main goal of this article, which is to construct the first
non-trivial examples of deformed G2-instantons. At the end of the section,
we shall also discuss implications of this construction for the deformation
theory of deformed G2-instantons.
In this section, unless we state otherwise, we let X7 be a 3-Sasakian 7-

manifold as in Definition 2.1, and we shall use the notation introduced in
section 2. In particular we let Z4 be the leaf space of the SU(2) action on X
given in (2.1). We also let L0 denote the trivial complex line bundle over X.

4.1. G2-instantons

We consider connections A on the trivial complex line bundle L0 over
X, given by

(4.1) A = i(a1η1 + a2η2 + a3η3),

for a1, a2, a3 ∈ R, where the ηi are given in (2.2). (Here, we identify the
Lie algebra u(1) with iR.) The curvature of A is given by

(4.2) FA = −2 i a1 (ω1 + η23)− 2 i a2 (ω2 + η31)− 2 i a3 (ω3 + η12) ,

where the ωi are given in (2.3), and we recall that ηij = ηi∧ηj . Using (2.4),
(2.9) and (4.2), we compute

(4.3) FA ∧ ψt,ε = −2 i
(
(1− 2εt2) (a1η23 + a2η31)

+ (1− 2t2)a3η12
)
∧ π∗ volZ .
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From (1.2) and (4.3) we are led to the following conclusion.

Proposition 4.1. — Suppose that the connection A in (4.1) is a G2-
instanton with respect to ψt,ε in (2.9). Then

• a1 = a2 = a3 = 0, in which case A is the trivial flat connection, or
• t = 1/

√
2, ε = −1, a1 = a2 = 0 and a3 6= 0, so A = i a3η3 is a

G2-instanton with respect to ψ1/
√

2,−1, or
• t = 1/

√
2 and ε = +1, in which case all A in (4.1) are G2-instantons

with respect to ψ1/
√

2,+1.

Remark 4.2. — The G2-structures with (t, ε) = (1/
√

2,+1) are special,
as they support a real 3-parameter family of G2-instantons on the trivial
complex line bundle L0 on X by Proposition 4.1. This extends observations
made in Proposition 17 of [1]. Moreover, the G2-structures given by (t, ε) =
(1/
√

2,−1) admit a real 1-parameter family of G2-instantons on L0 on X.

Remark 4.3. — There are examples of G2-instantons on higher rank bun-
dles on X, such as Example 2 in [7], which describes an irreducible G2-
instanton with gauge group SO(3) in this setting.

4.2. Deformed G2-instantons

We now analyze solutions to the deformed G2-instanton (or, equivalently,
deformed Donaldson–Thomas connection) equation with respect to ψt,ε:

(4.4) 1
6F

3
A + FA ∧ ψt,ε = 0,

for A a connection on the trivial complex line bundle L0 on X. For A as
in (4.1) we compute

(4.5) 1
6F

3
A = 8 i

(
a2

1 + a2
2 + a2

3
)

(a1η23 + a2η31 + a3η12) ∧ π∗ volZ ,

Using (4.3) and (4.5), we see that A solves (4.4) if and only if

(4.6)
(
4(a2

1 + a2
2 + a2

3)− (1− 2εt2)
)
(a1η23 + a2η31)

+
(
4(a2

1 + a2
2 + a2

3)− (1− 2t2)
)
a3η12 = 0.

We see that (4.6) always has the solution a1 = a2 = a3 = 0, which corre-
sponds to the flat connection. Otherwise, if ε = +1 then we must have

(4.7) a2
1 + a2

2 + a2
3 = 1

4
(
1− 2t2

)
.
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We immediately see that (4.7) can be solved for a non-flat connection A if
and only if 2t2 < 1, in which case there is a whole 2-sphere of solutions. If,
instead, ε = −1 then if a2

1 + a2
2 6= 0 we must have

(4.8) a2
1 + a2

2 = 1
4(1 + 2t2) and a3 = 0,

and if a3 6= 0 we must have

(4.9) a2
1 + a2

2 = 0 and a2
3 = 1

4(1− 2t2).

Clearly, (4.8) gives a circle of solutions for any t > 0, whereas (4.9) gives
non-trivial solutions if and only if 2t2 < 1, in which case there are two
solutions.
We state these findings as follows.

Proposition 4.4. — Let a1, a2, a3 ∈ R and let A = i ajηj as in (4.1)
be a connection on the trivial complex line bundle L0 on X. Then A is
a deformed G2-instanton with respect to ψt,ε in (2.9) if and only if either
a1 = a2 = a3 = 0, so A is the trivial flat connection, or one of the following
holds:

• t ∈ (0, 1/
√

2), ε = +1 and a1, a2, a3 satisfy (4.7) (so there is a
2-sphere of solutions);

• t ∈ (0, 1/
√

2), ε = −1 and a1, a2, a3 satisfy (4.8) or (4.9) (so the
solutions consist of a circle and two points);

• t > 1/
√

2, ε = −1, and a1, a2, a3 satisfy (4.8) (so there is a circle of
solutions).

By (2.10), Proposition 4.4 immediately gives the following two results.

Corollary 4.5. — Recall the nearly parallel G2-structures ϕnp and
ϕts on X given in (2.10).

• There is a 2-sphere of non-trivial deformed G2-instantons on L0
over X with respect to ϕnp arising from (4.1).

• There is a circle of non-trivial deformed G2-instantons on L0 over
X with respect to ϕts arising from (4.1).

Remark 4.6. — Corollary 4.5 demonstrates how Proposition 4.4 can be
used to show that deformed G2-instantons can discriminate between G2-
structures on X; in particular, between the two natural nearly parallel
G2-structures on X. We also see that the family of deformed G2-structures
for these two nearly parallel G2-structures has different dimensions, and
there is no obvious relation between them.
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Corollary 4.7. — Recall the two Einstein metrics gts and gnp on X
given in (2.5) and (2.6), and recall that ϕ1,ε induces gts and ϕ1/

√
5,ε induces

gnp for ε ∈ {±1}.
• Using the ansatz (4.1), there is a circle of non-trivial deformed G2-
instantons with respect to ϕ1,−1, whereas there are no non-trivial
deformed G2-instantons with respect to ϕ1,+1.

• Using the ansatz (4.1), there is a circle plus two isolated exam-
ples of non-trivial deformed G2-instantons with respect to ϕ1/

√
5,−1,

whereas there is a 2-sphere of non-trivial deformed G2-instantons
with respect to ϕ1/

√
5,+1.

Remark 4.8. — Corollary 4.7 indicates how Proposition 4.4 shows that
deformed G2-instantons can be used to distinguish between isometric G2-
structures on X; in particular, between the two natural Einstein metrics
on X. However, we observe that for these two Einstein metrics, whilst the
spaces of deformed G2-instantons having the form (4.1) are very different
for the two isometric G2-structures, their Euler characteristics are the same.
This is pertinent since one might hope to use the Euler characteristic of
the moduli space as a possible enumerative invariant for deformed G2-
instantons.

We give a concrete example of the construction.

Example 4.9. — Take the 7-sphere S7 as in Example 2.4 and let L0 be
the trivial complex line bundle over S7. Corollary 4.5 gives a 2-sphere of
deformed G2-instantons on L0 over (S7, ϕnp), and a circle of deformed G2-
instanton on L0 over (S7, ϕts). On the other hand, Corollary 4.7 shows that
we have a family of deformed G2-instantons on L0 consisting of a circle plus
two further points for another G2-structure inducing the squashed metric
gnp, and we have no known non-trivial deformed G2-instantons on L0 for
another G2-structure inducing the round metric gts.
In this way, deformed G2-instantons on the trivial complex line bundle

can be used to distinguish between the two homogeneous nearly parallel
G2-structures on S7, and between isometric G2-structures for the two ho-
mogeneous Einstein metrics on S7.

4.3. Non-trivial line bundles

One may ask whether there are non-trivial examples of deformed G2-
instantons on non-trivial line bundles. The natural approach is to use a
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non-trivial bundle L over Z equipped with an anti-self-dual connection A0,
using the ideas in subsection 3.2. We shall give a particular example, which
may clearly be generalized to other 3-Sasakian 7-manifolds, of a existence
result for non-trivial deformed G2-instantons on non-trivial line bundles.
Consider the setting of Example 3.8, where X is the Aloff–Wallach space

SU(3)/U(1)1,1, where U(1)1,1 is given in (3.6), and recall that Z = CP2.
Let L = OCP2(k) for some k ∈ Z, and let A0 be the connection on L

with harmonic curvature (which must be an ASD instanton as observed in
Example 3.8).
Recalling the ηi in (2.2), we may consider a connection A on π∗L over

X given by

(4.10) A = π∗A0 + i a, for a = ajηj ,

where a1, a2, a3 ∈ R. The curvature of A is FA = FA0 + i d a and as A0 is
anti-self-dual we have π∗FA0 ∧ ψt,ε = 0 by Lemma 3.6. Hence,

FA ∧ ψt,ε = i d a ∧ ψt,ε
(4.11)

= −2 i
(
(1− 2εt2)(a1η23 + a2η31) + (1− 2t2)a3η12

)
∧ π∗ volZ .

by (4.3). As for the cubic term in the curvature we find that

(4.12) F 3
A = 3 iπ∗F 2

A0
∧ d a− 3π∗FA0 ∧ (d a)2 − i(d a)3

as F 3
A0

= 0 for dimensional reasons. By inspection, we see that (d a)2 =
βi∧ωi for some 2-forms βi. As the ωi are self-dual and FA0 is anti-self-dual
we find that FA0 ∧ (d a)2 = 0. Hence, (4.12) becomes

(4.13) F 3
A = − i(d a)3 + 3 iπ∗F 2

A0
∧ d a.

The first term in (4.13) is given by the right-hand side of (4.5) (multiplied
by 6). As for the second term, we find that F 2

A0
= |FA0 |2 volZ , with | · |

denoting the norm with respect to gZ , since FA0 is anti-self-dual (recalling
that FA0 is imaginary-valued). Thus, using (4.2), we see that

(4.14) 3 iπ∗F 2
A0
∧ d a = −6 iπ∗|FA0 |2 (a1η23 + a2η31 + a3η12) ∧ π∗ volZ .

Inserting (4.5) and (4.14) in (4.13) shows that the deformed G2-instanton
equation (4.4) for ψt,ε is equivalent to

(4.15)
(
8(a2

1 + a2
2 + a2

3)− π∗|FA0 |2 − 2(1− 2εt2)
)
(a1η23 + a2η31)

+
(
8(a2

1 + a2
2 + a2

3)− π∗|FA0 |2 − 2(1− 2t2)
)
a3η12 = 0.

At this point, we use the fact that FA0 = i kω, where ω is the Fubini–Study
form on CP2, and thus |FA0 |2 = 2k2. (Note that we need |FA0 |2 to be
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constant in order for (4.15) to have a solution for constant a1, a2, a3 which
are not all zero.) Inserting this into (4.15) for ε = +1 gives that non-trivial
solutions must satisfy

(4.16) a2
1 + a2

2 + a2
3 = 1

4(1− 2t2 + k2).

We see that (4.16) has non-trivial solutions for a1, a2, a3 if and only if
2t2 < 1 + k2. We therefore obtain deformed G2-instantons with respect to
ψt,+1 on π∗O(k) for k 6= 0 arising from the ansatz (4.10) which are not
given by the pullback of the ASD instanton on O(k) (which is a deformed
G2-instanton by Lemma 3.6) for these values of t.
If we instead look at (4.15) for ε = −1 then for non-trivial solutions we

either have

a2
1 + a2

2 = 1
4(1 + 2t2 + k2) and a3 = 0, or(4.17)

a2
1 + a2

2 = 0 and a2
3 = 1

4(1− 2t2 + k2).(4.18)

We see that (4.17) admits non-trivial solutions for all t, whereas (4.18)
admits non-trivial solutions if and only if 2t2 < 1 + k2, just as for (4.16).
Overall, we have the following proposition, which generalizes Proposi-

tion 4.4 for the case of the Aloff–Wallach space SU(3)/U(1)1,1.

Proposition 4.10. — LetX be the Aloff–Wallach space SU(3)/U(1)1,1

as in Example 3.8, with projection π : X → Z = CP2. Let L = O(k) on
Z for k ∈ Z, let A0 be the unitary ASD instanton on L and let A be
a connection on π∗L as in (4.10) which is a deformed G2-instanton with
respect to ψt,ε given in (2.9). Then either a1 = a2 = a3 = 0, and so
A = π∗A0 (and thus is a G2-instanton), or one of the following holds:

• t ∈ (0,
√

(1 + k2)/2), ε = +1 and a1, a2, a3 satisfy (4.16);
• t ∈ (0,

√
(1 + k2)/2), ε = −1 and a1, a2, a3 satisfy (4.17) or (4.18);

• t >
√

(1 + k2)/2, ε = −1 and a1, a2, a3 satisfy (4.17).

Remark 4.11. — We see that (4.18) has non-trivial solutions for t = 1
if and only if |k| > 1. In particular, Proposition 4.10 gives non-trivial
deformed G2-instantons on π∗O(k) over X with respect to the G2-structure
ϕ1,+1, which induces the 3-Sasakian metric gts, if and only if |k| > 1.
Moreover, when |k| > 1, Proposition 4.10 gives a 2-sphere of non-trivial
deformed G2-instantons on π∗O(k) with respect to ϕ1,+1, whereas it gives
a family of deformed G2-instantons consisting of a circle and two points
with respect to ϕts.

Proposition 4.10 has the following immediate corollary.
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Corollary 4.12. — Let X7 be the Aloff–Wallach space SU(3)/U(1)1,1

as in Example 3.8, with projection π : X → CP2, and recall the nearly
parallel G2-structures ϕnp and ϕts on X given in (2.10).

• For every k ∈ Z, there is a 2-sphere of non-trivial deformed G2-
instantons on π∗O(k) with respect to ϕnp.

• If k∈{0,±1}, there is a circle of non-trivial deformed G2-instantons
on π∗O(k) with respect to ϕts, and if k ∈ Z\{0,±1} there is a circle
and two further examples of non-trivial deformed G2-instantons on
π∗O(k) with respect to ϕts.

Remark 4.13. — Proposition 4.10 continues to demonstrate how defor-
med G2-instantons can distinguish between nearly parallel G2-structures
and isometric G2-structures. Moreover, for isometric G2 structures, the ob-
served equality between the Euler characteristics of the families of deformed
G2-instantons, having the form (4.1), continues to hold in this setting.

4.4. Moduli spaces

We now make some observations on the families of deformed G2-instan-
tons we have constructed, and their relation to the deformation theory of
deformed G2-instantons developed in [14]. To state the deformation theory
result we recall the following definition.

Definition 4.14. — For a 7-manifold X with a coclosed G2-structure
ϕ and a Hermitian complex line bundle L on X, we letM(X,ϕ,L) denote
the moduli space of deformed G2-instantons on L with respect to ϕ. Let
A ∈M(X,ϕ,L) and consider the complex

(4.19) 0 −→ Ω0(X) d−→ Ω1(X)
( 1

2F
2
A+∗ϕ)∧d
−→ d Ω5(X) −→ 0.

Then A is unobstructed if H2 = 0 for (4.19), i.e. if the linearisation of the
deformed G2-instanton condition ( 1

2F
2
A + ∗ϕ) ∧ d : Ω1(X) → d Ω5(X) is

surjective; otherwise A is obstructed.

We now state a deformation theory result that follows from [14], which
motivates the definition of unobstructed in Definition 4.14.

Theorem 4.15. — Let (X7, ϕ) be a compact 7-manifold with a coclosed
G2-structure, and let L be a Hermitian complex line bundle on X. Then
M(X,ϕ,L) has expected dimension b1(X). Therefore, if A ∈M(X,ϕ,L) is
unobstructed, thenM(X,ϕ,L) is a smooth manifold near A of dimension
b1(X).

Moreover, if A ∈M(X,ϕ,L) and
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• dϕ = λ ∗ϕ ϕ for some λ ∈ R, or
• F 3

A 6= 0 everywhere,
then for generic coclosed G2-structures ϕ′ sufficiently near ϕ so that
[∗ϕ′ϕ′] = [∗ϕϕ] ∈ H4(X), the subset of M(X,ϕ′, L) of connections suffi-
ciently near A is a smooth manifold of dimension b1(X) (if it is non-empty).

Theorem 4.15 has the following consequence.

Corollary 4.16. — Let (X7, ϕ) be a compact 7-manifold with a co-
closed G2-structure, and suppose that X7 admits a nearly parallel G2-
structure. Let L be a Hermitian complex line bundle on X. Then the ex-
pected dimension of M(X,ϕ,L) is 0. In particular, if A ∈ M(X,ϕ,L) is
unobstructed then A is rigid and locally isolated inM(X,ϕ,L).

Moreover, given A ∈ M(X,ϕ,L) such that F 3
A 6= 0 everywhere, for

generic coclosed G2-structures ϕ′ near ϕ with [∗ϕ′ϕ′] = [∗ϕϕ], the subset
ofM(X,ϕ′, L) of connections sufficiently near A is a discrete collection of
points (if it is non-empty).

Proof. — The result follows from Theorem 4.15 and the fact that X7

must have finite fundamental group by Myers theorem, since the induced
metric from a nearly parallel G2-structure is Einstein with positive scalar
curvature. �

Since the non-trivial deformed G2-instantons given by Corollary 4.5 are
not rigid for the nearly parallel G2-structures ϕnp and ϕts on the 3-Sasakian
X7, Corollary 4.16 yields the following result.

Proposition 4.17. — All of the non-trivial deformed G2-instantons
from Propositions 4.4 and 4.10 that exist in positive-dimensional families
are obstructed.
In particular, the non-trivial deformed G2-instantons on the trivial line

bundle L0 over (X7, ϕts) and (X7, ϕnp) from Proposition 4.4 are obstructed.

Remark 4.18. — We see from (4.5) and Propositions 4.4 and 4.10 that all
of the non-trivial deformed G2-instantons A with respect to ϕt,ε we have
constructed have the property that F 3

A 6= 0 everywhere, and thus Corol-
lary 4.16 applies. Moreover, when ε = +1 we see that [ψt,+1] = [ψt′,+1] for
all t, t′. However,M(X,ϕt′,+1, L0) still contains an S2 family of deformed
G2-instantons near A for all t′ near t. We conclude that the family ϕt,+1 is
not sufficiently generic to enable us to peturb A to become locally isolated.

We now make an elementary observation, which follows from Remark 5.13
in [14].
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Lemma 4.19. — Let (X7, ϕ) be a compact 7-manifold with a nearly
parallel G2-structure, and let L0 be the trivial complex line bundle on
X. Then the trivial flat connection is unobstructed as a deformed G2-
instanton, thus rigid and locally isolated inM(X,ϕ,L0).

Lemma 4.19 yields the following interesting result.

Proposition 4.20. — For any 3-Sasakian 7-manifold X, the moduli
spacesM(X,ϕnp, L0) andM(X,ϕts, L0) have at least two components of
different dimensions.

Proof. — Since the trivial flat connection A0 lies in the moduli spaces
M(X,ϕnp, L0) and M(X,ϕts, L0) and is locally isolated, it must define
a component of the moduli space in each case. Therefore, in each case
the positive-dimensional family of non-trivial deformed G2-instantons from
Proposition 4.4 must lie in a different component of the moduli space to
the trivial flat connection. �

5. A Chern–Simons type functional

In this section, we study a functional of Chern–Simons type, introduced
in [12], which has deformed G2-instantons as critical points, in the setting
of our examples.

5.1. The functional

Let X7 be a compact 7-manifold with a coclosed G2-structure ϕ. (The
assumption of compactness is to ensure that integrals of various quantities
over X are guaranteed to be well-defined.) Let L be a Hermitian complex
line bundle over X and fix a unitary connection A0 on L. We let t denote
a coordinate on [0, 1] and we shall pullback various quantities from X to
X × [0, 1] such as ψ = ∗ϕϕ and L; for ease of notation, we shall omit the
pullback symbol.
Then, for any other unitary connection A on L we consider a unitary

connection A on the pullback of L to [0, 1]×X, given by

(5.1) A = A0 + t(A−A0).

We let At = A|{t}×X and let Ft be the curvature of At, which is

(5.2) Ft = FA0 + t(FA − FA0).

TOME 72 (2022), FASCICULE 1



360 Jason D. LOTAY & Gonçalo OLIVEIRA

Hence, the curvature of A in (5.1) can be written

(5.3) F = d t ∧ (A−A0) + Ft.

With this notation, we can make the following definition.

Definition 5.1. — Let (X7, ϕ) be a compact 7-manifold with a co-
closed G2-structure and let L be a Hermitian complex line bundle on X.
Given a unitary connection A0 on L we define the functional F on unitary
connections A on L over X by the formula:

(5.4) F(A) =
∫
X×[0,1]

eF+ψ,

where ψ = ∗ϕϕ and F is given in (5.3). It is shown in [12] that the deformed
G2-instanton equation (1.1) arises as the critical point equation for the
functional F .

SinceX is 7-dimensional, it is convenient to expand and rewrite F in (5.4)
as follows:

F(A) =
∫
X×[0,1]

1
3! (F + ψ)3 + 1

4!(F + ψ)4(5.5)

= 1
2

∫
X×[0,1]

F2 ∧ ψ + 1
12F4.

On the other hand, we have Fk = F kA0
+ d (csk(A0,A)) on [0, 1] × X,

where F is given in (5.3) and csk(A0,A) is the kth transgression form.
This can be explicitly written using the curvature Fs of the connections
As = A0 + s(A−A0) for s a real parameter. Indeed, we have

(5.6) csk(A0,A) = k

∫ 1

0
(A−A0) ∧ Fk−1

s d s.

Thus, from Stokes’ theorem and the fact that F 2
A0
∧ ψ = 0 = F 4

A0
by

dimensional reasons, we may write (5.5) as:

(5.7) F(A) = 1
2

∫
X

cs2(A0, A) ∧ ψ + 1
12cs4(A0, A).

In particular, we have the following observation.

Lemma 5.2. — In the notation of Definition 5.1, let L = L0 be the
trivial complex line bundle and let A0 be the trivial flat connection. Then
the functional F in (5.4) is given by

(5.8) F(A) = 1
2

∫
X

(A−A0) ∧
(
FA ∧ ψ + 1

12F
3
A

)
.
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Proof. — The result follows from (5.7) and the observation that
csk(A0, A) = (A−A0) ∧ F k−1

A by (5.6) as FA0 = 0. �

5.2. Examples

For connections as in (4.1) on 3-Sasakian 7-manifolds we find, after a
lengthy but straightforward computation, the following using (5.8).

Proposition 5.3. — Let X7 be a 3-Sasakian 7-manifold with the co-
closed G2-structure ϕt,ε on (2.7), and recall the 3-Sasakian metric gts

in (2.5). For connections A = i ajηj as in (4.1) on the trivial complex
line bundle L0 on X, we have that the functional F in (5.4) is given by

(5.9) F(A) = −c
[
(x2 + y2)(2(x2 + y2)− 1) + 2t2(x2 + εy2)

]
,

where x = a3, y2 = a2
1 + a2

2 and

(5.10) c =
∫
X

η123 ∧ π∗ volZ = Vol(X, gts) > 0.

Remark 5.4. — Notice that F in (5.9) is bounded above and that, as
can be seen from (5.10), the 3-Sasakian metric gts may be rescaled so that
c = 1, which we will now do for convenience.

Remark 5.5. — The critical points of the functional F in (5.9), restricted
to connections given by the ansatz (4.1), are given by the vanishing of

∂F
∂x

= −2x
(
4(x2 + y2) + 2t2 − 1

)
,(5.11)

∂F
∂y

= −2y
(
4(x2 + y2) + 2εt2 − 1

)
.(5.12)

We see that we have solutions to (5.11)–(5.12) given by x = 0 = y, corre-
sponding to the flat connection, and

(5.13) x2 + y2 = 1
4(1− 2t2) when ε = 1 and 2t2 < 1,

or ε = −1 and either

(5.14) x = 0 and y2 = 1
4(1 + 2t2), or

y = 0 and x2 = 1
4(1− 2t2) when 2t2 < 1.

Equations (5.13)–(5.14) coincide with the conditions (4.7)–(4.9) we de-
rived earlier that gave our non-trivial deformed G2-instantons in Proposi-
tion 4.4.
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Using Proposition 5.3 we can examine the relationship between the trivial
flat connection and the functional F . In particular, we see that the nature
of the trivial connection as a critical point for F depends on the choice of
G2-structure.

Lemma 5.6. — Recall the notation of Proposition 5.3, in particular the
functional F in (5.9). Let A0 be the trivial flat connection on the trivial
complex line bundle L0 over X. Then the Hessian of F is nondegenerate
at A0 if and only if t 6= 1/

√
2. Moreover:

• if t ∈ (0, 1/
√

2) then A0 is a local minimum of F ;
• if t > 1/

√
2 and ε = +1 then A0 is a local maximum of F ;

• if t > 1/
√

2 and ε = −1 then A0 is a saddle point of F .

Proof. — By direct computation, one can calculate the Hessian of the
functional F in (5.9). At the flat connection A0, when (x, y) = (0, 0), the
Hessian of F has eigenvalues

(5.15) 2(1− 2t2) and 2(1− 2εt2).

We see immediately that the Hessian of F is degenerate if and only if
2t2 = 1 as claimed. Moreover, as long as 2t2 6= 1, the critical point is
characterised by the signs of the eigenvalues in (5.15). When 2t2 = 1 we
see that

(5.16) F(A) = −2(x2 + y2)2 + (1− ε)y2.

When ε = +1, F 6 0 and equals 0 if and only if x = y = 0. When ε = −1,
we instead see that inserting x = 0 in (5.16) gives a function of y with a
local minimum at y = 0, and for y = 0 in (5.16) we obtain a local maximum
at x = 0. The result then follows. �

We already observed the significance of the value t = 1/
√

2 in Propo-
sition 4.4. Lemma 5.6 now leads to the following additional observation
concerning this value of t.

Corollary 5.7. — The trivial flat connection on the trivial complex
line bundle over X is obstructed as a deformed G2-instanton for the G2-
structures ϕ1/

√
2,ε in (2.7) for ε = ±1.

Proof. — When t = 1/
√

2, Lemma 5.6 shows that the Hessian of F
in (5.9) is degenerate at the trivial flat connection A0. Thus, there exist
non-trivial infinitesimal deformations of A0 as a deformed G2-instanton
within the ansatz (4.1), i.e. H1 of the complex (4.19) is non-zero.
However, we know from Proposition 4.4 that A0 is locally isolated as a

deformed G2-instanton for t = 1/
√

2 amongst those given by (4.1), and so
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the non-trivial infinitesimal deformation must be obstructed, i.e. H2 of the
complex (4.19) must also be non-zero. �

Remark 5.8. — The fact that the flat connection is obstructed at t =
1/
√

2 was to be expected, as it is at this point that the transition oc-
curs when the 2-sphere or two points consisting of non-flat deformed G2-
instantons “shrinks” and merges with the flat connection (see Figure 1.1).
Nevertheless, this observation contrasts with the case of nearly parallel
G2-structures for which the flat connection is always unobstructed (see
Lemma 4.19).

To conclude, we compare the functional F in (5.9) for the pairs of isomet-
ric G2-structures ϕ1/

√
5,ε and ϕ1,ε, for ε ∈ {±1}, which induce the Einstein

metrics gnp and gts respectively.

Example 5.9. — The coclosed G2-structures ϕ1/
√

5,+1 = ϕnp and
ϕ1/
√

5,−1 both induce the strictly nearly parallel metric gnp on the 3-
Sasakian 7-manifold X, which has the property that the metric cone on
(X, gnp) has holonomy Spin(7). These G2-structures determine rather dif-
ferent functionals F by Proposition 4.4. Figure 5.1 plots the functional F ,
restricted to connections given by the ansatz (4.1), as in (5.9) for these two
G2-structures.

Figure 5.1. The functional F for (t, ε) = (1/
√

5,+1) and (t, ε) =
(1/
√

5,−1).

One can just discern the local minimum at the origin in the left-hand plot
in Figure 5.1, predicted by Lemma 5.6. We also illustrate the difference
between these cases via their levels sets in Figure 5.2. One can see the
circle of critical points (which are local maxima) for ε = +1 which gives
the 2-sphere of non-trivial deformed G2-instantons in Proposition 4.4, in
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contrast to the two pairs of critical points for ε = −1 which give the circle
(given by local maxima) and two further examples (which are saddle points)
of non-trivial deformed G2-instantons in Proposition 4.4.

Figure 5.2. Level sets of F for (t, ε) = (1/
√

5,+1) and (t, ε) = (1/
√

5,−1).

Example 5.10. — We now focus on the coclosed G2-structures ϕ1,ε, for
ε = ±1, recalling that ϕts = ϕ1,−1. These G2-structures induce the 3-
Sasakian metric gts on X, which is that whose metric cone is hyperkähler.
In this case, we again already know the functionals F for these two G2-
structures are very different by Proposition 4.4, and further evidence is
provided by the following plots of the functional F in (5.9) in Figure 5.3.

Figure 5.3. The functional F for (t, ε) = (1,+1) and (t, ε) = (1,−1).
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As for the level sets of the functional F , these are plotted in Figure 5.4 for
each case. For ε = +1 we see that the only critical point is the origin, giving
the trivial flat connection, and instead we have a pair of critical points
(which are local maxima) for ε = −1 which define a circle of deformed
G2-instantons from Proposition 4.4.

Figure 5.4. Level sets of F for (t, ε) = (1,+1) and (t, ε) = (1,−1).

BIBLIOGRAPHY

[1] G. Ball & G. Oliveira, “Gauge theory on Aloff–Wallach spaces”, Geom. Topol.
23 (2019), no. 2, p. 685-743.

[2] C. Boyer & K. Galicki, “3-Sasaki manifolds”, in Surveys in Differential Geometry,
Vol. 6; Essays on Einstein Manifolds, vol. 6, International Press, 2001.

[3] C. P. Boyer, K. Galicki & B. M. Mann, “The geometry and topology of 3-
Sasakian manifolds”, J. Reine Angew. Math. 455 (1994), p. 183-220.

[4] O. Calvo-Andrade, L. O. Rodríguez Díaz & H. N. Sá Earp, “Gauge theory and
G2-geometry on Calabi–Yau links”, Rev. Mat. Iberoam. 36 (2020), no. 6, p. 1753-
1778.

[5] G. Chen, “Supercritical deformed Hermitian-Yang–Mills equation”, https://
arxiv.org/abs/2005.12202, 2020.

[6] A. Clarke, M. Garcia-Fernandez & C. Tipler, “T -Dual solutions and infinites-
imal moduli of the G2-Strominger system”, https://arxiv.org/abs/2005.09977,
2020.

[7] A. Clarke & G. Oliveira, “Spin(7)-instantons from evolution equations”, J.
Geom. Anal. 31 (2021), no. 4, p. 4328-4355.

[8] S. K. Donaldson, “Two-forms on four-manifolds and elliptic equations”, in Inspired
by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ,
2006, p. 153-172.

[9] J. Fine & C. Yao, “Hypersymplectic 4-manifolds, the G2-Laplacian flow, and ex-
tension assuming bounded scalar curvature”, Duke Math. J. 167 (2018), no. 18,
p. 3533-3589.

TOME 72 (2022), FASCICULE 1

https://arxiv.org/abs/2005.12202
https://arxiv.org/abs/2005.12202
https://arxiv.org/abs/2005.09977


366 Jason D. LOTAY & Gonçalo OLIVEIRA

[10] T. Friedrich, I. Kath, A. Moroianu & U. Semmelmann, “On nearly parallel
G2-structures”, J. Geom. Phys. 23 (1997), no. 3-4, p. 259-286.

[11] K. Grove, B. Wilking & W. Ziller, “Positively curved cohomogeneity one man-
ifolds and 3-Sasakian geometry”, J. Differential Geom. 78 (2008), no. 1, p. 33-111.

[12] S. Karigiannis & N. C. Leung, “Hodge theory for G2-manifolds: intermediate
Jacobians and Abel–Jacobi maps”, Proc. Lond. Math. Soc. (3) 99 (2009), no. 2,
p. 297-325.

[13] S. Karigiannis, N. C. Leung & J. D. Lotay (eds.), Lectures and surveys on G2-
manifolds and related topics, Fields Institute Communications, vol. 84, Springer,
New York, 2020, Extended papers from the Minischool and Workshop held as part
of the Major Thematic Program on Geometric Analysis at the Fields Institute,
Toronto, August 19–25, 2017, xxii+382 pages.

[14] K. Kawai & H. Yamamoto, “Deformation theory of deformed Hermitian Yang–
Mills connections and deformed Donaldson–Thomas connections”, arxiv.org/abs/
2004.00532, 2020.

[15] J.-H. Lee & N. C. Leung, “Geometric structures on G2 and Spin(7)-manifolds”,
Adv. Theor. Math. Phys. 13 (2009), no. 1, p. 1-31.

[16] N. C. Leung, S.-T. Yau & E. Zaslow, “From special Lagrangian to Hermitian-
Yang–Mills via Fourier–Mukai transform”, Adv. Theor. Math. Phys. 4 (2000), no. 6,
p. 1319-1341.

[17] M. Mariño, R. Minasian, G. Moore & A. Strominger, “Nonlinear instantons
from supersymmetric p-branes”, J. High Energy Phys. (2000), no. 1, article no. 5
(32 pages).

[18] Y. Wang, “Moduli spaces of G2 and Spin(7)-instantons on product manifolds”,
Ann. Henri Poincaré 21 (2020), no. 9, p. 2997-3033.

Manuscrit reçu le 4 août 2020,
révisé le 31 décembre 2020,
accepté le 27 janvier 2021.

Jason D. LOTAY
University of Oxford, U.K.
jason.lotay@maths.ox.ac.uk
Gonçalo OLIVEIRA
Universidade Federal Fluminense
IME-GMA
Niterói, Brazil
galato97@gmail.com

ANNALES DE L’INSTITUT FOURIER

arxiv.org/abs/2004.00532
arxiv.org/abs/2004.00532
mailto:jason.lotay@maths.ox.ac.uk
mailto:galato97@gmail.com

	1. Introduction
	1.1. Main results
	1.2. Summary

	2. 3-Sasakian geometry
	2.1. SU(2) leaf space
	2.2. Metrics and G2-structures

	3. Deformed Hermitian-Yang–Mills connections and ASD instantons
	3.1. Deformed Hermitian-Yang–Mills connections
	3.2. ASD instantons on anti-self-dual Einstein 4-orbifolds
	3.3. ASD instantons on hypersymplectic 4-manifolds

	4. Examples
	4.1. G2-instantons
	4.2. Deformed G2-instantons
	4.3. Non-trivial line bundles
	4.4. Moduli spaces

	5. A Chern–Simons type functional
	5.1. The functional
	5.2. Examples

	References

