Cohomology of the moduli space of non-hyperelliptic genus four curves
[Cohomologie de l’espace de modules des courbes non hyperelliptique de genre quatre]
Annales de l'Institut Fourier, Online first, 41 p.

Nous calculons les nombres de Betti d’intersection du modèle GIT de l’espace de modules des courbes générales pour Brill–Noether–Petri du genre quatre. Cet espace s’est révélé être le dernier modèle log canonique non trivial pour l’espace de modules des courbes stables de genre quatre, dans le cadre du programme de Hassett et Keel. La stratégie du calcul cohomologique s’appuie sur une méthode générale développée par Kirwan pour calculer la cohomologie des quotients GIT des variétés projectives, basée sur la stratification équivariante parfaite des points instables étudiés par Hesselink et autres et une résolution partielle des singularités.

We compute the intersection Betti numbers of the GIT model of the moduli space of Brill–Noether–Petri general curves of genus four. This space was shown to be the final non-trivial log canonical model for the moduli space of stable genus four curves, under the Hassett–Keel program. The strategy of the cohomological computation relies on a general method developed by Kirwan to calculate the cohomology of GIT quotients of projective varieties, based on the equivariantly perfect stratification of the unstable points studied by Hesselink and others and a partial resolution of singularities.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3409
Classification : 14L24,  14F43,  14H10
Mots clés : Théorie géométrique des invariants, modules des courbes, courbes de genre quatre, cohomologie d’intersection
@unpublished{AIF_0__0_0_A9_0,
     author = {Fortuna, Mauro},
     title = {Cohomology of the moduli space of non-hyperelliptic genus four curves},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3409},
     language = {en},
     note = {Online first},
}
Fortuna, Mauro. Cohomology of the moduli space of non-hyperelliptic genus four curves. Annales de l'Institut Fourier, Online first, 41 p.

[1] Atiyah, Michael F.; Bott, Raoul The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., Volume 308 (1983) no. 1505, pp. 523-615 | MR 702806 | Zbl 0509.14014

[2] Beĭlinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Société Mathématique de France, 1982, pp. 5-171 | Numdam | MR 751966 | Zbl 0536.14011

[3] Bergström, Jonas; Tommasi, Orsola The rational cohomology of M 4 ¯, Math. Ann., Volume 338 (2007) no. 1, pp. 207-239 | Zbl 1126.14030

[4] Casalaina-Martin, Sebastian; Grushevsky, Samuel; Hulek, Klaus; Laza, Radu Cohomology of the moduli space of cubic threefolds (2020) (https://arxiv.org/abs/1904.08728)

[5] Casalaina-Martin, Sebastian; Jensen, David; Laza, Radu The geometry of the ball quotient model of the moduli space of genus four curves, Compact moduli spaces and vector bundles (Contemporary Mathematics), Volume 564, American Mathematical Society, 2012, pp. 107-136 | Article | MR 2895186 | Zbl 1260.14032

[6] Casalaina-Martin, Sebastian; Jensen, David; Laza, Radu Log canonical models and variation of GIT for genus 4 canonical curves, J. Algebr. Geom., Volume 23 (2014) no. 4, pp. 727-764 | Article | MR 3263667 | Zbl 1327.14027

[7] Faber, Carel C.; Pandharipande, Rahul Tautological and non-tautological cohomology of the moduli space of curves, Handbook of moduli. Volume I (Advanced Lectures in Mathematics), Volume 24, International Press; Higher Education Press, 2015, pp. 293-330 | Zbl 1322.14046

[8] Fedorchuk, Maksym The final log canonical model of the moduli space of stable curves of genus 4, Int. Math. Res. Not. (2012) no. 24, pp. 5650-5672 | Article | MR 3006172 | Zbl 1258.14032

[9] Fulton, William Intersection theory, Results in Mathematics and Related Areas, 2, Springer, 1998 | MR 1644323 | Zbl 0885.14002

[10] Griffiths, Philip A.; Harris, Joseph Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley & Sons, 1978 | Zbl 0408.14001

[11] Hassett, Brendan Classical and minimal models of the moduli space of curves of genus two., Geometric methods in algebra and number theory (Progress in Mathematics), Volume 235, Birkhäuser, 2005, pp. 169-192 | Article | MR 2166084 | Zbl 1094.14017

[12] Hassett, Brendan; Hyeon, Donghoon Log canonical models for the moduli space of curves: the first divisorial contraction., Trans. Am. Math. Soc., Volume 361 (2009) no. 8, pp. 4471-4489 | Article | MR 2500894 | Zbl 1172.14018

[13] Hassett, Brendan; Hyeon, Donghoon Log minimal model program for the moduli space of stable curves: the first flip, Ann. Math., Volume 177 (2013) no. 3, pp. 911-968 | Article | MR 3034291 | Zbl 1273.14034

[14] Hyeon, Donghoon; Lee, Yongnam A birational contraction of genus 2 tails in the moduli space of genus 4 curves I., Int. Math. Res. Not., Volume 2014 (2014) no. 13, pp. 3735-3757 | Article | MR 3229767 | Zbl 1304.14033

[15] Kirwan, Frances C. Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, 31, Princeton University Press, 1984 | MR 766741 | Zbl 0553.14020

[16] Kirwan, Frances C. Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. Math., Volume 122 (1985) no. 1, pp. 41-85 | Article | MR 799252 | Zbl 0592.14011

[17] Kirwan, Frances C. Rational intersection cohomology of quotient varieties, Invent. Math., Volume 86 (1986) no. 3, pp. 471-505 | Article | MR 860678 | Zbl 0613.14016

[18] Kirwan, Frances C. Moduli spaces of degree d hypersurfaces in P n , Duke Math. J., Volume 58 (1989) no. 1, pp. 39-78 | MR 1016413 | Zbl 0676.14003

[19] Kirwan, Frances C.; Lee, Ronnie The cohomology of moduli spaces of K3 surfaces of degree 2. I, Topology, Volume 28 (1989) no. 4, pp. 495-516 | Article | MR 1030990 | Zbl 0671.14018

[20] Kirwan, Frances C.; Woolf, Jonathan An introduction to intersection homology theory, Chapman & Hall/CRC, 2006 | Zbl 1106.55001

[21] Kollár, János Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | Article | MR 1223229 | Zbl 0819.14006

[22] Mumford, David Bryant Towards an enumerative geometry of the moduli space of curves., Arithmetic and geometry, Vol. II (Progress in Mathematics), Volume 36, 1983, pp. 271-328 | Article | MR 717614 | Zbl 0554.14008

[23] Mumford, David Bryant; Fogarty, John; Kirwan, Frances C. Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34, Springer, 1994 | MR 1304906

[24] Tommasi, Orsola Rational cohomology of the moduli space of genus 4 curves, Compos. Math., Volume 141 (2005) no. 2, pp. 359-384 | Article | MR 2134272 | Zbl 1138.14019