K3 surfaces with maximal finite automorphism groups containing M 20
Annales de l'Institut Fourier, Volume 71 (2021) no. 2, pp. 711-730.

It was shown by Mukai that the maximum order of a finite group acting faithfully and symplectically on a K3 surface is 960 and that if such a group has order 960, then it is isomorphic to the Mathieu group M 20 . Then Kondo showed that the maximum order of a finite group acting faithfully on a K3 surface is 3840 and this group contains M 20 with index four. Kondo also showed that there is a unique K3 surface on which this group acts faithfully, which is the Kummer surface Km(E i ×E i ). In this paper we describe two more K3 surfaces admitting a big finite automorphism group of order 1920, both groups contains M 20 as a subgroup of index 2. We show moreover that these two groups and the two K3 surfaces are unique. This result was shown independently by S. Brandhorst and K. Hashimoto in a forthcoming paper, with the aim of classifying all the finite groups acting faithfully on K3 surfaces with maximal symplectic part.

Mukai a montré que l’ordre maximal d’un groupe fini agissant fidèlement et symplectiquement sur une surface K3 est 960 et que, si un tel groupe a pour ordre 960, alors il est isomorphe au groupe de Mathieu M 20 . Kondo a ensuite montré que l’ordre maximal d’un groupe fini agissant fidèlement sur une K3 surface est 3840 et qu’un tel groupe contient M 20 comme sous-groupe d’indice 4. Kondo a aussi montré qu’il existe une unique surface K3 sur laquelle ce groupe agit fidèlement : c’est la surface de Kummer Km(E i ×E i ). Dans cet article, nous décrivons deux autres surfaces K3 admettant un groupe fini d’automorphismes d’ordre 1920, ces deux groupes et ces deux surfaces K3 étant uniques. Ce résultat a été obtenu indépendamment par S. Brandhorst and K. Hashimoto dans un article à venir, dont le but est de classifier les groupes finis agissant fidèlement sur des K3 surfaces et dont la partie symplectique est maximale.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3411
Classification: 14J28, 14J40, 14J10
Keywords: K3 surfaces, automorphisms
Mots-clés : Surfaces K3, automorphismes

Bonnafé, Cédric 1; Sarti, Alessandra 2

1 IMAG, Université de Montpellier, CNRS, Montpellier (France)
2 Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Université de Poitiers (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2021__71_2_711_0,
     author = {Bonnaf\'e, C\'edric and Sarti, Alessandra},
     title = {K3 surfaces with maximal finite automorphism groups containing $M_{20}$},
     journal = {Annales de l'Institut Fourier},
     pages = {711--730},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.5802/aif.3411},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3411/}
}
TY  - JOUR
AU  - Bonnafé, Cédric
AU  - Sarti, Alessandra
TI  - K3 surfaces with maximal finite automorphism groups containing $M_{20}$
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 711
EP  - 730
VL  - 71
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3411/
DO  - 10.5802/aif.3411
LA  - en
ID  - AIF_2021__71_2_711_0
ER  - 
%0 Journal Article
%A Bonnafé, Cédric
%A Sarti, Alessandra
%T K3 surfaces with maximal finite automorphism groups containing $M_{20}$
%J Annales de l'Institut Fourier
%D 2021
%P 711-730
%V 71
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3411/
%R 10.5802/aif.3411
%G en
%F AIF_2021__71_2_711_0
Bonnafé, Cédric; Sarti, Alessandra. K3 surfaces with maximal finite automorphism groups containing $M_{20}$. Annales de l'Institut Fourier, Volume 71 (2021) no. 2, pp. 711-730. doi : 10.5802/aif.3411. https://aif.centre-mersenne.org/articles/10.5802/aif.3411/

[1] Barth, Wolf; Peters, Christiaan; Van de Ven, Antonius Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer, 1984, 304 pages | DOI | Zbl

[2] Bosma, Wieb; Cannon, John; Playoust, Catherine The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl

[3] Brandhost, Simon; Hashimoto, Kenji On K3 surfaces with maximal symplectic action (2019) (https://arxiv.org/abs/1910.05952, to appear in Ann. Henri Lebesgue)

[4] Broué, Michel; Malle, Gunter; Michel, Jean Towards spetses. I, Transform. Groups, Volume 4 (1999) no. 2-3, pp. 157-218 | DOI | MR | Zbl

[5] Dolgachev, Igor V. Quartic surfaces with icosahedral symmetry, Adv. Geom., Volume 18 (2018) no. 1, pp. 119-132 | DOI | MR | Zbl

[6] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR

[7] Huybrechts, Daniel Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016, xi+485 pages | DOI | Zbl

[8] Inose, Hiroshi On certain Kummer surfaces which can be realized as non-singular quartic surfaces in 3 , J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 23 (1976) no. 3, pp. 545-560 | MR | Zbl

[9] Kondō, Shigeyuki The maximum order of finite groups of automorphisms of K3 surfaces, Am. J. Math., Volume 121 (1999) no. 6, pp. 1245-1252 | DOI | MR | Zbl

[10] Matsumura, Hideyuki; Monsky, Paul On the automorphisms of hypersurfaces, J. Math. Kyoto Univ., Volume 3 (1964), pp. 347-361 | DOI | MR | Zbl

[11] Mukai, Shigeru Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., Volume 94 (1988) no. 1, pp. 183-221 | DOI | MR | Zbl

[12] Nikulin, Vyacheslav V. Finite groups of automorphisms of Kählerian surfaces of type K3, Usp. Mat. Nauk, Volume 31 (1976) no. 2(188), pp. 223-224

[13] Nikulin, Vyacheslav V. Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 43 (1979) no. 1, pp. 111-177 | MR

[14] Orlik, Peter; Solomon, Louis Singularities. II. Automorphisms of forms, Math. Ann., Volume 231 (1978) no. 3, pp. 229-240 | DOI | MR | Zbl

[15] Shephard, Geoffrey C.; Todd, John A. Finite unitary reflection groups, Can. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl

[16] Shioda, Tetsuji; Inose, Hiroshi On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 119-136 | DOI | Zbl

[17] Shioda, Tetsuji; Mitani, Naoki Singular abelian surfaces and binary quadratic forms, Classification of algebraic varieties and compact complex manifolds (Lecture Notes in Mathematics), Volume 412, Springer, 1974, pp. 259-287 | DOI | MR | Zbl

[18] Xiao, Gang Galois covers between K3 surfaces, Ann. Inst. Fourier, Volume 46 (1996) no. 1, pp. 73-88 | DOI | Numdam | MR | Zbl

Cited by Sources: