Geometry and entropies in a fixed conformal class on surfaces
[Sur la géométrie et les entropies dans une classes conforme fixée d’une surface]
Annales de l'Institut Fourier, Online first, 25 p.

Pour une surface à caractéristique d’Euler négative, nous considérons la classe des métriques à courbure négative, à volume fixé, et conformément équivalent à une métrique fixée. Pour cette classe de métriques, nous montrons que l’entropie métrique du flot géodésique est flexible, mais qu’à contrario, il y a des restrictions sur l’entropie topologique ainsi que la systole. Ce faisant, nous obtenons aussi un lemme du collier, une décomposition « épaisse-fine », et un théorème de précompacité pour cette classe de métrique. Nous étendons aussi certains de nos résultats au classes de métriques où la condition de courbure négative est remplacée par la condition de ne pas avoir de points focaux et d’avoir une certaine borne pour l’intégrale de la partie positive de la courbure de Gauss.

We show the flexibility of the metric entropy and obtain additional restrictions on the topological entropy of geodesic flow on closed surfaces of negative Euler characteristic with smooth non-positively curved Riemannian metrics with fixed total area in a fixed conformal class. Moreover, we obtain a collar lemma, a thick-thin decomposition, and precompactness for the considered class of metrics. Also, we extend some of the results to metrics of fixed total area in a fixed conformal class with no focal points and with some integral bounds on the positive part of the Gaussian curvature.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3410
Classification : 37D40,  53C20
Mots clés : classe conforme, entropie topologique, entropie métrique
@unpublished{AIF_0__0_0_A8_0,
     author = {Barthelm\'e, Thomas and Erchenko, Alena},
     title = {Geometry and entropies in a fixed conformal class on surfaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3410},
     language = {en},
     note = {Online first},
}
Barthelmé, Thomas; Erchenko, Alena. Geometry and entropies in a fixed conformal class on surfaces. Annales de l'Institut Fourier, Online first, 25 p.

[1] Ahlfors, Lars V. Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, 1973, ix+157 pages | Zbl 0272.30012

[2] Barthelmé, Thomas; Erchenko, Alena Flexibility of geometric and dynamical data in fixed conformal classes, Indiana Univ. Math. J., Volume 69 (2020) no. 2, pp. 513-540 | MR 4084180 | Zbl 1442.37051

[3] Benedetti, Riccardo; Petronio, Carlo Lectures on hyperbolic geometry, Universitext, Springer, 1992, xiv+330 pages | Article | Zbl 0768.51018

[4] Burago, Yuri D.; Zalgaller, Viktor A. Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, 285, Springer, 1988, xiv+331 pages | Article | MR 936419

[5] Buser, Peter The collar theorem and examples, Manuscr. Math., Volume 25 (1978) no. 4, pp. 349-357 | Article | MR 509590 | Zbl 0402.53028

[6] Chavel, Isaac Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics, 108, Cambridge University Press, 1993, xii+386 pages | MR 1271141 | Zbl 0810.53001

[7] Debin, Clément A compactness theorem for surfaces with Bounded Integral Curvature, J. Inst. Math. Jussieu (2018), pp. 1-49 | MR 4079155 | Zbl 1436.53025

[8] Erchenko, Alena; Katok, Anatole Flexibility of entropies for surfaces of negative curvature, Isr. J. Math., Volume 232 (2019) no. 2, pp. 631-676 | Article | MR 3990954 | Zbl 1421.53083

[9] Gromov, Mikhael Filling Riemannian manifolds, J. Differ. Geom., Volume 18 (1983) no. 1, pp. 1-147 | MR 697984 | Zbl 0515.53037

[10] Guth, Larry Metaphors in systolic geometry, Proceedings of the International Congress of Mathematicians. Volume II (2010), pp. 745-768 | MR 2827817 | Zbl 1247.53044

[11] Izmestiev, Ivan A simple proof of an isoperimetric inequality for Euclidean and hyperbolic cone-surfaces, Differ. Geom. Appl., Volume 43 (2015), pp. 95-101 | Article | MR 3421879 | Zbl 1329.52009

[12] Katok, Anatole Entropy and closed geodesics, Ergodic Theory Dyn. Syst., Volume 2 (1982) no. 3-4, pp. 339-365 | Article | MR 721728 | Zbl 0525.58027

[13] Kerckhoff, Steven The asymptotic geometry of Teichmüller space, Topology, Volume 19 (1980) no. 1, pp. 23-41 | Article | MR 559474 | Zbl 0439.30012

[14] Ledrappier, François Propriété de Poisson et courbure négative, C. R. Math. Acad. Sci. Paris, Volume 305 (1987) no. 5, pp. 191-194 | Zbl 0617.53046

[15] Manning, Anthony Topological entropy for geodesic flows, Ann. Math., Volume 110 (1979) no. 3, pp. 567-573 | Article | MR 554385 | Zbl 0426.58016

[16] Minsky, Yair Harmonic maps, length, and energy in Teichmüller space, J. Differ. Geom., Volume 35 (1992) no. 1, pp. 151-217 | Zbl 0763.53042

[17] Minsky, Yair Teichmüller geodesics and ends of hyperbolic 3-manifolds, Topology, Volume 32 (1993) no. 3, pp. 625-647 | Article | Zbl 0793.58010

[18] O’Sullivan, John J. Manifolds without conjugate points, Math. Ann., Volume 210 (1974), pp. 295-311 | Article | MR 0365413 | Zbl 0273.53037

[19] Rafi, Kasra A characterization of short curves of a Teichmüller geodesic, Geom. Topol., Volume 9 (2005), pp. 179-202 | Article | MR 2115672 | Zbl 1082.30037

[20] Rafi, Kasra Thick-thin decomposition for quadratic differentials, Math. Res. Lett., Volume 14 (2007) no. 2, pp. 333-341 | Article | MR 2318629 | Zbl 1173.30031

[21] Ramos, Daniel Smoothening cone points with Ricci flow, Bull. Soc. Math. Fr., Volume 143 (2015) no. 4, pp. 619-633 | Article | MR 3450497 | Zbl 1335.53089

[22] Reshetnyak, Yuri Two-dimensional manifolds of bounded curvature, Geometry, IV (Encyclopaedia of Mathematical Sciences), Volume 70, Springer, 1993, pp. 3-163 | Article | MR 1263964

[23] Ruelle, David An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat., Volume 9 (1978) no. 1, pp. 83-87 | Article | MR 516310 | Zbl 0432.58013

[24] Sabau, Sorin V.; Tanaka, Minoru The cut locus and distance function from a closed subset of a Finsler manifold, Houston J. Math., Volume 42 (2016) no. 4, pp. 1157-1197 | Article | MR 3609822 | Zbl 1358.53080

[25] Sabourau, Stéphane Entropy and systoles on surfaces, Ergodic Theory Dyn. Syst., Volume 26 (2006) no. 5, pp. 1653-1669 | Article | MR 2266377 | Zbl 1112.53031

[26] Troyanov, Marc Les surfaces euclidiennes à singularités coniques, Enseign. Math., Volume 32 (1986) no. 1-2, pp. 79-94 | Zbl 0611.53035

[27] Troyanov, Marc Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | Article | MR 1005085 | Zbl 0724.53023

[28] Troyanov, Marc Les surfaces à courbure intégrale bornée au sens d’Alexandrov, Géométrie discrète, algorithmique, différentielle et arithmétique (SMF Journée Annuelle), Volume 2009, Société Mathématique de France, 2009, pp. 1-18 | Zbl 1221.53101