It was shown by Mukai that the maximum order of a finite group acting faithfully and symplectically on a K3 surface is and that if such a group has order , then it is isomorphic to the Mathieu group . Then Kondo showed that the maximum order of a finite group acting faithfully on a K3 surface is and this group contains with index four. Kondo also showed that there is a unique K3 surface on which this group acts faithfully, which is the Kummer surface . In this paper we describe two more K3 surfaces admitting a big finite automorphism group of order , both groups contains as a subgroup of index 2. We show moreover that these two groups and the two K3 surfaces are unique. This result was shown independently by S. Brandhorst and K. Hashimoto in a forthcoming paper, with the aim of classifying all the finite groups acting faithfully on K3 surfaces with maximal symplectic part.
Mukai a montré que l’ordre maximal d’un groupe fini agissant fidèlement et symplectiquement sur une surface K3 est et que, si un tel groupe a pour ordre , alors il est isomorphe au groupe de Mathieu . Kondo a ensuite montré que l’ordre maximal d’un groupe fini agissant fidèlement sur une K3 surface est et qu’un tel groupe contient comme sous-groupe d’indice . Kondo a aussi montré qu’il existe une unique surface K3 sur laquelle ce groupe agit fidèlement : c’est la surface de Kummer . Dans cet article, nous décrivons deux autres surfaces K3 admettant un groupe fini d’automorphismes d’ordre , ces deux groupes et ces deux surfaces K3 étant uniques. Ce résultat a été obtenu indépendamment par S. Brandhorst and K. Hashimoto dans un article à venir, dont le but est de classifier les groupes finis agissant fidèlement sur des K3 surfaces et dont la partie symplectique est maximale.
Revised:
Accepted:
Published online:
Keywords: K3 surfaces, automorphisms
Mots-clés : Surfaces K3, automorphismes
Bonnafé, Cédric 1; Sarti, Alessandra 2
@article{AIF_2021__71_2_711_0, author = {Bonnaf\'e, C\'edric and Sarti, Alessandra}, title = {K3 surfaces with maximal finite automorphism groups containing $M_{20}$}, journal = {Annales de l'Institut Fourier}, pages = {711--730}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {2}, year = {2021}, doi = {10.5802/aif.3411}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3411/} }
TY - JOUR AU - Bonnafé, Cédric AU - Sarti, Alessandra TI - K3 surfaces with maximal finite automorphism groups containing $M_{20}$ JO - Annales de l'Institut Fourier PY - 2021 SP - 711 EP - 730 VL - 71 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3411/ DO - 10.5802/aif.3411 LA - en ID - AIF_2021__71_2_711_0 ER -
%0 Journal Article %A Bonnafé, Cédric %A Sarti, Alessandra %T K3 surfaces with maximal finite automorphism groups containing $M_{20}$ %J Annales de l'Institut Fourier %D 2021 %P 711-730 %V 71 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3411/ %R 10.5802/aif.3411 %G en %F AIF_2021__71_2_711_0
Bonnafé, Cédric; Sarti, Alessandra. K3 surfaces with maximal finite automorphism groups containing $M_{20}$. Annales de l'Institut Fourier, Volume 71 (2021) no. 2, pp. 711-730. doi : 10.5802/aif.3411. https://aif.centre-mersenne.org/articles/10.5802/aif.3411/
[1] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer, 1984, 304 pages | DOI | Zbl
[2] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[3] On K3 surfaces with maximal symplectic action (2019) (https://arxiv.org/abs/1910.05952, to appear in Ann. Henri Lebesgue)
[4] Towards spetses. I, Transform. Groups, Volume 4 (1999) no. 2-3, pp. 157-218 | DOI | MR | Zbl
[5] Quartic surfaces with icosahedral symmetry, Adv. Geom., Volume 18 (2018) no. 1, pp. 119-132 | DOI | MR | Zbl
[6] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR
[7] Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016, xi+485 pages | DOI | Zbl
[8] On certain Kummer surfaces which can be realized as non-singular quartic surfaces in , J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 23 (1976) no. 3, pp. 545-560 | MR | Zbl
[9] The maximum order of finite groups of automorphisms of surfaces, Am. J. Math., Volume 121 (1999) no. 6, pp. 1245-1252 | DOI | MR | Zbl
[10] On the automorphisms of hypersurfaces, J. Math. Kyoto Univ., Volume 3 (1964), pp. 347-361 | DOI | MR | Zbl
[11] Finite groups of automorphisms of surfaces and the Mathieu group, Invent. Math., Volume 94 (1988) no. 1, pp. 183-221 | DOI | MR | Zbl
[12] Finite groups of automorphisms of Kählerian surfaces of type , Usp. Mat. Nauk, Volume 31 (1976) no. 2(188), pp. 223-224
[13] Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 43 (1979) no. 1, pp. 111-177 | MR
[14] Singularities. II. Automorphisms of forms, Math. Ann., Volume 231 (1978) no. 3, pp. 229-240 | DOI | MR | Zbl
[15] Finite unitary reflection groups, Can. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl
[16] On singular surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 119-136 | DOI | Zbl
[17] Singular abelian surfaces and binary quadratic forms, Classification of algebraic varieties and compact complex manifolds (Lecture Notes in Mathematics), Volume 412, Springer, 1974, pp. 259-287 | DOI | MR | Zbl
[18] Galois covers between surfaces, Ann. Inst. Fourier, Volume 46 (1996) no. 1, pp. 73-88 | DOI | Numdam | MR | Zbl
Cited by Sources: