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GEOMETRY AND ENTROPIES IN A FIXED
CONFORMAL CLASS ON SURFACES

by Thomas BARTHELMÉ & Alena ERCHENKO (*)

Abstract. — We show the flexibility of the metric entropy and obtain addi-
tional restrictions on the topological entropy of geodesic flow on closed surfaces of
negative Euler characteristic with smooth non-positively curved Riemannian met-
rics with fixed total area in a fixed conformal class. Moreover, we obtain a collar
lemma, a thick-thin decomposition, and precompactness for the considered class
of metrics. Also, we extend some of the results to metrics of fixed total area in a
fixed conformal class with no focal points and with some integral bounds on the
positive part of the Gaussian curvature.
Résumé. — Pour une surface à caractéristique d’Euler négative, nous considé-

rons la classe des métriques à courbure négative, à volume fixé, et conformément
équivalent à une métrique fixée. Pour cette classe de métriques, nous montrons
que l’entropie métrique du flot géodésique est flexible, mais qu’à contrario, il y
a des restrictions sur l’entropie topologique ainsi que la systole. Ce faisant, nous
obtenons aussi un lemme du collier, une décomposition « épaisse-fine », et un théo-
rème de précompacité pour cette classe de métrique. Nous étendons aussi certains
de nos résultats au classes de métriques où la condition de courbure négative est
remplacée par la condition de ne pas avoir de points focaux et d’avoir une certaine
borne pour l’intégrale de la partie positive de la courbure de Gauss.

1. Introduction

When M is a fixed surface, there has been a long history of studying
how the geometric or dynamical data (e.g., the Laplace spectrum, systole,
entropies or Lyapunov exponents of the geodesic flow) varies when one
varies the metric on M , possibly inside a particular class.

In [2], we studied these questions in a class of metrics that seemed to have
been overlooked: the family of non-positively curved metrics within a fixed
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conformal class. In this article, we prove several conjectures made in [2],
as well as give a fairly complete, albeit coarse, picture of the geometry of
non-positively curved metrics within a fixed conformal class.
Since Gromov’s famous systolic inequality [9], there has been a lot of

interest in upper bounds on the systole (see for instance [10]). In general,
there is no positive lower bound on the systole. However, we prove here
that non-positively curved metrics in a fixed conformal class do admit such
a lower bound.

Theorem A (Theorem 2.4 and Corollary 2.5). — Let σ be a fixed hy-
perbolic metric on a closed surface M of negative Euler characteristic. Let
A > 0 be fixed. There exist positive constants C1, C2 depending on the
topology of M , the metric σ and A such that

inf
g∈[σ]6

A

sys(g) > C1 and sup
g∈[σ]6

A

htop(g) 6 C2,

where [σ]6A is the family of smooth non-positively curved Riemannian met-
rics on M that are conformally equivalent to σ and have total area A.

The above result implies in particular Conjecture 1.2 of [2]. We further
would like to emphasize the fact that the bounds C1 and C2 that we obtain
are explicit (although far from optimal).
In fact, we will prove Theorem A for a larger class of metrics: those

with no focal points and with total positive curvature bounded above by a
constant smaller than 2π (see Theorem 3.1 and Corollary 3.4).

Theorem A, together with the flexibility result proven in [8], shows that
the topological entropy of the geodesic flow on M for a non-positively
curved metric with fixed total area somehow detects some information
about a conformal class. On the other hand, we show that the metric
entropy is still completely flexible in any conformal class, proving Con-
jecture 1.1 of [2].

Theorem B (Theorem 6.1). — Let M be a closed surface of negative
Euler characteristic and σ be a hyperbolic metric on M . Suppose A > 0.
Then,

inf
g∈[σ]<

A

hmetr(g) = 0.

The key ingredient in our proof of the above theorem is a way to smooth
a conical singularity of a metric while preserving its conformal class. This
technique is obtained in Lemma 6.2.
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GEOMETRY IN A FIXED CONFORMAL CLASS 733

While trying to understand if there are additional restrictions for en-
tropies in a fixed conformal class, we actually obtain a better picture of the
coarse geometry of non-positively curved metrics.

Recall that a hyperbolic surface (M,σ) can be decomposed into thick
parts that have a bounded geometry and thin parts that are homeomor-
phic to annuli (see [3, Chapter D]). We show that the thick-thin decom-
position of a hyperbolic surface determines a thick-thin decomposition for
non-positively curved metrics that are conformally equivalent to the hyper-
bolic surface.

Theorem C (Theorem 5.1). — For every thick piece Y of (M,σ), for
every g ∈ [σ]6A, and for every non-trivial non-peripheral piecewise-smooth
simple closed curve α in Y , the g-length of the g-geodesic representative of
α is comparable to the σ-length of the σ-geodesic representative of α up
to a multiplicative constant that depends only on the topology of M , the
metric σ and A.

In addition, there is a well-known collar lemma for hyperbolic surfaces,
i.e., if there exists a short non-trivial simple closed geodesic then the
transversal closed geodesics are long. The collar lemma was generalized
for Riemannian metrics with a lower curvature bound in [5]. Lemma 2.6 is
an analogous result for non-positively curved metrics in a fixed conformal
class.

1.1. Compactification and a result of Reshetnyak

In the 1950s, Yuri Reshetnyak studied metrics on the disk of bounded
integral curvature in the sense of Alexandrov. One of his results, [22, The-
orem 7.3.1], gives a compactification criterion for such metrics of bounded
integral curvature (for the uniform topology), in terms of the curvature
measure. In [28], Troyanov extended that result (but without providing the
complete proof) to the setting of metrics of bounded integral curvature on
a closed surface and inside a fixed conformal class (see [28, Theorem 6.2]).

It is natural to expect that one could obtain our Theorem A starting from
Troyanov’s version of Reshetnyak’s Theorem. Indeed, if one can prove, using
Reshetnyak’s Theorem, that the non-positively curved metrics considered
in Theorem A are precompact, then it would be enough to prove continu-
ity of the systole amongst metrics of bounded integral curvature with the
uniform topology. However, Reshetnyak’s Theorem does not apply directly
to our case. Instead of carefully stating his theorem (we refer the reader
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734 Thomas BARTHELMÉ & Alena ERCHENKO

to [28, Theorem 6.2] and [22, Theorem 7.3.1] for the precise statements),
which would require definitions that we do not need here, we will just point
out the differences in the case of non-positively curved metrics.
The main issue is that our metrics are scaled differently from those of

Reshetnyak: Suppose that (gn) is a sequence of metrics in [σ]6A. Then,
Reshetnyak’s theorem implies that there exists a sequence of Riemann-
ian metrics hn = e2unσ such that a subsequence converges to a metric of
bounded curvature h∞ = e2u∞σ. However, the metrics gn and hn differ by
a constant, i.e., there exists Cn ∈ R such that gn = Cnhn. Now the problem
is that there is no a priori control of the constants Cn, and one would have
to prove that they stay bounded away from 0 and +∞. (Note that, as a
corollary of Theorem A, this sequence is indeed bounded, see Theorem D
below.)
A trivial example illustrates best this difference of scaling: Consider σ a

hyperbolic metric and gn = σ/n. Then, gn obviously does not converge but
the sequence hn that Reshetnyak’s Theorem applies to is hn = ngn = σ,
which does indeed trivially converge. Obviously, such an example does not
preserve the total area, however, it is not obvious that one cannot construct
a sequence of metrics that is σ/n on a small disk, but still has non-positive
curvature and fixed total area. The hard part in order to use Reshetnyak
compacity result would be to prove directly that such sequences do not
arise.
Therefore, we believe that our direct proof of Theorem A is actually

simpler than trying to use Reshetnyak’s Theorem. Moreover, our result is
stronger than what one could obtain via compactness, since we have an
explicit dependency for the bounds C1 and C2 of Theorem A (see Theo-
rem 2.4).
Note that as a corollary of Theorem A and a result of Debin, [7, Corol-

lary 5], we do get precompactness in the uniform metric sense of the class
of metrics we consider

Theorem D (Theorem 4.2). — The set of metrics [σ]6A is precompact
in the uniform metric sense (see Definition 4.1) with the limiting metrics
having bounded integral curvature.

Despite Reshetnyak’s compactness criterion not being directly useful to
us, we believe that the gist of his result might still apply, i.e., that as long as
the family of metrics in a fixed conformal class one considers is away from
cusped Alexandrov surfaces, then the systole and entropy are bounded. To
make that question more precise, we need to introduce some notations. If
g is a Riemannian metric with conical singularities, we denote by K+

g the
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positive part of its curvature. We also write µ+
g for the positive part of

the curvature measure of g, i.e., µ+
g = K+

g d volg, where d volg is the area
measure (which contain atoms at the conical points of g).

Now, a natural question is

Question 1.1. — Let σ be a fixed hyperbolic metric on a closed surface
M of negative Euler characteristic. Let A,C, ε > 0 be fixed. We define [σ]ε,CA
as the set of Riemannian metrics with conical singularities g, conformally
equivalent to σ, of total area A, and such that,

(1) the total positive curvature is bounded, µ+(M) 6 C;
(2) for all x ∈M , there exists η = η(x) > 0 (so η is independent of the

metric g) such that

µ+
g (Bσ(x, η)) 6 2π − ε,

where Bσ(x, η) is the ball of radius η for the metric σ.
Do there exist positive constants C1, C2 depending on the topology of

M , the metric σ, A, C, ε, and possibly the function η, such that

inf
g∈[σ]ε,C

A

sys(g) > C1 and sup
g∈[σ]ε,C

A

hvol(g) 6 C2?

Our proof unfortunately does not work to prove quite that strong a
result. In Section 3, we extend our arguments to their natural limits: We
need to assume that the metrics have no focal points (and bounded total
positive curvature) for Lemma 3.2 to hold, and we need to assume that the
total positive curvature is less than 2π − ε (rather than the much weaker
no-concentration condition as in (2) above), for our proof of Theorem 3.1
to work.

1.2. Organization of the paper

In Section 2, we prove a uniform lower bound on the length of a systole
for the family of smooth non-positively curved Riemannian metrics with
fixed total area in a fixed conformal class. Then, in Section 3 we extend
those results to the setting of surfaces without focal points. In Section 4, we
show precompactness in the uniform metric sense of the considered metrics.
We obtain a thick-thin decomposition in Section 5. The flexibility of metric
entropy is proved in Section 6. Some natural open questions are formulated
in Section 7.

TOME 71 (2021), FASCICULE 2



736 Thomas BARTHELMÉ & Alena ERCHENKO

Acknowledgments

We would like to thank Yair Minsky, Federico Rodriguez Hertz, and
Dennis Sullivan for useful discussions and questions. We also thank Ian
Frankel for pointing out Yuri Reshetnyak’s work to us and Clément Debin
for several comments that helped us better formulate Question 1.1.

2. Collar lemma

Consider a Riemannian metric g on a closed surfaceM of Euler character-
istic χ(M) < 0. Denote by [g] the family of metrics conformally equivalent
to g. Since all of our results apply trivially to any finite cover of M , we
always assume M to be orientable.

Let γ be a simple closed curve on M and [γ] be a family of simple closed
curves isotopic to γ. Denote by lg( · ) the g-length of a curve and Ag( · ) the
g-area of a set.

Definition 2.1. — The extremal length of [γ] with respect to a Rie-
mannian metric g is

(2.1) Eg(γ) = sup
g′∈[g]

infγ′∈[γ] l
2
g′(γ′)

Ag′(M) .

Notice that Eg( · ) depends only on the conformal class of g.

Definition 2.2. — The modulus Modg(A) of an annulus A on (M, g)
is the reciprocal of Eg(γ), where γ is a simple closed curve isotopic to a
boundary curve of A.

Moreover, Modg(A) = Eg(c) = supg′∈[g]
infc′∈[c] l

2
g′ (c′)

A′
g(A) , where c is any

path connecting the boundaries of A and [c] is the family of curves that
connect the boundaries of A and isotopic to c. In particular, Modg( · )
depends only on the conformal class of g.

Let γ be a smooth curve that is a boundary of a set S in M . We choose
the sign of the geodesic curvature of γ to be positive when the accelera-
tion vector points into S. We denote by κ(γ) the integral of the geodesic
curvature of γ.
In the following Lemma we establish a lower bound for the modulus over

certain annuli. This result is based on [19, Lemma 3.6] (which itself uses [16,
Theorem 4.5]), but adapted to our context of smooth non-positively curved
Riemannian metrics. Our result is weaker than [19, Lemma 3.6] because we
only give a lower bound, instead of both lower and upper bounds, for the
modulus, but this is all we will need in order to prove Theorem A.
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Lemma 2.3. — Let g be a smooth non-positively curved Riemannian
metric on a closed surface M with χ(M) < 0. Let A be an annulus in
(M, g). Let γ0 and γ1 be its two boundary curves. Assume that γ0 and γ1
are both equidistant to a fixed geodesic. Suppose, moreover, that κ(γ0) 6 0.
Then,

Modg(A) = distg(γ0, γ1)
lg(γ0) if κ(γ0) = 0 and A is a flat annulus,

Modg(A) > 1
−2πχ(M) ln

(
1− 2πχ(M)distg(γ0, γ1)

lg(γ0)

)
otherwise,

where distg( · , · ) is the distance function on (M, g)

Proof. — If κ(γ0) = 0 and A is a flat annulus, then the result is classical
(see [1, Chapter 4]).
Now, consider the level curves γ̂r := {p ∈ A|distg(p, γ0) = r}.
Since g has non-positive curvature, the annulus A is foliated by the level

curves γ̂r, 0 6 r 6 distg(γ0, γ1). Furthermore, γ̂0 = γ0 and γ̂distg(γ0,γ1) =
γ1.
We define a scaling function f by f(r) := lg(γ̂0)

lg(γ̂r) . Then, for any r, the
curve γ̂r has length, in the metric f(r)g, lfg(γ̂r) = lg(γ0).
Let Ar be the annulus in A that is bounded by γ0 and γ̂r.
In order to bound from below the modulus of A, we will use that it is

the extremal length of paths connecting the two boundaries.
Consider c a path from γ0 to γ1. Then, its fg-length satisfies

lfg(c) > distfg(γ0, γ1) =
∫ distg(γ0,γ1)

0
f(r) dr

=
∫ distg(γ0,γ1)

0

lg(γ0)
lg(γ̂r)

dr = lg(γ0)
∫ distg(γ0,γ1)

0

1
lg(γ̂r)

dr.

Moreover,

volfg(A) =
∫ distg(γ0,γ1)

0
f2(r)lg(γ̂r) dr =

∫ distg(γ0,γ1)

0

l2g(γ0)
lg(γ̂r)

dr

= l2g(γ0)
∫ distg(γ0,γ1)

0

1
lg(γ̂r)

dr.

Let Kg( · ) denote the Gaussian curvature function on (M, g). Applying
Gauss–Bonnet Theorem to (M, g) gives

∫
M
Kg(x) dAg(x) = 2πχ(M) and

applying it to (Ar, g) gives
∫
Ar Kg dAg + κ(γ̂r) − κ(γ0) = 0. Now, our

assumptions are that χ(M) < 0, κ(γ0) 6 0, and Kg(x) 6 0 for any x ∈
(M, g). Thus, we have κ(γ̂r) 6 −2πχ(M).

TOME 71 (2021), FASCICULE 2



738 Thomas BARTHELMÉ & Alena ERCHENKO

Combining the previous inequality with the fact that d
dr lg(γ̂r) = κ(γ̂r),

we obtain lg(γ̂r) 6 −2πχ(M)r + lg(γ0).
Therefore, using Definition 2.2, we have

Modg(A) >
dist2

fg(γ0, γ1)
volfg(A) =

∫ distg(γ0,γ1)

0

1
lg(γ̂r)

dr

>
∫ distg(γ0,γ1)

0

1
lg(γ0)− 2πχ(M)r dr

= 1
−2πχ(M) ln

(
1− 2πχ(M)distg(γ0, γ1)

lg(γ0)

)
. �

Theorem 2.4. — Let M be a closed surface of Euler characteristic
χ(M) < 0 and σ be a hyperbolic metric on M . Let A > 0. Then, there
exists a positive constant C = C(σ,A) such that

inf
g∈[σ]6

A

sys(g) > C,

where [σ]6A is a family of smooth non-positively curved metrics conformally
equivalent to σ with total area A and sys(g) is the length of the shortest
simple nontrivial closed geodesic for the metric g.

Moreover, the constant C is explicitly given by C :=
√

A
R , where

R = π(χ2(M)− χ(M))R̂2 + 2
π

(1− πχ(M))R̂+ 1
π
,

R̂ = e2πE(χ2(M)−3χ(M)) − 1
−πχ(M) , and

E = E(σ) = sup
A− annulus ⊂M

Modσ(A).

Theorem 1.2 in [25] states that there exists a constant C > 0 such that
for every Riemannian metric g on M we have

sys(g)hvol(g) 6 C,

where hvol(g) is the volume entropy on (M, g). Moreover, the topologi-
cal entropy coincides with the volume entropy for non-positively curved
metrics [15, Theorem 2]. Therefore, we obtain the following corollary of
Theorem 2.4, which, in particular, proves Conjecture 1.2 of [2].

Corollary 2.5. — Let M be a closed surface with χ(M) < 0, and σ
be a hyperbolic metric on M . Let A > 0. Then, there exists a positive
constant B = B(σ,A) such that

sup
g∈[σ]6

A

htop(g) 6 B,

ANNALES DE L’INSTITUT FOURIER
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where htop(g) is the topological entropy of the geodesic flow on M with
respect to the metric g.

In order to prove Theorem 2.4, we will follow the proof of [19, Lemma 4.1]
while adapting it to our setting.

Proof of Theorem 2.4. — Let g be a smooth non-positively curved Rie-
mannian metric on M with total area A and conformally equivalent to σ.
Denote by γ the shortest simple closed nontrivial geodesic for g. Let Nr be
the open r-neighborhood of γ in (M, g). Then, we define Zr to be the union
of Nr and all components of M \Nr that are disks. Notice that since γ is a
smooth curve, ∂Zr is a piecewise smooth curve with at most isolated sin-
gularities that appear where the topology of Nr changes (see, for example,
[24]). Let κ(∂Zr) be the integral of the geodesic curvatures of the boundary
components of Zr (including weights for the isolated singularities). Recall
that the sign of κ(∂Zr) is chosen with respect to an inward pointing nor-
mal vector of Zr. Hence, by convexity of the distance function, we have
that κ(∂Zr) > 0. We denote by Kg( · ) the Gaussian curvature function of
(M, g).
By Gauss–Bonnet Theorem applied to (M, g) and (Zr, g), we have

(2.2)

∫
Zr

Kg(x) dAg(x) + κ(∂Zr) = 2πχ(Zr) and∫
M

Kg(x) dAg(x) = 2πχ(M), respectively.

By Equation (2.2), we have, for any r

(2.3) κ(∂Zr) 6 −2πχ(M) = K

as χ(Zr) 6 0 and Kg(x) 6 0 for any x ∈ (M, g).
Using the first variation formulas for arc length and area (see, for exam-

ple, [6]), the functions lg(∂Zr) and Ag(Zr) are differentiable functions of
r everywhere except for finitely many r, where we add a disk. For those
r where the functions are differentiable we have d

dr lg(∂Zr) = κ(∂Zr) and
d

drAg(Zr) = lg(∂Zr). Define Ir to be the set of all indexes u such that
Zru = Nru ∪ Du where Du is the union of disjoint disks and ru 6 r. Let
cu = lg(∂Du), i.e., it is the g-length of the boundary of Du. As a result, we
obtain that

(2.4)

lg(∂Zr)− lg(∂Z0) =
∫ r

0
κ(∂Zτ ) dτ −

∑
u∈Ir

cu,

Ag(Zr)−Ag(Z0) =
∫ r

0
lg(∂Zτ ) dτ +

∑
u∈Ir

Ag(Du).

TOME 71 (2021), FASCICULE 2



740 Thomas BARTHELMÉ & Alena ERCHENKO

Furthermore, by the isoperimetric inequality (see [11]), we have

(2.5) Ag(Du) 6 c2
u

4π .

Therefore, combining Equations (2.3), (2.4), (2.5) and the facts that
lg(∂Z0) = 2lg(γ) and Ag(Z0) = 0, the following inequalities hold:

lg(∂Zr) 6 Kr + 2lg(γ),(2.6) ∑
u∈Ir

cu 6 Kr + 2lg(γ),(2.7)

and

(2.8)

Ag(Zr) 6
∫ r

0
(Kτ + 2lg(γ)) dτ + 1

4π

(∑
u∈Ir

c2
u

)

6
Kr2

2 + 2lg(γ)r + 1
4π

(∑
u∈Ir

cu

)2

6
Kr2

2 + 2lg(γ)r + 1
4π (Kr + 2lg(γ))2

.

Let r0 = 0 and {ri}si=1 be the increasing sequence of values of r where
the topology of Zr changes. Notice that s 6 2− χ(M) because g has non-
positive curvature and Zs = M . By the definition of {ri}si=0, Zri+1 \Zri is a
union of annuli with monotonically curved equidistant boundary curves for
every i = 0, . . . , s−1. Moreover, for each annuli in Zri+1 \Zri we have that
the distance between its boundaries is ri+1 − ri (by construction) and the
length of the shorter boundary is at most Kri+2lg(γ) (see Equation (2.6)).
Due to the choice of sign for the definition of the geodesic curvature,

notice that each annuli in Zri+1\Zri as one boundary αi such that κ(αi) 6 0
and the other, αi+1 such that κ(αi+1) > 0. Thus we can apply Lemma 2.3
to each annuli. The lemma yields

ri+1 − ri 6
eEK − 1

K
(Kri + 2lg(γ)),

where E = supA−annulus⊂M Modσ(A). Therefore, for any i = 0, . . . , s − 1,
we have

ri+1 6 Pri +Qlg(γ),

where P = eEK and Q = 2 e
EK−1
K . By induction, we get

(2.9) rs 6 P
s+1r0 +Qlg(γ)

s∑
i=0

P i 6 Q
P s+1 − 1
P − 1 lg(γ)

ANNALES DE L’INSTITUT FOURIER
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Since Zs = M , Equation (2.8) together with Equation (2.9), gives

A = Ag(Zs) 6
Kr2

s

2 + 2lg(γ)rs + 1
4π (Krs + 2lg(γ))2 6 Rl2g(γ),

where

R = π(χ2(M)− χ(M))R̂2 + 2
π

(1− πχ(M))R̂+ 1
π

and

R̂ = 2e
−2πEχ(M) − 1
−2πχ(M) · e

−2πEχ(M)(s+1) − 1
e−2πEχ(M) − 1

= e−2πEχ(M)(s+1) − 1
−πχ(M) .

Therefore, we have

sys(g) = lg(γ) >
√
A

R
.

Using the fact that s 6 2− χ(M), we prove the theorem. �

Following the model of [19, Lemma 4.1], with the same adaptations as
the ones made in our proof of Theorem 2.4 above, we get a collar lemma.

Lemma 2.6 (Collar lemma). — Consider a closed surfaceM of negative
Euler characteristic. For every L > 0, there exists a constant DL such that
the following holds. Let α and β be any two simple closed curves inM that
intersect non-trivially. Let g be a smooth non-positively curved Riemannian
metric on M that is conformally equivalent to the hyperbolic metric σ. If
lσ(βσ) 6 L, then we have

DLlg(αg) > lg(βg),

where βσ is the σ-geodesic representative of β and αg and βg are the g-
geodesic representatives of α and β, respectively.

3. Extension to metrics with no focal points

In this section, we extend Lemma 2.3 and Theorem 2.4 to the setting of
surfaces with no focal points.

The main interest of this extension is that it shows the limits of our
proof, as well as the place where the assumption about no concentration of
the positive curvature made in Question 1.1 is necessary.

Theorem 3.1. — Let M be a closed surface of Euler characteristic
χ(M) < 0 and σ be a hyperbolic metric on M . Let A > 0 and ε > 0.
Then, there exists a positive constant C = C(σ,A, ε) such that the follow-
ing holds:

TOME 71 (2021), FASCICULE 2
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For every Riemannian metric g with no focal points in the conformal
class of σ, of total area A, and such that,∫

M

K+
g d volg < 2π − ε,

where K+
g is the positive part of the Gaussian curvature of g, we have

sys(g) > C.

As in Theorem 2.4, the bound C can be made completely explicit.
Before going on to the proof of Theorem 3.1, we state and prove the

extension of Lemma 2.3. Note that it is for this result that we need to
assume that the metric has no focal points. We recall that a surface has
no focal points if and only if, in its universal cover, every point admits a
unique orthogonal projection onto any geodesic (see, e.g. [18])

Lemma 3.2. — Let g be a smooth Riemannian metric with no focal
points on a closed surface M with χ(M) < 0. Denote by K+

g the positive
part of the Gaussian curvature on M . Suppose that, for some C > 0,∫
M
K+
g dAg 6 C.

Let A be an annulus in (M, g). Let γ0 and γ1 be its two boundary curves.
Assume that γ0 and γ1 are both equidistant to a fixed geodesic, and that,
for some C2 > 0, we have κ(γ0) 6 C2. Then,

Modg(A) = distg(γ0, γ1)
lg(γ0) if κ(γ0) = 0 and A is a flat annulus,

otherwise,

Modg(A) > 1
−2πχ(M)+C+C2

ln
(

1+(−2πχ(M)+C+C2)distg(γ0, γ1)
lg(γ0)

)
where distg( · , · ) is the distance function on (M, g).

Proof. — We use the same notation as in the proof of Lemma 2.3, and
will only add the modifications needed for this generalization.

As previously, we consider the level curves γ̂r := {p∈A | distg(p, γ0) = r}.
Since all the curves γ̂r are equidistant to a fixed geodesic γ, they must

foliate the annulus A. Otherwise, we would have a point x ∈ A with two
distinct orthogonal projection onto the geodesic γ. This is impossible since
g has no focal points.
Then as before, we have that, for any curve c between the boundaries

of A,

lfg(c) > lg(γ0)
∫ distg(γ0,γ1)

0

1
lg(γ̂r)

dr,
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and

volfg(A) = l2g(γ0)
∫ distg(γ0,γ1)

0

1
lg(γ̂r)

dr,

where f is the function defined by f(r) := lg(γ̂0)
lg(γ̂r) .

Now, Gauss–Bonnet Theorem, applied toM andAr, the annulus bounded
by γ0 and γ̂r, gives∫

M

Kg dAg = 2πχ(M) and
∫
Ar
Kg dAg = −κ(γ̂r) + κ(γ0).

Thus, we obtain

κ(γ̂r) 6 κ(γ0) +
∫
M

−Kg dAg +
∫
M

K+
g dAg 6 −2πχ(M) + C2 + C.

And integration yields that lg(γ̂r) 6 (−2πχ(M) +C2 +C)r+ lg(γ0). Thus,
as claimed, we obtain,

Modg(A) >
dist2

fg(γ0, γ1)
volfg(A)

>
∫ distg(γ0,γ1)

0

1
lg(γ0) + (−2πχ(M) + C2 + C)r dr

= 1
C3

ln
(

1 + C3
distg(γ0, γ1)

lg(γ0)

)
,

where C3 = −2πχ(M) + C2 + C. �

We can now prove Theorem 3.1. Since the proof follows exactly the same
lines as Theorem 2.4, we will use the same notations and only emphasize
the changes that need to be made.

Proof of Theorem 3.1. — As before, we let γ be the shortest geodesic
of g, Nr its r-tubular neighborhood, and Zr the union of Nr together with
all the connected components of M rNr that are disks.

The only new difficulty now is that the boundary curves in ∂Zr may
not be monotonically curved, so we will have to bound κ(∂Zr) from below
(because of the choice of sign when defining the geodesic curvature) in order
to be able to apply Lemma 3.2.
Thanks to Gauss–Bonnet Theorem, and the fact that χ(M) 6 χ(Zr) 6 0,

we have

κ(∂Zr) = 2πχ(Zr)−
∫
Zr

Kg dAg 6 −2πχ(M) +
∫
M

K+
g dAg

6 −2πχ(M) + 2π − ε,
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and
κ(∂Zr) > 2πχ(M)−

∫
M

K+
g dAg > 2πχ(M)− 2π + ε.

We let K1 = −2πχ(M) + 2π − ε. So −K1 6 κ(∂Zr) 6 K1.
Then, as before, we obtain that

lg(∂Zr)− lg(∂Z0) =
∫ r

0
κ(∂Zτ ) dτ −

∑
u∈Ir

cu,

and
Ag(Zr)−Ag(Z0) =

∫ r

0
lg(∂Zτ ) dτ +

∑
u∈Ir

Ag(Du).

Now, Alexandrov’s version of the isoperimetric inequality (see, e.g. [4,
Section 2.2]) implies that

Ag(Du) 6 c2
u

2
(

2π −
∫
Du

K+
g dAg

) 6 c2
u

2ε .

Remark 3.3. — Notice that this is the essential place where we need the
total positive curvature to be strictly less than 2π. Otherwise, one can
shrink the systole by building a sequence of metrics on the surface such
that all the area goes inside a disc. Then any curve that do not enter that
disc will have length going to zero.

The proof now follows exactly as in Theorem 2.4, but with the appropri-
ate changes of bounds. Indeed, we get, for any r,

lg(∂Zr) 6 K1r + 2lg(γ), and
∑
u∈Ir

cu 6 K1r + 2lg(γ),

Thus,

Ag(Zr) 6
K1r

2

2 + 2lg(γ)r + 1
2ε (K1r + 2lg(γ)) .

Now, we want to apply Lemma 3.2 to each annuli in Zri+1 r Zri . We
denote by γi ⊂ ∂Zri and γi+1 ⊂ ∂Zri+1 the two boundary components of
the annuli, and κ(γi) for the total geodesic curvature, with respect to the
annuli in Zri+1 r Zri . Then

κ(γi) 6 −κ(∂Zri+1) 6 K1.

Thus, Lemma 3.2 gives

ri+1 − ri 6
eE(−2πχ(M)+K1+2π−ε) − 1
−2πχ(M) +K1 + 2π − ε (K1ri + 2lg(γ)),

where E = E(σ) is the supremum of the modulus (in the conformal class
of σ) of all the annuli in M . The same computations as in the proof of
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Theorem 2.4 then yield sys(g) >
√

A
R , for an appropriate R, depending

only on E, χ(M) and ε. �

We end the section by noticing that Corollary 2.5 also extends to the
no focal point setting, since Saboureau’s result [25, Theorem 1.2] holds for
any metric, and the topological entropy coincides with the volume entropy
in the case of metrics with no focal points [12]. Thus, we obtain

Corollary 3.4. — Let M be a closed surface of negative Euler char-
acteristic and σ be a hyperbolic metric on M . Let A, ε > 0. Then, there
exists a positive constant B = B(σ,A, ε) such that, if g is a Riemannian
metric with no focal points in the conformal class of σ, of total area A, and∫

g

K+
g dAg 6 2π − ε,

then
htop(g) 6 B,

where htop(g) is the topological entropy of the geodesic flow on M with
respect to the metric g.

4. Compactification of metrics in a fixed conformal class

Definition 4.1. — A sequence of metrics {gk} converges to a metric g
onM in the uniform metric topology if there are diffeomorphisms φk : M →
M such that the sequence (φ∗kgk) converges to g uniformly on M .

Theorem 4.2. — The set of metrics in a fixed conformal class, with no
focal points, total area A, and total positive curvature less than 2π − ε is
precompact in the uniform metric sense. Moreover, if a metric g belongs to
the limiting set, then g is a metric with bounded integral curvature in the
sense of Alexandrov (see [7, Section 1.1]).

Proof. — Theorem 3.1 together with [7, Corollary 4] show that the set
of considered metrics is precompact in the uniform metric sense and the
limiting metrics have bounded integral curvature. �

5. Thick-thin decomposition

A hyperbolic surface (M,σ) can be decomposed into thick and thin parts
(see [3, Chapter D]). The thin part has a simple topology because the
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components of it are homeomorphic to annuli. The thick part has a bounded
geometry in the sense that the diameter and the injectivity radius of a
component of the thick part are bounded below and above by a constant
depending only on the topology of M .
In this section we show that a thick component equipped with a non-

positively curved metric in the conformal class of σ and of fixed total area
has a geometry comparable to the σ-geometry of that piece. The following
theorem is an analogue of [20, Theorem 1] in our setting.

Theorem 5.1. — Let M be a closed surface of negative Euler charac-
teristic and σ be a hyperbolic metric on M . Let A > 0. Denote by Y a
component of the thick part of (M,σ). Then, there exist positive constants
C1, C2 depending only on σ,A and χ(M) such that:
For any non-trivial, non-peripheral, piecewise-smooth simple closed curve

α in Y and any smooth non-positively curved metric g conformally equiv-
alent to σ with total area A, we have

(5.1) C1lσ(ασ) 6 lg(αg) 6 C2lσ(ασ),

where αg is the g-geodesic representative of α.

Notice that we are now back in the setting of non-positively curved met-
rics, as opposed to the more general ones we considered in Section 3. This
is because we will use some results from [2] that were only proved for non-
positively curved metrics.

We will need the following lemma.

Lemma 5.2 (Version of [20, Lemma 5] in a fixed conformal class). —
The setting is as in Theorem 5.1. Let α and β be two non-trivial non-
peripheral piecewise-smooth simple closed curves in Y . Then, there exists
a positive constant D = D(σ,A, χ(M)) such that for any smooth non-
positively curved metric g conformally equivalent to σ with total area A,
we have

lg(α)lg(β) > D i(α, β),
where i( · , · ) is the intersection number.

Proof. — The proof of Lemma 5 in [20] applies verbatim, just using the
fact that for any smooth non-positively curved metric conformally equiv-
alent to σ with total area A the g-size of Y (see the introduction of [20,
Section 3]) is bounded below by C thanks to our Theorem 2.4. �

Proof of Theorem 5.1. — Let α be a non-trivial non-peripheral piecewise-
smooth simple closed curve in Y .
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By [2, Theorem A] there exists a constant C2 = C2(σ,A) such that

lg(ασ) 6 C2lσ(ασ).

Since lg(αg) 6 lg(ασ), we directly obtain the right hand side inequality in
Equation (5.1).
Now we will prove the left hand side inequality in Equation (5.1).
Let µ be a short marking of Y . That is, µ is a collection of the following

curves: First, µ contains all the non-trivial simple closed σ-geodesics in
the σ-shortest pants decomposition of Y (i.e., the sum of the σ-lengths of
the cuffs of the pants is as small as possible). Then, for each such curves,
we add to µ the transverse, non-trivial, non-peripheral simple closed (note
that it could have endpoints on the boundary of Y ) curve with the shortest
σ-length.

Let Lσ(µ) =
∑
β∈µ lσ(µ) be the σ-length of µ. Note that Lσ(µ) depends

only on σ and the topology of M .
Then, by Lemma 5.2 and [2, Theorem A], we obtain that

D
∑
β∈µ

i(αg, β) 6
∑
β∈µ

lg(αg)lg(β) 6 lg(αg)
∑
β∈µ

C2lσ(β) = C2Lσ(µ)lg(αg).

Finally, we have

lg(αg) >
D

C2Lσ(µ)
∑
β∈µ

i(αg, β) = D

C2Lσ(µ)
∑
β∈µ

i(ασ, β)

>
D

C2Lσ(µ)D2lσ(ασ),

where in the last inequality we used that there exists a positive constant
D2 that depends on σ and the topology of M such that

∑
β∈µ i(ασ, β) >

D2lσ(ασ) (see the proof of [17, Lemma 4.7]). As a result, we get the left
inequality in (5.1) with C1 = DD2

C2Lσ(µ) . �

6. Flexibility of the metric entropy

In this section we prove Conjecture 1.1 of [2].

Theorem 6.1. — Let M be a closed surface of negative Euler charac-
teristic and σ be a hyperbolic metric on M . Let A > 0. Then,

inf
g∈[σ]<

A

hmetr(g) = 0,

where hmetr(g) is the metric entropy with respect to the Liouville measure
of the geodesic flow on (M, g) and [σ]<A is a family of smooth negatively
curved metrics conformally equivalent to σ with total area A.
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To prove Theorem 6.1, we will need the following lemma.

Lemma 6.2 (Version of [21, Lemma 1] for non-positively curved metrics).
Denote by D the unit disk in C. Let g0 = e2(a0(z)+β ln |z|)|dz|2 be a cone
metric on the punctured disk D \ {0}, where β > 0 and a0( · ) is a smooth
function on D, chosen so that the curvature of g0, Kg0( · ), is non-positive.
Then there exists a decreasing sequence of smooth metrics gk = e2uk |dz|2

on D such that:
(i) gk = g0 onD\D 1

k
, whereD 1

k
is a disk of radius 1

k (for the Euclidean
metric on C) centered at 0;

(ii) uk > u0 on D \ {0};
(iii) infD 1

k

uk → −∞ as k → +∞;
(iv) The Gaussian curvature function Kgk( · ) on (D, gk) satisfies

Kgk(z) 6 0 for any z ∈ D.
Remark 6.3. — Lemma 6.2 can be of independent interest. In particular,

it can be used to define the Ricci flow in the spirit of [21, Theorem 3.1]
on surfaces of non-positive curvature everywhere except for finitely many
points with conical singularities of angles larger than 2π. This Ricci flow
will smoothen conical points while preserving non-positive curvature.
Proof of Lemma 6.2. — The proof follows the ideas of [21, Lemma 1].
Let (r, θ) be polar coordinates on D. Consider the conformal factor

u0(r, θ) = a0(r, θ) + β ln r

of the metric g0. Notice that u0(r, θ) tends to −∞ as r → 0.
For each natural number k >

√
β+2
β we define vk(r) = Ck − ln(1− r2),

where Ck = ln(1− 1
k2 )− 1 + β ln 1

k + minD a0(r, θ). In particular, vk(0) =
Ck → −∞ as k → +∞ and u0(r, θ)−vk(r) > 1 for any θ and r ∈ [ 1

k ,
√

β
β+2 ].

Moreover, the metric e2vk |dz|2 on D 1
k

has constant negative curvature
−4e−2Ck → −∞ as k → +∞.
Choose a smooth function ψ : R→ R such that
(1) ψ(s) = −s for s 6 −1;
(2) ψ(s) = 0 for s > 1;
(3) −1 6 ψ′(s) 6 0 and ψ′′(s) > 0 for any s.
Define a smooth function

(6.1) uk =

ψ(u0 − vk) + u0 if 0 6 r 6 1
2k + 1

2

√
β
β+2 ,

u0 otherwise.

In particular (ii) holds because ψ(s) > 0 for every s ∈ R.
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The function uk is smooth because u0 is smooth outside of any neigh-
borhood of r = 0, uk = u0 for r ∈ [ 1

k ,
1

2k + 1
2

√
β
β+2 ], and uk = vk in some

neighborhood of r = 0. In particular, (i) and (iii) in Lemma 6.2 holds.
Moreover, we have
(a) Let D′ be the subset of D such that u0(z) 6 vk(z) − 1 for z ∈ D′.

Then, uk = vk and Kgk = −4e−2Ck < 0 on D′.
(b) Let D′′ be the subset of D such that u0(z) > vk(z) + 1 for z ∈ D′′.

Then, uk = u0 and Kgk 6 0 on D′′.
(c) Let D′′′ be the subset of D such that vk(z)− 1 < u0(z) < vk(z) + 1

for z ∈ D′′′. We need to check that Kgk(z) 6 0 for z ∈ D′′.
Recall that Kgk = −e−2uk∆uk. Therefore, Kgk 6 0 if and only if

∆uk > 0. In particular, ∆u0 > 0 on D′′′ as Kg0 6 0 on D \ {0}
Using the conditions on ψ, we have the following on D′′′:

∆uk = ψ′′(u0 − vk)|∇(u0 − vk)|2 + ψ′(u0 − vk)∆(u0 − vk) + ∆u0

> −ψ′(u0 − vk)∆vk = −ψ′(u0 − vk) 4
(1− r2)2 > 0.

Therefore, (iv) in Lemma 6.2 holds. �

Proof of Theorem 6.1. — Pick a point p on M . Then, a result of [26,
Section 5] states that there exists a unique metric g, conformally equivalent
to σ, of total area A, and of zero curvature everywhere except at the point p
where it has a conical singularity of angle α = 2π(1−χ(M)). In particular,
p admits an open neighborhood U and there exists a diffeomorphism from
U \{p} to D \{0} such that the metric g in the coordinates of D \{0} have
the following expression

g = (β + 1)2r2β |dz|2,

where β = α
2π − 1 > 0.

Denote by gk = e2uk |dz|2 the family of smooth metrics given by Lem-
ma 6.2 applied to the metric g. The g-radius of the disk D 1

k
of radius

r = 1/k centered at 0 is equal to 1/kβ+1 and has g-area π(β + 1)/k2β+2.
In particular, the g-radius and g-area of D 1

k
tends to 0 as k → +∞.

Using the notations of the proof of Lemma 6.2, we have

u0 = u0(r) = ln(β + 1) + β ln r

and

vk(r) = ln
(

1− 1
k2

)
− 1 + β ln 1

k
+ ln(β + 1)− ln(1− r2).

TOME 71 (2021), FASCICULE 2



750 Thomas BARTHELMÉ & Alena ERCHENKO

In particular, u0(1/k) − vk(1/k) = 1 and u0(r) − vk(r) increase when
r ∈

(
0,
√
β/(β + 2)

)
and decrease when r ∈

(√
β/(β + 2), 1

)
. Moreover,

u0(r) − vk(r) 6 −1 and uk = vk if r ∈ [0, 1
ke
−2/β(1 − 1

k2 )1/β ]. Therefore,
there exists C > 0 and K > 0 such that, for any k > K, and any z ∈ D 1

k
,

the curvature satisfies Kgk(z) > −Ck2β .
Finally, applying the arguments of [8, Section 3.3], we obtain

hmetr(gk)→ 0 as k →∞.

In particular, inf
g∈[σ]6

A

hmetr(g) = 0.
Let ε0 > 0 be a sufficiently small number. Then, by [27, Theorem A], for

any 0 6 ε < ε0 there exists a metric gε of constant curvature −ε everywhere
except a point where it has the conical singularity with angle larger than
2π which has the total area A and is conformally equivalent to σ. Following
the same argument as above by starting with metric gε, we obtain

inf
g∈[σ]<

A

hmetr(g) = 0. �

7. Further questions

In this section, M is still a closed surface of negative Euler characteristic
χ(M) and σ is a hyperbolic metric on M .

7.1. Possible values of entropies in a fixed conformal class

By [12, Theorem B], we know that for any smooth negatively curved
Riemannian metric g on M which is not a metric of constant curvature, we
have the following inequalities for the metric entropy hmetr(g) with respect
to the Liouville measure and the topological entropy htop(g) of the geodesic
flow on (M, g)

(7.1) 0 < hmetr(g) <
(
−2πχ(M)

A

) 1
2

< htop(g).

In [8], A. Katok and the second author proved that any two pair of reals
satisfying to the above inequality are realized as a pair (hmetr(g), htop(g))
of a negatively curved metric (with fixed total area A).
On the other hand, Theorem 6.1 and Corollary 2.5, show that, when one

fixes the conformal class, then the metric entropy can be arbitrary close to
0 whereas the topological entropy is bounded above.

ANNALES DE L’INSTITUT FOURIER



GEOMETRY IN A FIXED CONFORMAL CLASS 751

Thus, it is natural to try to understand the possible pairs (hmetr(g),
htop(g)) where g ∈ [σ]<A.

Question 7.1. — What is the graph of the function

Htop
σ (x) := sup{htop(g) | g ∈ [σ]<A, hmetr(g) = x}

where x ∈
(
0,
(−2πχ(M)

A

) 1
2
]
?

While it seems hard to answer Question 7.1, a good first step would be
to answer the following questions.

Question 7.2. — For any x ∈
(
0,
(−2πχ(M)

A

) 1
2
]
, does there exists g ∈

[σ]<A (or g ∈ [σ]6A) such that

hmetr(g) = x and htop(g) = Htop
σ (x)?

Question 7.3. — If limx→0+ H
top
σ (x) exists, what is its value in terms

of σ?

Note that Question 7.3 basically asks what is the supremum of the topo-
logical entropy of the geodesic flow (“properly” defined) on singular flat
metrics that are conformally equivalent to σ and have total area A.

While we do not know the answers to the above questions, we expect that
the set of possible pairs (hmetr(g), htop(g)) where g ∈ [σ]<A looks like the
shaded region on Figure 7.1. Indeed, considering [2, Theorem 5.1] and [8,
Section 2], one sees that to increase topological entropy one needs to shrink
a non-trivial simple closed curve. Now, to preserve negative curvature we
need to modify the metric on some neighborhood of that curve whose size,
most likely, will depend on the conformal class. Therefore, we do not expect
that, in a fixed conformal class it is possible to increase topological entropy
while having the metric entropy arbitrary close to

(−2πχ(M)
A

) 1
2 (i.e., we

expect a gap between the shaded domain and the vertical line in Figure 7.1).
Moreover, given the construction in [8, Section 3] and Corollary 2.5, we

expect that, for any hyperbolic metric σ, the limit limx→0+ H
top
σ (x) exists.

Notice that this limit will go to infinity as σ leaves every compact of the
Teichmüller space.
We also expect that there should be negatively curved metrics g in any

fixed conformal class such that (hmetr(g), htop(g)) is any point of the (ad-
missible) neighborhood of

(
0,
√
−2πχ(M)/A

)
.

Indeed, in [13], Kerckhoff proved that for any Riemannian metrics g1 and
g2 the Teichmüller distance dTeich(g1, g2) between their conformal classes
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Figure 7.1. Conjectural possible values of entropies in a fixed confor-
mal class.

is equal to

(7.2) dTeich(g1, g2) = 1
2 log

(
sup
γ

Eg1(γ)
Eg2(γ)

)
,

where γ ranges over all non-trivial simple closed curves (see Definition 2.1
for Eg(γ)). Thus, C0-closeness of Riemannian metrics implies closeness of
their conformal classes in the Teichmüller space. Therefore, the examples
built in [8, Section 3.1] such that (hmetr(g), htop(g)) is in the neighborhood
of
(
0,
√
−2πχ(M)/A

)
belong to conformal classes not far from the confor-

mal class of σ. It is thus likely that one can make similar examples in a
fixed conformal class.

7.2. What is in the compactification of [σ]6A?

By Theorem 4.2, the set of metrics [σ]6A is precompact in the uniform
metric sense. Moreover, g is a metric of bounded integral curvature. What
seems not to be known is how “singular” the metric is.

Question 7.4. — What are the properties of a metric which is the limit
of a sequence of metrics in [σ]6A?
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7.3. Flexibility beyond two entropies

There are other interesting and important intrinsic characteristics of the
geodesic flow on negatively curved surfaces beside hmetr( · ) and htop( · ).
Let hharm(g) be the entropy of the geodesic flow on (M, g) with respect to
the harmonic invariant measure. Denote by λmax(g) the positive Lyapunov
exponent with respect to the measure of maximal entropy.
The following inequalities hold for any negatively curved metrics with

fixed total area A (see [12, 14, 23]).

(7.3) hmetr(g) 6
(
−2πχ(M)

A

) 1
2

6 hharm(g) 6 htop(g) 6 λmax(g).

Moreover, if any of the inequalities above is an equality, then all the other
also are equalities and the metric g has constant curvature.

By Corollary 2.5, we know that there exists a uniform upper bound for
htop( · ) on [σ]<A. Therefore, the next natural question is the following.

Question 7.5. — Does there exist a uniform upper bound for λmax( · )
on [σ]<A?

In terms of the study of the flexibility properties of geometric and dy-
namical data, then a very general question is

Question 7.6. — What four-tuples of positive numbers satisfying in-
equalities (7.3) are realizable on [σ]<A?
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